Vantage MATH 101 Jeopardy!

Final Jeopardy

Before the Midterm - \$100

- The Fundamental Theorem of Calculus requires that a function be on an interval.
- What is continuous?

Before the Midterm- \$200

- In order to define the integral of $f(x)$ from a to b, we need $f(x)$ to be ___ on [a,b].
- What is defined?

Before the Midterm- \$300

- $\int_{2}^{3} x \sqrt{x+1} d x$ can be computed using these two integration techniques
- What are integration by parts (Take dv = $\sqrt{x+1} d x$ and $u=x$) and u-substitution ($u=x+1$)?

Before the Midterm- \$400

- T/F: The volume of the solid generated by rotating $\sin (x)$ between $x=0$ and $x=\mathrm{pi} / 2$ around the y-axis can be easily computed using the slice/disk method.
- False! If we set up the integral, we get an integral in terms of $\arcsin (\mathrm{x})$, which is something we do not know how to compute. Using cylindrical shells gives a much better integral

Power Series- \$100

- The interval of convergence of $\sum_{n \geq 0} \frac{(x+3)^{n}}{2^{2 n}}$ is
\qquad
- What is $(-7,1)$?

Power Series - \$200

- A power series centered at $x=1$ can never converge only on $(1, \infty)$ because power series must converge at \qquad , \qquad ,
- What is the center $x=1$, a symmetric interval around 1, and everywhere.

Power Series- \$300

- This is the power series representation for $x \log (x+3)$
- What is $\log (3) x+\sum_{n \geq 0} \frac{(-1)^{n} x^{n+2}}{3^{n+1}(n+1)}$

Power Series - \$400

- The series $\sum_{n \geq 1} n x^{n}$ converges to this
- What is $\frac{x}{(1-x)^{2}}$

Approximations- \$100

- The degree one approximation of $\log (1.05)$ gives $\log (1.05)$ to be approximately \qquad .
- What is $0.05 ?$

Approximations - \$200

- The the degree three approximation of $f(x)=$ $x \tan (x)$ is \qquad

What is x^{2} ?

Approximations- \$300

- The error of the degree n approximation of $f(x)$ at $x=a$ is where s is \qquad
\square What is $R_{n}(x)=\frac{f^{(n+1)}(s)}{(n+1)!}(x-a)^{n+1}$ where s is between \mathbf{a} and x .

Approximations - \$400

- For $f(x)=x e^{-x}$ and center c=0, the error of the degree 2 approximation is less than for $x \in(0,1)$.
- What is $\frac{3 x^{3}}{3!}<\frac{1}{2}$ for $x \in(0,1)$

Taylor Series - \$100

The Taylor series of $f(x)$ at $x=a$ is \qquad ,

- What is $\sum_{n \geq 0} \frac{f^{n}(a)}{n!}(x-a)^{n}$

Taylor Series - \$200

The 101th derivative of $\arctan (x)$ at $x=0$ is
\qquad ,
\square What is 100 ! ?

Taylor Series - \$300

The power series representation of the antiderivative of $\cos \left(x^{3}\right)$ is

- $\sum_{n \geq 0} \frac{(-1)^{n} x^{6 n+1}}{(2 n)!(6 n+1)}$ (up to a constant)

Taylor Series - \$400

The Taylor series of $\log (x)$ centered at $x=2$ is
$-\log (2)+\sum_{n \geq 1} \frac{(-1)^{n}}{n 2^{n}}(x-2)^{n}$

Differential Equations- \$100

1. A differential equation of the form $\frac{d y}{d x}=$ $p(y) q(x)$ is called

- What is Separable?

Differential Equations- \$200

- The differential equation $y^{\prime}+\sin (x) y+2 y=5 x$ can be solved by taking ___ as the integrating factor
- What is $I=e^{\int \sin (x)+2 d x}=e^{-\cos (x)+2 x}$?

Differential Equations- \$300

- Solutions to differential equations can be expressed quantitatively, by a curve, or qualitatively, using this concept.
- What are direction fields?

Differential Equations- \$400

- The direction field pictured here is the field for this differential equation
- What is $\frac{d y}{d x}=x(y+1)$?

Final Jeopardy

The names of your math101 instructors are....

Who are Wayne, Vanessa, Pam, Chan, Megan, Emily, and Kevin!

We congratulate you on completing the term!

