First name: SOLUTION
Last name:
Student number:
Recitation section:

1. Solve the differential equation $\frac{d y}{d x}=\frac{5 x}{y}$.

This is a separable differential equation, so we aim to gather common variables on separate sides.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{5 x}{y} \\
& y d y=5 x d x \\
& \int y d y \int 5 x d x \\
& \frac{y^{2}}{2}=\frac{5 x^{2}}{2}+c \Rightarrow y^{2}=5 x^{2}+2 c \text { is the family of solutions } \\
& \text { to the differential equations. }
\end{aligned}
$$

2. Find the general solution, $y(t)$, which solves the problem below, by the meth el of integrating factors.

$$
4 t \frac{d y}{d t}+y=t^{2}
$$

Once we divide both sides by 4t, we have a linear differential equation of the form $\frac{d y}{d t}+p(t) y=q(t)$, where $p(t)=\frac{10}{4 t}$ and $q(t)=\frac{t}{4}$ Taking our integrating factor to be $I=e^{\int p(t) d t}=e^{\int \frac{1}{4 t} d t}=e^{\frac{1}{4} \log (t)}=t^{1 / 4}$, we have

$$
\begin{aligned}
& t^{1 / 4}\left(\frac{d y}{d t}+\frac{1}{4 t} y\right)=\left(\frac{t}{4}\right) t^{1 / 4} \\
& d y \\
& d t^{1 / 4}+\frac{1}{4} t^{-3 / 4} y=\frac{t^{5 / 4}}{4} \\
& \int \frac{d}{d t}\left(t^{1 / 4} \cdot y\right) d t=\frac{t^{5 / 4 / 4}}{4} d t \\
& \quad t^{1 / 4} y=\frac{t^{9 / 4}}{9}+c \Rightarrow y=\frac{t^{2}}{9}+c t^{-1 / 4} \text { is the sodutionsily the ODE. }
\end{aligned}
$$

QUIZ 9

First name:

Last name:
Student number:
Recitation section:

1. Solve the differential equation $\frac{d y}{d x}=\frac{4 x}{y}$.
generally, well done.
Only common mistake imolued the constant. Either
(1) it was completely forgotten
or (2) The relationship between $x, y, \& c$ was loot.

- Some students waste:

$$
\frac{1}{2} y^{2}=\frac{5 x^{2}}{2}+c \Rightarrow y^{2}=5 x^{2}+c
$$

- This is not 100% wrong; yes, it is still a constant, but it is not the SAME c. This could be avoided by naming it c, a
just something deferent.

2. Find the general solution, $y(t)$, which soles the problem below, by the method of integrating factors.

$$
5 t \frac{d y}{d t}+y=t^{2}
$$

A few major issues came up here, number I being not knowing the steps of the technique. These problems are not complicated; you are basically following a recipe. Look at your notes, memorize the steps, and do more problems. Second, was computing the intergatingfactor.

- Some clammed $I=e^{\int \frac{\Delta t}{U t}}=e^{\log \mid(1) 1}$ bit of reflection should hals you realign this

Third, if you did compute I incorrectly, it should be obvious later in your problem solung. The entire point of multydying $y^{\prime}+p(x) y=q(x)$ by I is so that $I\left(y^{\prime}+p(x) y\right)=\frac{d}{d x}(I y)$. If you compute $\frac{d}{d x}(I y)$ for the I you found and it does not equal your ougnal equation 1 (1), you 100% did something wrong.

