Power Series 2, March 2, 2018

1. Suppose that the radius of convergence of the power series $\sum_{n \geq 0} a_{n} x^{n}$ is R. What is the radius of convergence of the power series $\sum_{n \geq 0} a_{n} x^{2 n}$?
Solution: There are three cases that need to be consider. Recall that given a power series $\sum_{n \geq 0} a_{n}(x-a)^{n}$, the interval of convergence is either 1. All real numbers 2 . Only at $x=a$ or 3 . on $(a-R, a+R)$, where $R>0$.

So, we can deal with each of the cases individually.

- If $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ converges for all real numbers, then $f\left(x^{2}\right)=\sum_{n \geq 0} a_{n}\left(x^{2}\right)^{n}$ converges for all values of x.
- If $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ converges only at $x=0$, then $f\left(x^{2}\right)=\sum_{n \geq 0} a_{n}\left(x^{2}\right)^{n}$ must only converge at $x=0$.
- If $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ converges for $(-R, R)$, this means it converges for $|x|<R$. So, $f\left(x^{2}\right)=$ $\sum_{n \geq 0} a_{n}\left(x^{2}\right)^{n}$ converges for $\left|x^{2}\right|<R$, which means it converges for $|x|<\sqrt{R}$.

2. Find the power series representation and interval of convergence for $\frac{x^{3}}{(2-x)^{2}}$.

Solution:
$\frac{x^{3}}{(2-x)^{2}}=x^{3} \frac{d}{d x}\left(\frac{1}{2-x}\right)=\frac{x^{3}}{2} \frac{d}{d x}\left(\sum_{n \geq 0}\left(\frac{x}{2}\right)^{n}\right)=\frac{x^{3}}{2}\left(\sum_{n \geq 1} \frac{n x^{n-1}}{2^{n}}\right)=\sum_{n \geq 1} \frac{n}{2^{n+1}} x^{n+2}$, for $|x|<2$
3. Find the sums of the following series:
(a) $\sum_{n \geq 1} n x^{n-1}$

We note that the terms inside the sum $n x^{n-1}=\frac{d}{d x} x^{n}$.
So, $\sum_{n \geq 1} n x^{n-1}=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}$
(b) $\sum_{n \geq 1} n x^{n}$

We note that the terms inside the sum $n x^{n}=x \frac{d}{d x} x^{n}$.
So, $\sum_{n \geq 1} n x^{n}=x \sum_{n \geq 1} n x^{n-1} x \frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{x}{(1-x)^{2}}$
(c) $\sum_{n \geq 1} \frac{n}{2^{n}}$

This series looks just like the power series in part b, with $x=\frac{1}{2}$. So, since $\sum_{n \geq 1} n x^{n}=\frac{x}{(1-x)^{2}}$, we have that $\sum_{n \geq 1} \frac{n}{2^{n}}=\frac{1 / 2}{(1-1 / 2)^{2}}=2$
(d) $\sum_{n \geq 2} \frac{n(n-1)}{2^{n}}$

HINT: $n(n-1) x^{n}=n(n-1) x^{n-1} x^{2}$
(e) $\sum_{n \geq 1} \frac{n^{2}}{2^{n}}$

HINT: $\frac{d}{d x} n x^{n}=n^{2} x^{n-1}$.

