1. Suppose that the radius of convergence of the power series $\sum_{n\geq 0} a_n x^n$ is R. What is the radius of convergence

of the power series
$$\sum_{n\geq 0} a_n x^{2n}$$
?

Solution: There are three cases that need to be consider. Recall that given a power series $\sum_{n\geq 0} a_n(x-a)^n$, the interval of convergence is either 1. All real numbers 2. Only at x = a or 3. on (a - R, a + R), where R > 0.

So, we can deal with each of the cases individually.

- If $f(x) = \sum_{n \ge 0} a_n x^n$ converges for all real numbers, then $f(x^2) = \sum_{n \ge 0} a_n (x^2)^n$ converges for all values of x.
- If $f(x) = \sum_{n \ge 0} a_n x^n$ converges only at x = 0, then $f(x^2) = \sum_{n \ge 0} a_n (x^2)^n$ must only converge at x = 0.
- If $f(x) = \sum_{n \ge 0} a_n x^n$ converges for (-R, R), this means it converges for |x| < R. So, $f(x^2) = \sum_{n \ge 0} a_n (x^2)^n$ converges for $|x^2| < R$, which means it converges for $|x| < \sqrt{R}$.

2. Find the power series representation and interval of convergence for $\frac{x^3}{(2-x)^2}$. SOLUTION:

$$\frac{x^3}{(2-x)^2} = x^3 \frac{d}{dx} \left(\frac{1}{2-x}\right) = \frac{x^3}{2} \frac{d}{dx} \left(\sum_{n \ge 0} \left(\frac{x}{2}\right)^n\right) = \frac{x^3}{2} \left(\sum_{n \ge 1} \frac{nx^{n-1}}{2^n}\right) = \sum_{n \ge 1} \frac{n}{2^{n+1}} x^{n+2}, \text{ for } |x| < 2$$

3. Find the sums of the following series:

(a)
$$\sum_{n\geq 1} nx^{n-1}$$

We note that the terms inside the sum $nx^{n-1} = \frac{d}{dx}x^n$. So, $\sum_{n=1}^{\infty} nx^{n-1} = \frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}$

(b)
$$\sum_{n \ge 1} nx^n$$

We note that the terms inside the sum $nx^n = x \frac{d}{dx} x^n$. So, $\sum_{n \ge 1} nx^n = x \sum_{n \ge 1} nx^{n-1} x \frac{d}{dx} \left(\frac{1}{1-x}\right) = \frac{x}{(1-x)^2}$ (c) $\sum_{n \ge 1} \frac{n}{2^n}$ This series looks just like the power series in part b, with $x = \frac{1}{2}$. So, since $\sum_{n \ge 1} nx^n = \frac{x}{(1-x)^2}$, we

have that
$$\sum_{n \ge 1} \frac{n}{2^n} = \frac{1/2}{(1-1/2)^2} = 2$$

(d)
$$\sum_{n \ge 2} \frac{n(n-1)}{2^n}$$

HINT: $n(n-1)x^n = n(n-1)x^{n-1}x^2$

(e)
$$\sum_{n \ge 1} \frac{n^2}{2^n}$$

HINT: $\frac{d}{dx} nx^n = n^2 x^{n-1}$.