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Introduction

The big question in this course to find the tangent line of a curve y = f(x) at x = x0. In
Latin, “tangent” means “to just touch”, i.e. to have only one cross point. Therefore, we
apply a dynamic approach. Pick up two points A : (x0, f(x0)) and B : (x0 + h, f(x0 + h))
which the line is across.

x0 x0 + h

y = f(x)

y

x

A
B

To get one point, we want to push the point B approaching to A, i.e. take the limit h→ 0.
Then we could find out the slope of the tangent line

kslope = lim
h→0

f(x0 + h)− f(x0)

h

This requires us to further explore what happens with this approaching process - which is
LIMIT. Besides, when B is approaching to A, we may the occur jumps and holes.

A B

Bad?

A B

Good?

To deal with this kind of situation, we need the concept of CONTINUITY and the limit
happens to be the powerful tool examine to this situation. Then we are able to define and
calculate the slope of the tangent line, which we define as DERIVATIVE. Based on the
definition, we could explore a set of theorems including MEAN VALUE THEOREM.
With all the knowledge set up, we could APPLY them in curve sketching and optimization.
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Limit

1. Definition
Let’s consider the two examples below:

First consider the sequence an =
n

n+ 1
. With few terms listed out

{an} = {1

2
,
2

3
,
3

4
, · · · }

we could notice that an is approaching to 1 - the distance between 1 and an, |an − 1| =
1

n+ 1
, is getting smaller. We could make this feeling more mathematical . Let the error

ε1 =
1

10
, we want to have

|an − 1| = 1

n+ 1
<

1

10

which implies n > 9. Let the error ε2 =
1

100
, we want to have

|an − 1| = 1

n+ 1
<

1

100

which implies n > 99. In general, for any error ε > 0, we want to have |an−1| = 1

n+ 1
< ε,

then we need n > [
1

ε
]− 1. This also gives a precise description that the an is approaching

to 1 while n is getting bigger. We want to abstract this kind of approaching as limit,
lim
n→∞

an = 1. Therefore, we could give the definition of sequence limit.

Definition 1. If for any given ε > 0, there exists N > 0, when n > N , we have
0 < |an − A| < ε where A is a constant and an is a sequence, then we know the
limit of an is A and we could denote it as lim

n→∞
an = A.

Then we consider the function f(x) =
x2 − 1

x− 1
(x 6= 1) which is equivalent to f(x) =

x+ 1 (x 6= 1)

x

y f(x) =
x2 − 1

x− 1
(x 6= 1)
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We have the following observation. While x is approaching to 1 from left hand side,
x→ 1−, f(x) is approaching 2. While x is approaching to 1 from right hand side, x→ 1+,
f(x) is approaching 2. Since “approaching” does not require reaching, we could interpret
“approaching” as x 6= a but x → a+ and x → a−. In this way, we could say while x is
approaching to 1, f(x) is approaching to 2. Inspired by Definition 1, we could give a more

precise description. For any given tolerated error ε, we want

∣∣∣∣x2 − 1

x− 1
− 2

∣∣∣∣ = |x − 1| < ε.

Then let δ < ε, when 0 < |x− 1| < δ,

∣∣∣∣x2 − 1

x− 1
− 2

∣∣∣∣ < ε. Then we could give the definition

of function limit.

Definition 2. If for any given ε > 0, there exists δ > 0, when 0 < |x− a| < δ, we
have 0 < |f(x)− A| < ε where A is a constant and f(x) is a function with domain
D, then we know the limit of f(x) is A and we could denote it as lim

x→a
f(x) = A.

Summarize the two examples above, we could find that the approaching of x could go to
a number or to infinity (n could only go to infinity because of the discreteness) and f(x)
or an could go to a number or to infinity as well (However, goes to infinity means the
limit does not exist). Then we could give two more generalized definitions of sequence
and function limit.

Definition 3. If for any (1) , there exists (2) , when (3) , we have (4) , then

lim
(5)

(7) = (6) .

For sequences, we have (7) to be an

(2) (3) (5)

N > 0 n > N n→∞ and

(1) (4) (6)

ε > 0 0 < |an − A| < ε A

M > 0 an > M +∞
M > 0 an < −M −∞
M > 0 |an| > M ±∞

For functions, we have (7) to be f(x)

(2) (3) (5)

δ > 0 0 < |x− a| < δ x→ a

δ > 0 0 < x− a < δ x→ a+

δ > 0 −δ < x− a < 0 x→ a−

X > 0 x > X x→∞
X > 0 x < −X x→ −∞
X > 0 x > |X| x→ ±∞

and

(1) (4) (6)

ε > 0 0 < |f(x)− A| < ε A

M > 0 f(x) > M +∞
M > 0 f(x) < −M −∞
M > 0 |f(x)| > M ±∞

Let’s check an example.
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Example 1. Prove lim
x→4

√
x = 2.

Proof. Since |
√
x −
√

4| =

∣∣∣∣ x− 4√
x+ 2

∣∣∣∣ < 1

2
|x− 4| =

δ

2
= ε, we let δ = 2ε. Then for any

given ε > 0, we can find δ = 2ε such that when 0 < |x− 4| < δ, |
√
x− 2| < ε. Therefore,

lim
x→4

√
x = 2.

Besides the existence of limit, we have to notice that we can only call A to be the limit of an
or f(x) when (6) is A where constant A exists. So if we want to show, i.e. lim

x→ a
f(x) 6= A,

we have to show ∃ε > 0, ∀δ > 0, ∃x such that 0 < |x− a| < δ, |f(x)−A| > ε. If we want
to show, i.e. lim

x→ a
f(x) does not exists, we have to show ∀A ∈ R, ∃ε > 0, ∀δ > 0, ∃x such

that 0 < |x− a| < δ, |f(x)− A| > ε.

Based on that, we can also make some discussion on asymptotes. If we have lim
x→a

f(x) =

±∞ and , we have x = a and x = b to be the vertical asymptotes.

x

y

a b

It is obvious that there could be multiple vertical asymptotes for a function f(x). If we
have lim

x→±∞
f(x) = a, we have y = a to be the horizontal asymptote.

x

y

a

More generally, if we have lim
x→∞

[f(x) − (kx + b)] = 0, then we have y = kx + b to the

oblique asymptote.
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x

y y = kx+ b

2. Properties
(Note: In the following content, a domain D should either be |x− a| < δ or x > X.)

(a) Calculation Properties Assuming lim f = A and lim g = B exist (the approaching
of x or n are the same):

i. lim[f ± g] = A±B
Proof. By definition, we know ∀ε1 > 0, ∃D1 such that when x ∈ D1, 0 < |f −A| <
ε1 and ∀ε2 > 0, ∃D2 such that when x ∈ D2, 0 < |g − B| < ε2. Let D = D1 ∩D2

(by the definition of limit we know D 6= ∅) and ε1 = ε2 =
ε

2
. Then when x ∈ D,

we have

0 < |(f + g)− (A+B)| ≤ |f − A|+ |g −B| < ε

2
+
ε

2
= ε

by trigonometry inequality. Therefore lim[f + g] = A+B. And then when x ∈ D,
we have

0 < |(f − g)− (A−B)| ≤ |f − A|+ |g −B| < ε

2
+
ε

2
= ε

by trigonometry inequality. Therefore lim[f − g] = A−B.

ii. lim fg = AB
Proof. Let ε > 0. By definition of the limits of g and f , ∃D1 such that when

x ∈ D1, |f − A| <
√
ε

3
(1). ∃D2 such that when x ∈ D2, |f − A| < ε

3B
(2).

∃D3 such that when x ∈ D3, |g − B| <
√
ε

3
(3). ∃D4 such that when x ∈ D4,

|g − B| < ε

3A
(4). Take D = D1 ∩ D2 ∩ D3 ∩ D4, when x ∈ D, we would have

(1)(2)(3)(4) all are satisfied. Since

(f − A)(g −B) = fg − Ag −Bf + AB

Limit 8



which comes out to be

|fg − AB| = |(f − A)(g −B) + Ag +Bf − 2AB|
= |(f − A)(g −B) +B(f − A) + A(g −B)|
< |f − A||g −B|+B|f − A|+ A|g −B|

=

√
ε

3

√
ε

3
+B

ε

3B
+ A

ε

3A

= ε

So ∀ε > 0, we find the D such that when x ∈ D, |fg − AB| < ε. By definition
lim fg = AB.

iii. lim
f

g
=
A

B
(B 6= 0)

Proof. First we are going to prove a lemma lim
1

g
=

1

B
. Let ε > 0. By definition,

we know that there is a D1 such that when x ∈ D1, |g − B| < |B|
2

. Therefore,

| |B|− |g| | ≤ |g−B| < |B|
2

by triangle inequality which implies |g| > |B|
2

and then

implies 0 <
1

|g|
<

2

|B|
. Also, by definition there is D2 such that when x ∈ D2, we

have 0 < |g −B| < |B|
2

2
ε. Let D = D1 ∩D2. Then when x ∈ D, we have

|1
g
− 1

B
| = |g −B|

|gB|
=

1

|g|
1

|B|
|g −B|

<
2

|B|
1

|B|
|B|2

2
ε = ε

and also |1
g
− 1

B
| =

1

|g|
1

|B|
|g − B| > 0. Therefore, we have lim

1

g
=

1

B
. By the

calculate property ii, we have lim
f

g
=
A

B
.

iv. If lim
u→a

f(u) = A and lim
x→x0

ϕ(x) = a, then we have lim
x→x0

f [ϕ(x)] = A

Proof. Let ε > 0, by definition, there is a η > 0 such that when 0 < |u − a| < η,
0 < |f(u) − A| < ε. For η > 0, by definition, we have there exists a δ > 0 such
that when 0 < |x − x0| < δ, 0 < |ϕ(x) − a| < η. Therefore, for any ε > 0, there
exists δ > 0 such that when 0 < |x − x0| < δ, 0 < |f(g(x)) − A| < ε. Therefore,
lim
x→x0

f [g(x)] = A.

(b) General Properties

i. Uniqueness
The limit is unique, i.e. if lim f = A and lim g = B, then A = B.
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Proof. We are going to prove it by contradiction. Assume A > B then let ε =
A−B

2
> 0. By definition, there exists D1 such that when x ∈ D1 we have

|f(x)− A| < A−B
2

which is

A+B

2
< f(x) <

3A−B
2

(*)

And also by definition, there exists D2 such that when x ∈ D2 we have |f(x)−B| <
A−B

2
which is

3B − A
2

< f(x) <
A+B

2
(**)

Let D = D1 ∩ D2. When x ∈ D, (*) and (**) conflict. By contradiction A ≤ B.
By symmetric A ≥ B. Therefore, A = B.
We could show this in the graph.

A

B

3A−B
2

A+B
2

3B−A
2

(∗)

(∗∗)

ii. Boundedness
(Sequence) If lim

n→∞
an = A, there exists M > 0 such that |an| ≤M .

Proof. Let ε = 1. By definition, we can find a N > 0 such that when n > N ,
|an −A| < 1. Therefore, we know, by triangle inequality, ||an| −A| ≤ |an −A| < 1
which implies |an| < 1 + A. Let M = max{|a1|, |a2|, . . . , |aN |, 1 + |A|}. Then we
have for all n, |an| ≤M .

na1

a2

a3

aN

1
A

(Function 1 - Partially Bounded) If lim
x→a

f(x) = A, then there exists δ > 0 and

M > 0 such that when 0 < |x− a| < δ, |f(x)| ≤M .
Proof. Let ε = 1. By definition, we can find a δ > 0 such that when 0 < |x−a| < δ,
|f(x)−A| < 1 which implies |f(x)| < 1 + |A|. Let M = 1 + |A| > 0. Then we have
when 0 < |x− a| < δ, |f(x)| ≤M
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aa− δ a+ δ

M

−M

x

(Function 2 - Partially Bounded) If lim
x→∞

= A, there exists X > 0 and M > 0

such that when x > X, |f(x)| ≤M .
Proof. Let ε = 1. By definition, we can find an X > 0, when x > X, |f(x)−A| < 1
which implies |f(x)| < 1 + |A|. Let M = 1 + |A| > 0. When x > X, |f(x)| ≤M .

X
x

A

M = |A|+ 1

−M

iii. Sign-Preserving
(Sequence) If lim

n→∞
an = A > 0(< 0), there exists N > 0 such that when n > N ,

an > 0(< 0).

Proof. Let A > 0. Let ε =
A

2
> 0. By definition, we can find a N > 0 such that

when n > N , |an − A| <
A

2
which implies an >

A

2
> 0. We can prove the A < 0

case by the same method.

N

A

3A
2

A
2

n

(Function 1) If lim
x→a

f(x) = A > 0(< 0), there exists a δ > 0, when 0 < |x−a| < δ,

we have f(x) > 0(< 0).

Proof. Let A > 0. Let ε =
A

2
> 0. By definition, we can find a δ > 0 such that

Limit 11



when 0 < |x− a| < δ, |f(x)−A| < A

2
which implies f(x) >

A

2
> 0. We can prove

the A < 0 case by the same method.

aa− δ a+ δ

3A
2

A
2

x

Corollary: If lim
x→a

f(x) = L > A(< A), there exists a δ > 0, when 0 < |x− a| < δ,

we have f(x) > A(< A).
Proof. Construct g(x) = f(x)−A. Then from lim

x→a
f(x)−A = L−A > 0(< 0), we

have f(x)− A > 0(< 0) which is f(x) > A(< A).

(c) Existence Properties

i. Squeeze Theorem
If f(x) < g(x) < h(x) and lim f(x) = limh(x) = A, then lim g(x) = A.
Proof. For ∀ε > 0, ∃D1 such that x ∈ D1,

A− ε < f(x) < A+ ε (*)

and ∃D2 such that x ∈ D2,

A− ε < h(x) < A+ ε (**)

Take D = D1 ∩D2, when x ∈ D, (*) and (**) are true and

A− ε < f(x) < g(x) < h(x) < A+ ε

Then we know lim g(x) = A

Example 2. Consider an important limit, lim
x→0

sinx

x
= 1.

Consider the following unit circle (OA = 1)

Limit 12



x

y

O A

B

C

θ

Denote the area of 4AOB to be S1, the area of sector AOB to be S2 and

the area of 4AOC to be S3. We know S1 =
1

2
× sin θ × 1 =

1

2
sin θ, S2 =

1

2
× θ × 12 =

1

2
θ and S3 =

1

2
× 1× tan θ =

1

2
tan θ. Since S1 < S2 < S3, we

have
sin θ < θ < tan θ

With arrangement, we have

1 <
θ

sin θ
<

1

cos θ

Since lim
θ→0

1 = 1 and lim
θ→0

1

cos θ
= 1, we have

lim
θ→0

θ

sin θ
= 1

This is equivalent to, by changing dummy variables and flipping,

lim
x→0

sinx

x
= 1

ii. Bounded Monotone Convergence Theorem

Theorem 1. (Bounded Monotone Convergence Theorem) If {an} is bounded
and monotone, then an converges.

Proof. Without loss of generality, suppose {an} is increasing and bounded. Let
the least upper bound of {an} is L. We want to prove {an} converges to L. Given
ε > 0, since {an} is increasing, if none of {an} eventually goes to L− ε < an < L,
L− ε would be the least upper bound, which be a contradiction. Therefore, all of
{an} eventually go to L− ε < an < L. Then we proved {an} converges to L.

Limit 13



(d) Other Properties
Consider f(x), g(x) where |g(x)| ≤M :

i. If f(x) diverges to ±∞ and g(x) does not converge to 0, then f(x)g(x) diverges to
±∞.

ii. If f(x) converges to 0, then f(x)g(x) converges to 0.

iii. If f(x) diverges to ∞ and g(x) converges to 0, then f(x)g(x) depends.

Limit 14



Problem Solving I

Prove the limit by definition; Calculate the limit or consider the convergence of the limit.

Problem 1: Prove the limit by definition
1. Polynomial Function. Prove the following limit converges or diverges (or does not not

exist).

(a) lim
n→∞

n− 1

n+ 1
= 1

(b) lim
x→a

√
x =
√
a

(c) lim
n→∞

1√
n

= 0

(d) lim
n→∞

1

2n
= 0

(e) lim
n→∞

2n2 − 1

2n2 + 1
= 1

(f) lim
x→2+

1

x2 − 4
= +∞

(g) Let f(x) =

−
3

x+ 1
, x < −1

4x+ 4, x > −1
, then lim

x→−1
f(x) does not exist.

2. Discrete Function (Dirichlet Function). Prove the following limit exists or does not
exist.

(a) Let f(x) =


1, x =

1

10k

0, x 6= 1

10k

, consider lim
x→0

f(x).

(b) Let f(x) =

{
1, x ∈ Q
0, x ∈ R/Q

, consider lim
x→a

f(x).

(c) Let f(x) =

{
x2, x ∈ Q
0, x ∈ R/Q

, consider lim
x→0

f(x).

(d) {an} = {0, 3, 0, 0, 3, 0, 0, 0, 3, . . . }, consider lim
n→∞

an

3. Trigonometric Function (Bounded Function). Prove the following limit converges
or diverges (or does not not exist).

(a) lim
x→∞

sinx

x
= 0
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Problem 2: Calculate the limit or consider the convergence of the limit
1. Polynomial Function. Calculate the following limit.

(a) P (x) =
anx

n + · · ·+ a0

bmxm + · · ·+ b0

=


an
bm

n = m

0 n < m

∞ n > m

2. Trigonometric Function (Bounded and Periodic Function). Calculate the follow-
ing limits.

(a) lim
n→∞

cos(4nπ) = 1

(b) lim
n→∞

cos

(
3

n

)
= 0

(c) lim
n→∞

sin 4n

1 +
√
n

= 0

(d) lim
x→0

x2 sin

(
1

x

)
= 0

3. loga n, a
n, na, nn, n! Functions. (nn > n! > an > na > loga n). Calculate the following

limits.

(a) lim
n→∞

(−5)n

n!
= 0

(b) lim
n→∞

nn

n!
=∞

(c) lim
n→∞

(−1)n
2n

lnn
does not exist

4. Special Type Functions:
0

0
,
∞
∞
, ∞−∞. Calculate the following limit.

(a) lim
t→1

t3 − 1

t2 − 1
=

3

2

(b) lim
t→1

t3 − t
t2 − 1

= 1

(c) lim
y→9

9− y
3−√y

= 6

(d) lim
n→∞

(
√
n2 + 4n− n) = 2

(e) lim
x→∞

(
√
x2 + 2− x) = 0

5. Piecewise Function:

(a) lim
x→0

5x+ 12|x|
5x− 13x

does not exist

(b) lim
x→k

(x− [x]) does not exist

Limit 16



6. Application of Bounded-Monotone Convergence Theorem. Calculate the limit or
consider the convergence of the limit.

(a) Induction Sequence

• an+1 =
1

2
(an + 6) and a1 = 2, prove lim

n→∞
an = 6.

• an+1 =
√

2an and a1 =
√

2, prove lim
n→∞

an = 2.

• an+1 =
√
an + 2 and a1 =

√
2, prove lim

n→∞
an = 2.

(b) ∞−∞ Type: Prove lim
n→∞

√
n2 + 4n− n converges.

(c) Constructed Sequences:
Let {an} be a bounded sequence.Define a crest of the sequence to be an term am that
is greater than all subsequent terms - that is, am > an for all n > m.

i. Suppose {an} has infinitely many crests. Prove that the crests form a convergent
subsequence.

ii. Suppose {an} has only finitely many crests. Let an1 be a term with no subsequent
crests. Construct a convergent subsequence with an1 as the first term.

Limit 17



Continuity

1. Definition

Recall the example in the previous section f(x) =
x2 − 1

x− 1
(x 6= 1), we know lim

x→1+

x2 − 1

x− 1
=

lim
x→1−

x2 − 1

x− 1
= lim

x→1

x2 − 1

x− 1
= 2. These limits have nothing to do with the value of the

function at x = 1. In other words, if we just know the limit lim
x→1

x2 − 1

x− 1
= 2, f(1) could be

any value. However, if we choose f(1) = 2. The right limit is approaching and touching
the point x = 1 and the left limit is also approaching and touching the point x = 1. This
means that they are connected.

x

y

y = x2−1
x−1

(x 6= 1)

x

y

y = x+ 1

In this example we could find lim
x→a

f(x) = f(a) is a special case and instead of “connected”,

we want to use “continuous”. Here, we give the definition of continuity.

Definition 4. A function f(x) is continuous if lim
x→a

f(x) = f(a). This means:

• f(x) is defined at x = a

• lim
x→a+

f(x) and lim
x→a−

f(x) exist and equal

• the three are equal

Intuitively, we want to extend the definition from one point to a interval. It would be
clear on an open interval.

Since it is an open for every point in the interval we could always find the points in left
and the points in the right. We could easily requires that every point in the interval is
continuous.

Continuity 18



Definition 5. A function f(x) is continuous on (`, r) if for any a ∈ (`, r),
lim
x→a+

f(x) = f(a).

However, things become tricky for a closed interval [`, r]. We could see there is no point
to the left of x = ` and there is not point to the right of x = r. Therefore, we could not
find the left limit of x = ` and the right limit of x = r.

Then we just let the right limit of x = ` equals f(`) and the left limit of x = r equals
f(r).

Definition 6. A function f(x) is continuous on [`, r] if

• for any a ∈ (`, r), lim
x→a+

f(x) = f(a),

• lim
x→`+

f(x) = f(`),

• lim
x→r−

f(x) = f(r).

Based on the definition, we could explore the fact that the following functions are all con-
tinuous on their domain: polynomials, rational functions, rational powers, sums, products,
quotients and composites of continuous functions, trigonometric functions and exponential
functions.

2. Theorems
There are three theorems consequent to the the continuity.

(a) Boundness Theorem

Theorem 2. (Boundness Theorem) If f(x) is continuous on [`, r], f(x) is
bounded on [`, r].

Proof. (Adapted from the notes by Dr. Fok-shuen Leung) We are going to prove it
by contradiction. Without loss of generality, we assume that f(x) has no upper bound.

Then we cut the interval [`, r] into half and pick up the half with no upper bound
(there should be at least one half with no upper bound and if there is two, pick the
left half). We denote the picked half as [`1, r1] and we pick a point in [`1, r1] whose
y-value is greater then 1 to be P1. Then with the same method we could find the
second the interval [`1, r1] and the point P2 ∈ [`1, r1] whose y-value is greater then 2.
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In this procedure, we obtain a list of interval

[`, r] ⊃ [`1, r1] ⊃ [`2, r2] ⊃ · · ·

and a list of points Pn whose y-values yn > n.

` r

`1
r1

P1

`2
r2

P2

`3
r3

P3

a

...

The interval [`n, rn] would converges to one point a. Since it is continuous, lim
x→a

f(x) =

f(a). However, if we take a ε > 0, no matter how small the interval (a − δ, a + δ) is,
we can always find some points Pk, Pk+1, . . . where k > f(a) + ε and therefore all the
points are out of the range (f(a) − ε, f(a) + ε). Then the contradiction comes. And
therefore f(x) is bounded.

(b) The Extreme Value Theorem

Theorem 3. (Extreme Value Theorem) If f(x) is continuous on [`, r], then f(x)
has global extrema on [`, r]

x

y

` r

m

M

Proof. (Adapted from the notes by Dr. Fok-shuen Leung) By boundness theorem,
we know f(x) is bounded. We only have to prove that the f(x) could reach its least
upper bound and greatest lower bound. Without loss of generality, we assume that
f(x) does not attain its least upper bound U . Then we construct

g(x) =
1

U − f(x)
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which is a continuous function. By boundness theorem, we know g(x) < V for some

V > 0. Then f(x) < U − 1

V
which contradicts to the fact that U is the least upper

bound. Therefore, f(x) could reaches it least upper bound and greatest lower bound.
In other words, f(x) has global extrema on [`, r].

(c) The Intermediate Value Theorem

Theorem 4. (Intermediate Value Theorem) If f(x) is continuous on [`, r], then
for any number L between f(`) and f(r), there exists a number a ∈ [`, r] such
that f(a) = L.

x

y

` r

m

M

a

L

Proof. (Adapted from the assignments by Dr. Fok-shuen Leung) Without loss of gen-
erality, we assume f(`) < f(r).

We divide [`, r] into half and take the middle point to be m. If f(m) = L then we
are done. Otherwise Otherwise, if f(m) > L, let [`,m] be the new interval, and if
f(m) < L, let [m, r] be the new interval. Name the new interval [`1, r1].

Then divide [`1, r1] in half, and call the midpoint m1. If f(m1) = L, we are done.
Otherwise, if f(m1) > L, let [`1,m1] be the new interval, and if f(m1) < L, let [m1r1]
be the new interval. Name the new interval [`2, r2].

Repeat the process ad infinitum,, we would finally get a sequence

[`1, r1] ⊃ [`2, r2] ⊃ [`3, r3] ⊃ · · ·

Since `n ≤ `n+1 < r (increasing and bounded), we know {`n} converges. Let lim
n→∞

`n =

c ∈ [`, r]. By continuity, we have

f(c) = lim
x→c

f(x) = lim
n→∞

f(`n) ≤ L

Similarly, we know {rn} converges and let lim
n→∞

rn = d ∈ [`, r]. By continuity, we know

f(d) = lim
x→d

f(x) = lim
n→∞

f(rn) ≥ L
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Since we have

lim
n→∞

(rn − `n) = lim
n→∞

r − `
2n

= 0

we know
d− c = lim

n→∞
rn − lim

n→∞
`n = lim

n→∞
(rn − `n) = 0

This shows that we find a point c = d such that

f(c) = L = f(d)

3. Discontinuity
After exploring the continuity, it may be helpful to explore the discontinuity. In other
words, we want to explore how the rule

lim
x→a+

f(x) = lim
x→a−

f(x) = f(a)

is violated with the assumption that x = a is in the domain of the function. We divide
the violation into two cases.

• Case 1: Both limits exists but the equivalence is violated. lim
x→a+

f(x) 6= f(a), lim
x→a−

f(x) 6=
f(a) or lim

x→a+
f(x) 6= lim

x→a−
f(x). In other words, there are jumps or holes.

• Case 2: One of the limit does not exist. In other word, there is an asymptote.

In both cases, the function could be not bounded and the required value could be unreach-
able. Therefore, the boundness theorem, the extreme value theorem and the intermediate
value theorem could not work on the discontinuity cases.
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Problem Solving II

Determine the continuity; Apply the theorems of continuity

Problem 3: Determine the continuity

1. Determine the continuity of the function f(x) =
x2 − 1

x− 1
.

2. Determine the continuity of the function f(x) =

{
1, x ∈ Q
0, x ∈ R/Q

.

3. Determine the value of a such that the function f(x) =


x2 + x− 6

x+ 3
, x 6= −3

a, x = −3

is continu-

ous.
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Problem 4: Apply the theorems of the continuity
1. Calculate complicated limits

(a) lim
x→5

x2 − lnx

cosπx

(b) lim
x→5

sin(cos(lnx))

ecos2(lnx)

(c) lim
x→e

ln(cos(lnx5))

x2

2. Find roots

(a) Prove that if f(x) is continuous on [a, b] and f(a)f(b) < 0, there is more than one root
in (a, b) .

(b) Prove that f(x) = x3 − 15x+ 1 has at three roots on the interval [−4, 4].

3. Prove that at a given instant there exists at least one pair of antipodal points on the
earth which have the same temperature and same pressure. Assume the temperature and
pressure distribution functions are continuous.

4. Let f(x) be continuous and 0 ≤ f(x) ≤ 1 on [0, 1]. Prove there exists a ∈ [0, 1] such that
f(a) = a.

5. Prove that if f(x) is continuous on [`, r] and the global maximum is M and the global
minimum is m, then for any value L ∈ [m,M ] we can find a point a ∈ [`, r] such that
f(a) = L.

6. Let f(x) be continuous on [0, 2] and f(0) + f(1) + f(2) = 3. Prove there exists a ∈ [0, 2]
such that f(a) = 1.

7. Let f(x) be continuous on [`, r]. Prove for any p > 0 and q > 0 there exists a point
a ∈ [`, r] such that pf(`) + qf(r) = (p+ q)f(a).
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Derivatives

1. Definition
Let’s back to the big question in this course, what is the tangent line of the curve y = f(x)
at point x = x0. In Latin, “tangent” means “to just touch”. In other words, there is only
one cross point between the straight line and the curve. To find it, we first let the line
cross two points A : (x0, f(x,0 )) and B : (x0 + h, f(x0 + h)).

x0 x0 + h

y = f(x)

y

x

A
B

To get one point, we want to push the point B approaching to A, i.e. take the limit h→ 0.
Then we could find out the slope of the tangent line

kslope = lim
h→0

f(x0 + h)− f(x0)

h

We want to define the derivative to be the slope of the tangent line.

Definition 7. The derivative of f(x) is a function

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

where the limit exists. And f(x) is differentiable where f ′(x) or the limit exists.

Then we want to explore the existence of the limit at certain point x = x0. Since h → 0
has two ways of approaching: h→ 0+ and h→ 0−, we separate the limit into two parts:
the left derivative (left limit)

lim
h→0−

f(x0 + h)− f(x0)

h
= f ′−(x0)

and the right derivative (right limit)

lim
h→0+

f(x0 + h)− f(x0)

h
= f ′+(x0)
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For the limit to exist, we need the left limit and the right limit exist and equal to each
other. Let’s look at two examples.

Example 3. Consider f(x) = x2, prove f ′(x) = 2x.
By definition, we have

f ′(x) = lim
h→0

(x+ h)2 − x2

h
= lim

h→0

2xh+ h2

h
= lim

h→0
(2x+ h) = 2x

Example 4. Consider y = |x|, prove it is not differentiable at x = 0.
By definition, we have

f ′(0) = lim
h→0

|0 + h| − 0

h
= lim

h→0

|h|
h

Since
|h|
h

=

{
1, h > 0

−1, h < 0

we have

lim
h→0+

=
|h|
h

= 1

but

lim
h→0−

=
|h|
h

= −1

Therefore, the limit does not exist and the derivative does not exist.

Note: For simplicity, we note that the first derivative is f ′(x) =
df(x)

dx
, the second

derivative is f ′′(x) =
d2f(x)

dx2
and the nth derivative is f (n)(x) =

dnf(x)

dxn
.

2. Differentiablity and Continuity
Intuitively, if a function is differentiable, then, by definition, when we move point B
approaching A, there should be no hole or jump - f(x) should be continuous.

A B

Bad

A B

Good

We could claim that the differentiablity implies the continuity.

Claim. If f(x) is differentiable at a, then f(x) is continuous at a.
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Proof. By definition, we have

lim
h→0

(f(a+ h)− f(a)) = lim
h→0

h
f(a+ h)− f(a)

h

= lim
h→0

h lim
h→0

f(a+ h)− f(a)

h
= 0f ′(a) = 0

Therefore equivalently lim
x→a

f(x) = f(a), i.e. f(a) is continuous at a.

Inspired by the discussion of differentiablity and continuity, we want to consider the
case where the derivative (as a function) is continuous. Here we give the definition of
continuously differentiable.

Definition 8. If the derivative of function f(x) is continuous at x = a, then f(x)
is continuously differentiable at x = a

Note: The derivative of a (differentiable) function could be discontinuous but could only
fall in case 2, i.e. there should be no jumps or holes. In summary we could find that

continuous differentiablity implies differentiablity, differentiablity implies continuity.

General Functions

Continuous Functions

Differentiable Functions

Continuously Differentiable
Functions

3. Derivative Rules
In practice, it is scary to calculate the derivative by definition. We wish to find some
strategies to help us decompose those complicated functions such as y = 6x5 + sin x,

y = x sinx, y =
lnx

x
and y = log(cos x). With such motivation, we explore five derivative

rules as our tools.

In the following discussion, we assume f(x) and g(x) are differentiable.
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(a) Constant Multiplication Rule: (kf(x))′ = kf ′(x).
Proof. By definition, we have

(kf(x))′ = lim
h→0

kf(x+ h)− kf(x)

h
= k lim

h→0

f(x+ h)− f(x)

h
= kf ′(x)

(b) Sum Rule: (f(x) + g(x))′ = f ′(x) + g′(x)
Proof. By definition, we have

(f(x) + g(x))′ = lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x)

Corollary: (a1f1 + · · ·+ anfn)′ = a1f
′
1 + · · ·+ anf

′
n

(c) Product Rule: (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)
This could be understood with geometry. Consider the change of f(x) and g(x) with
the change from x to x+ ∆x.

f(x) ∆f(x)

g(x)

∆g(x)
∆(fg) = (f + ∆f)(g + ∆g)− fg

= ∆fg + f∆g + ∆f∆g︸ ︷︷ ︸
too small

f(x)∆g(x)

g(x)∆f(x)

∆f(x)∆g(x)

Then with intuition we take

∆(f(x)g(x))

∆x
=

∆f(x)

∆x
g(x) + f(x)

∆g(x)

∆x
+

∆f(x)∆g(x)

∆x

When we take ∆→ 0, we have
∆f(x)∆g(x)

∆x
→ 0 by intuition. Then we have

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)
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Then we could look at the formal proof of this rule.
Proof. By definition, we have

(f(x)g(x))′ = lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

= lim
h→0

g(x+ h) lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0
f(x) lim

h→0

g(x+ h)− g(x)

h
= f ′(x)g(x) + f(x)g′(x)

Corollary:

• (f1f2 · · · fn)′ = (f ′1f2 · · · fn) + (f1f
′
2 · · · fn) · · ·+ (f1f2 · · · f ′n)

• (fg)(n) =
(

0
n

)
f (n)g +

(
1
n

)
f (n−1)g′ + · · ·+

(
n
n

)
fg(n)

Alternatively, they could be represented as:

•

(
n∏
i=1

fi(x)

)′
=

n∑
i=1

f ′i(x)f1(x) · · · f̂i(x) · · · fn(x)

• (fg)(n) =
n∑
i=0

(
i

n

)
f (n−i)g(i)

(d) Quotient Rule:

(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g2(x)
Again, we could look at its geometric interpretation. Consider the change of f(x) and
g(x) with the change from x to x+ ∆x.

f(x)

∆f(x)

g(x)∆g(x)

∆

(
f

g

)
=
f + ∆f

g + ∆g
− f

g

=
(f + ∆f)g − (g + ∆g)f

g(g + ∆g)

=
g∆f − f∆g

g(g + ∆g)

k = f
g

Now let’s look at the formal proof.
Proof. By product rule, we know(

f(x)

g(x)

)
= f(x)

(
1

g(x)

)′
+ f ′(x)

(
1

g(x)

)
By definition, we have(

1

g(x)

)′
= lim

h→0

(
1

g(x+ h)
− 1

g(x)

)
= lim

h→0

g(x)− g(x+ h)

hg(x)g(x+ h)

= − lim
h→0

1

g(x)g(x+ h)
lim
h→0

g(x+ h)− g(x)

h
= − g

′(x)

g2(x)
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Hence, we could plug it in to get(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g2(x)

(e) Chain Rule: (f(g(x)))′ = f ′(g(x))g′(x)
Intuitively, if we know the rate of u is related to v and the rate of u is related to x,
we could have

∆u

∆x
=

∆u

∆v

∆v

∆x

But we have to notice the case
∆h

∆x
=

∆h

∆g

∆g

∆x
where ∆g = 0, i.e. g(x+ h)− g(x) = 0.

For example, g(x) = x2 sin

(
1

x

)
. Therefore, instead of division, we could use multi-

plication. We could let h(x) = f(g(x)) and make a linear approximation h(x+ ∆x) ≈
h(x) + h′(x)∆x (alternatively, we know ∆h(x) ≈ h′(x)∆x).

x

y

x0 x0 + ∆x

kslope = h′(x0)

y = h(x)

Linear Approximation

With the same linear approximation of f(x) and g(x), we know

h(x+ ∆x) = f(g(x+ ∆x))

≈ f(g(x) + g′(x)∆x︸ ︷︷ ︸
∆g(x)

)

≈ f(g(x)) + f ′(g(x))g′(x)∆x

Compare with the linear approximation of h(x), we know

(f(g(x)))′ = h′(x) = f ′(g(x))g′(x)

With the same idea, we could give out the formal proof.

Proof. Construct a function

E(H) =

 f(g(x) +H)− f(g(x))

H
− f ′(g(x)) , H 6= 0

0 , H = 0
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which is equivalent to

f(g(x) +H)− f(g(x)) = [f ′(g(x)) +H]H (*)

Let H = g(x+ h)− g(x), then (*) yields

f(g(x+ h))− f(g(x)) = [f ′(g(x)) + E(g(x+ h)− g(x))](g(x+ h)− g(x))

Then by definition, we have

h′(x) = lim
h→0

f(g(x+ h))− f(g(x))

h

= lim
h→0

f(g(x+ h))− f(g(x))

h
(f ′(g(x)) + E(g(x+ h)− g(x)))

= lim
h→0

f ′(g(x))g′(x)

This proves
(f(g(x)))′ = f ′(g(x))g′(x)

With the help of chain rule, we could compute the implicit derivatives.

Example 5. Consider the ellipse
x2

16
+
y2

9
= 1, find out the slope of the tangent line

at

(
2,

3
√

3

2

)
.

Take the derivative on both sides with repsect to x,

x

8
+

2

9
y
dy

dx
= 0

which yields
dy

dx
= − 9x

16y

Then the slope would be

k =
dy

dx

∣∣∣∣
x=2

= − 9× 2

16× 3
√

3
2

= −
√

3

4

4. Derivatives of Fundamental Functions
Based on the definition and derivatives rules, we could calculate the derivatives of some
basic functions.

(a)
d

dx
(xn) = nxn−1 (x ∈ N)
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Proof. By definition, we have

(xn)′ = lim
h→0

(x+ h)n − xn

h
= lim

h→0

xn + nxn−1h+

only has h2 and
higher terms︷ ︸︸ ︷
P (x, h) −xn

h

= lim
h→0

nxn−1h+ P (x, h)

h
= nxn−1

(b)
d

dx
(x

m
n ) =

n

m
x

n
m
−1 (n,m ∈ N)

Proof. The function is equivalent to ym = xn. Take the derivative on both sides with
respect to x,

mym−1y′ = nxn−1

Therefore we have

y′ =
n

m

xn−1

x
n
m

(m−1)
=

n

m
x

n
m
−1

(c)
d

dx
(x−n) = −nx−n−1 (n ∈ N)

Proof. By definition, we have(
1

xn

)
= lim

h→h

(
1

(x+h)n
− 1

xn

h

)

= lim
h→0

xn − (x+ h)n

hxn(x+ h)n
= − lim

h→0

1

xn(x+ h)n
lim
h→0

(x+ h)n − xn

h

= − 1

x2n
nxn−1 = −nx−n−1

(d)
d

dx
(ex) = ex

Proof. e is defined as the number (around 2.718) such that the derivative of ex evalu-
ated at 0 is equal to 1. Then by definition

(ex)′ = lim
h→0

ex+h − ex

h
= ex lim

h→0

eh − e0

h
= exf ′(0) = ex

(e)
d

dx
(lnx) =

1

x
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Proof. y = lnx is defined to be the inverse function of y = ex, i.e. ey = x. Take the
derivative on both sides respect to x,

ey
dy

dx
= 1

Then

y′ =
1

ey
=

1

x

(f)
d

dx
(ax) = ax ln a (a > 0 and a 6= 1)

Proof.
d

dx
(ax) =

d

dx

(
ex ln a

)
= ex ln a ln a = ax ln a

(g)
d

dx
(loga x) =

1

x ln a
(a > 0 and a 6= 1)

Proof.
d

dx
(loga x) =

d

dx

(
lnx

ln a

)
=

1

x ln a

(h)
d

dx
(sinx) = cos x

Proof. By definition, we have

(sinx)′ = lim
h→0

sin(x+ h)− sin(x)

h
= lim

h→0

check Sum and Product Formulae︷ ︸︸ ︷
2 cos

2x+ h

2
sin

h

2
h

= lim
h→0

cos

(
x+

h

2

)
lim
h→0

sin h
2

h
2︸ ︷︷ ︸

=1

= cosx

(i)
d

dx
(cosx) = − sinx

Proof. By definition, we have

(cosx)′ = lim
h→0

cos(x+ h)− cos(x)

h
= lim

h→0

check Sum and Product Formulae︷ ︸︸ ︷
−2 sin

2x+ h

2
sin

h

2
h

= − lim
h→0

sin

(
x+

h

2

)
lim
h→0

sin h
2

h
2︸ ︷︷ ︸

=1

= − sinx
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(j) tanx =
1

cos2 x

Proof. (tanx)′ =

(
sinx

cosx

)′
=

cosx cosx− sinx(− sinx)

cos2 x
=

1

cos2 x

(k) cotx =
1

cos2 x

Proof. (cotx)′ =
(cosx

sinx

)′
=
− sinx sinx− cosx cosx

sin2 x
=

1

sin2 x

(l) secx = secx tanx

Proof. (secx)′ =

(
1

cosx

)′
= −− sinx

cos2 x
=

sinx

cos2 x
= secx tanx

(m) cscx = secx tanx

Proof. (cscx)′ =

(
1

sinx

)′
= − cosx

sin2 x
= − cosx

sin2 x
= − cscx cotx

(n)
d

dx
(xa) = axa−1 (a ∈ R)

Proof. Take logarithm on both sides,

ln y = a lnx

Take the derivatives on both sides with respect to x,

1

y
y′ = a

1

x

Then

y′ = a
xa

x
= axa−1

(o)
d

dx
(arcsinx) =

1√
1− x2

Proof. Equivalently, y = arcsinx is

sin y = x

Take the derivatives with respect to x on both sides, we have

cos yy′ = 1

With the help of the triangle
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y

x
1

√
1− x2

We have

y′ =
1

cos y
=

1√
1− x2

(p)
d

dx
(arccosx) = − 1√

1− x2

Proof. Equivalently, y = arccosx is

cos y = x

Take the derivatives with respect to x on both sides, we have

− sin yy′ = 1

With the help of the triangle

y

√
1− x2

1

x

We have

y′ = − 1

sin y
= − 1√

1− x2

(q)
d

dx
(arctanx) =

1

1 + x2

Proof. Equivalently, y = arcsinx is

tan y = x

Take the derivatives with respect to x on both sides, we have

y′

cos2 y
= 1

With the help of the triangle

y

x
1

√
1 + x2
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We have

y′ = cos2 y =
1

1 + x2

In summary, we have

f(x) f ′(x)

xa (a ∈ R) axa−1

ax (a > 0 and a 6= 1) ax ln a

loga x (a > 0 and a 6= 1)
1

x ln a
sinx cosx

cosx − sinx

tanx
1

cos2 x

cotx − 1

sin2 x
secx secx tanx

cscx − cotx cscx

arcsinx
1√

1− x2

arccosx − 1√
1− x2

arctanx
1

1 + x2
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Problem Solving III

Determine differentiablity and calculate the derivative by definition; Calculate the
derivative with some basic application.

Problem 5: Determine differentiablity; Calculate the derivative by definition

1. Determine the differentiablity and calculate the derivative of f(x) =
1

x
by definition.

2. Determine the differentiablity and calculate the derivative of f(x) = |x3| by definition.

3. Prove: A rational function is differentiable everywhere on its (maximal) domain. A ratio-

nal function is f(x) =
p(x)

q(x)
where p(x) and q(x) are polynomials.
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Problem 6: Calculate the derivative
• Complicated Derivatives

1. Calculate
d

dx

(
x5 + x4 − x+ ex

x2 + x+ sinx

)
2. Calculate

d

dx

(
x2 sin

(
1

x

)
+ 2x

)
(x 6= 0)

3. Calculate
d

dx
(ln(ln(lnx)))

4. Find a tangent line of f(x) = (ex − 1) sinx at x = π.

• Higher Order Derivatives

5. Consider f(x) =
1

ax+ b
.

(a) Calculate f ′(x).

(b) Calculate f ′′(x).

(c) Calculate f (3)(x).

(d) Guess and prove f (n)(x).

6. Prove: (fg)(n) =
n∑
i=0

(
i

n

)
f (n−i)g(i) given f(x) and g(x) are differentiable.

• Implicit Derivatives with Application

7. A 15 foot ladder is resting against the wall. The bottom is initially 10 feet away from
the wall and is being pushed towards the wall at a rate of 0.25 ft/sec. How fast is the
top of the ladder moving up the wall 12 seconds after we start pushing?

8. Consider the function with the form f(x) = u(x)v(x).

(a) Compute
d

dx
xx in the following two ways:

i. Change the form that f(x) = ex lnx and take the derivative.

ii. Take the logarithm on both sides and take the derivative.

(b) Compute
d

dx

(
u(x)v(x)

)
given u(x) and v(x) are differentiable.

9. Consider the lemniscate of Bernoulli (x2 + y2)2 = 2a2(x2 − y2)

(a) Find out the tangent line at (
√

2a, 0).

(b) Sketch the lemniscate of Bernoulli.
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Mean Value Theorem

1. Background
Let’s discuss the possible value of the derivative of f(x) and try to interpret them. Ac-
cording to the definition of derivative, we could find out there are four cases: f ′(x) > 0,
f ′(x) < 0, f ′(x) = 0 and f ′(x) does not exist.

Let’s first discuss the first two cases: (I) f ′(x) > 0 and (II) f ′(x) < 0. Consider
f ′(x0) > 0, based on the definition, we know

lim
h→0

f(x0 + h)− f(x0)

h
> 0

which means when 0 < h < |δ|,

f(x0 + h)− f(x0)

h
> 0

Therefore, we know in a small interval of h{
f(x0 + h) > f(x0) if h > 0

f(x0 + h) < f(x0) if h < 0

This means in around point x0, the value of the right interval is higher than f(x0) while
the left interval is lower than f(x0).

x

y = f(x)y

x0 x0 + δx0 − δ

If we have an interval (`, r) such that when x ∈ (`, r),f ′(x) > 0, we could know any
point x ∈ (`, r) is lower than the points to the right of this point. It is very likely that if
` < x1 < x2 < r, f(x1) < f(x2). We want to call this case as increasing.
Similarly, if we have an interval (`, r) such that when x ∈ (`, r),f ′(x) < 0, we could know
any point x ∈ (`, r) is higher than the points to the right of this point. It is very likely
that if ` < x1 < x2 < r, f(x1) > f(x2). We want to call this case decreasing.
Then we could form the definition of increasing and decreasing functions.
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Definition 9. f(x) is increasing on (`, r) if for any ` < x1 < x2 < r, f(x1) < f(x2).
f(x) is decreasing on (`, r) if for any ` < x1 < x2 < r, f(x1) > f(x2).

However, whether f ′(x) > 0(< 0) guarantee the monotonicity (increasing/decreasing) re-
quires the further proof.

Then let’s discuss the rest two cases: (III) f ′(x) = 0 and (IV) f ′(x) does not exist.
Consider f ′(x0) = 0, there are four possible cases: f(x) remains unchanged at x0 and
could be increase or decrease on both sides of the neighborhood with continuity.

A B C D

Consider case A and B, f(x0) seems to be the maximum or minimum. However, this is
not always the case. Fox example,

O

P

Q

Point O and point P are locally maximum and minimum in their small neighbourhood
but not the (global) maximum or minimum in the entire interval. Then want to construct
a definition on this kind of situation.

Definition 10. Let y = f(x), x ∈ D and x0 ∈ D. If there exists δ > 0 such that
0 < |x − x0| < δ, f(x) ≤ f(x0), f(x) has a local maximum at x0. If there exists
δ > 0 such that 0 < |x− x0| < δ, f(x) ≥ f(x0), f(x) has a local minimum at x0.

Then here comes a question: where does the local extremum exist based on the value of
f ′(x)? It is clear that case (I) and case (II) does not have local extremum as we have
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shown. Then the possibilities lie on case (III) and (IV). We have already shown that
case (III) could have local extremum. If we check the example above, point Q is a local
maximum and f ′(x) does not exist at that point. We could conclude that case (IV) also
have the local extremum. Therefore we know local extremum implies f ′(x) = 0 or f ′(x)
does not exists. This is the interior extremum theorem with the definition of critical point.

Definition 11. f(x) has critical point at x0 if f ′(x0) = 0 or f ′(x0) does not exist.

Theorem 5. (Interior Extremum Theorem) If f(x) has a local extremum at x0,
then f(x) has a critical point at x0.

Proof. Without loss of generality, we assume f(x) has local minimum at x0. If f ′(x) does
not exist then it is a critical point. If f ′(x) exists, we know

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

There exists δ > 0 that 0 < |x| < δ,
f(x0 + h)− f(x0)

h
has the same sign as f ′(x0).

Consider h > 0 we should have f(x0 + h) > f(x0), which means f ′(x0) ≥ 0. Consider
h < 0, we should have f ′(x0) ≤ 0. Therefore f ′(x0) = 0.

Note: critical points do not guarantee the existence of local extremum. Recall case
(III C) and (III D), with f ′(x0) = 0, they are not local extremum. Besides a sharp
change (f ′(x0) 6= 0) does not guarantee the existence of local extremum. For example,

f(x) =

{
2x, x < 0

3x, x ≥ 0
does not have a local extremum at x = 0.

2. Rolle Theorem
As a consequence of the interior extremum theorem and extremum value theorem, we have
the Rolle theorem established.

Theorem 6. (Rolle Theorem) Let f(x) be continuous on [`, r] and differentiable on
(`, r), with f(`) = f(r). Then there exists a number a in (`, r) such that f ′(a) = 0.

f(x)

xa` r

y
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Proof. If f(x) is a constant function, i.e. f(x) = c, then it is obvious that f ′(x) = 0 for
all x ∈ [`, r]. If f(x) is not a constant function, then it is not possible for f(`) = f(r)
to be the global maximum and global minimum at the same time.Therefore, there should
at least be one on global maximum and global minimum existing in (`, r). By definition,
global extremum should also be local extremum. Since f(x) is differentiable on (`, r), at
that local extrema point a ∈ (`, r), f ′(a) = 0.

This is our first powerful tool to prove claims related derivatives.

Example 6. Let f(x) to be continuous on [a, b] and differentiable on (a, b). Let f(a)f(b) >

0 and f(a)f

(
a+ b

2

)
< 0. Prove there exists a number c ∈ (a, b) such that f ′(c) = 0.

Solution. Since f(x) is continuous and f(a)f

(
a+ b

2

)
< 0, by intermediate value theorem,

we know there exists c1 ∈
(
a,
a+ b

2

)
such that f(c1) = 0. And by f(a)f(b) > 0, we know

f(b)f

(
a+ b

2

)
< 0. Therefore, there exists c2 ∈

(
a+ b

2
, b

)
such that f(c2) = 0. Since

a < c1 < c2 < b, we know f(x) is continuous on [c1, c2] and differentiable on (c1, c2). Then
by Rolle theorem, there exists a number c ∈ (c1, c2) ⊂ (a, b) such that f ′(c) = 0.

3. Mean Value Theorem

Theorem 7. (Mean Value Theorem, by Lagrange) Let f(x) be continuous on [`, r]
and differentiable on (`, r). Then there exists a number a in (`, r) such that f ′(a) =
f(r)− f(`)

r − `
.

` ra x

y

f(x)

Mean values theorem shows that we can find a point with tangent line parallel to the
line connected two endpoints. Or it could be interpreted as we can find a number a in
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between ` and r with f ′(a) to be the average (mean value) of the slope between two end-
points (`, f(`)) and (r, f(r)). We could observe that mean value theorem is generalized
Rolle theorem (with f(`) = f(r)). On the other hand, we could threat mean value theo-

rem is shifted from Rolle theorem with a straight line y = g(x) =
f(r)− f(`)

r − `
(x−r)+f(r).

Proof. To connect to Rolle theorem, we construct a function

ϕ(x) = f(x)− g(x) = f(x)− f(r)− f(`)

r − `
(x− r)− f(r)

We could have ϕ(`) = ϕ(r) = 0. Since ϕ(x) is continuous on [`, r] and differentiable on

(a, b), by Rolle theorem, there exists a number a ∈ (`, r) such ϕ′(a) = f ′(x)−f(r)− f(`)

r − `
=

0. This means there exists a number a ∈ (`, r) such that f ′(a) =
f(r)− f(`)

r − `
.

This is our second powerful tool to prove claims related derivatives.

Corollary: If f ′(x) > 0 on an interval D, then f ′(x) is increasing on D. If
f ′(x) < 0 on an interval D, then f ′(x) is decreasing on D.

Proof. Without loss of generality, we let f ′(x) > 0 on D. Choose two points x1 < x2

and x1, x2 ∈ D, then f(x) is continuous on [x1, x2] and differentiable on (x1, x2).
Therefore, by mean value theorem, we can find a number a ∈ (x1, x2) such that

f(c) =
f(x2)− f(x1)

x2 − x1

> 0

which implies f(x2) > f(x1) and f(x) is increasing.

4. Generalized Mean Value Theorem
We could continuously generalize the mean value theorem.

(Generalized Mean Value Theorem, by Cauchy) If f(x) and F (x) are continuous on
[`, r] and differentiable on (`, r), and F ′(x) 6= 0 on (`, r), then there exists a ∈ (`, r)

such that
f(r)− f(`)

F (r)− F (`)
=
f ′(a)

F ′(a)
.

This could are visualized via a parameterized curve ~r(x) = (F (x), f(x)) (a ≤ x ≤ b).
Generalized mean value theorem shows that you could find a point on the curve with
the tangent line parallel to the straight line connecting two end points (F (`), f(`)) and

(F (r), f(`)). In other words, we can find a number a between ell and r with
f ′(a)

F (a)
to be

the average (mean value) of the slope between two end-points. If we let F (x) = x, it is
just mean value theorem.
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F (x)

f(x)

(F (`), f(`))

(F (r), f(r))

(F (a), f(a))

k = lim
∆F→0

∆f

∆F
= lim

∆x→0

∆f
∆x
∆F
∆x

=
f ′(a)

F ′(a)

Proof. Inspired by the proof of mean value theorem, we want to construct a function ϕ(x)
to connect to the Rolle theorem. We let

ϕ(x) = f(x)− f(`)− f(r)− f(`)

F (r)− F (`)
(F (x)− F (`))

where ϕ(`) = ϕ(r) = 0 and ϕ(x) is continuous on [`, r] and differentiable on (`, r). There-
fore, by Rolle theorem, we can find a number a between ` and r such that

ϕ′(a) = f ′(a)− f(r)− f(`)

F (r)− F (`)
F ′(a) = 0

which can be simplified as
f(r)− f(`)

F (r)− F (`)
=
f ′(a)

F ′(a)
.

This is our third powerful tool to prove claims related to the derivatives.

Example 7. Let f(x) be continuous on [a, b] and differentiable on (a, b) where a > 0.

Prove there exists a number c ∈ (a, b) such that f(b)− f(a) = cf ′(c) ln
b

a
.

Solution. The equation is equivalent to
f(b)− f(a)

ln b− ln a
=
f ′(c)

1
c

. Compared to the equation in

generalized mean value theorem, we could know F (x) should be lnx. Then we let F (x) =
lnx which is continuous on [a, b] and differentiable on (a, b). Therefore, by generalized

mean value theorem, we know we can find a number c ∈ (a, b) such that
f(b)− f(a)

ln b− ln a
=

f ′(c)
1
c

.
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5. L’Hospital’s Rule

When we calculate the limit, we may counter some indeterminate forms such as
0

0
and

∞
∞

. As a consequence of generalized mean value theorem, L’Hospital’s Rule is a strong

tool to solve this kind of problem. Instead of comparing the number they are approaching,
L’Hospital’s rule compares the speed the are approaching to 0 or ∞.

Theorem 8. (L’Hospital’s Rule) Let f(x) and g(x) be differentiable on an open
interval I containing a number a. If lim

x→a
f(x) = lim

x→a
g(x) = 0 or ±∞ and g(x) 6= 0

on the interval I/{a}. Then we have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided the limit on the right-hand side exists or is ∞ or −∞.

Example 8. First consider a
0

0
indeterminate form

lim
x→0

ex − 1

x
= lim

x→0

ex

1
= 1

Then consider a
∞
∞

indeterminate form

lim
x→∞

lnx

ex
= lim

x→∞

1

xex
= 0
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Problem Solving IV

Application of Rolle theorem, mean value theorem, generalized mean value theorem and
L’Hospital’s rule.

Problem 6: Application of Rolle theorem, mean value theorem, generalized
mean value theorem and L’Hospital’s rule
• Proof of Claims Related to Derivatives

1. Let f(x) to be continuous and differentiable on [0, 2]. 3f(0) = f(1) + 2f(2). Prove:
there exists a number a ∈ (0, 2) such that f ′(a) = 0.

2. Let f(x) to be continuous on [0, 1] and differentiable on (0, 1). f(1) = 0. Prove there
exists a number a ∈ (0, 1) such that af ′(a) + 3f(a) = 0.

3. Let f(x) to be continuous on [a, b] and differentiable on (a, b). Prove f(b) − f(a) =
f ′(c)

2c
(b2 − a2) where a > 0.

4. Let f(x) and g(x) to be continuous on [a, b] and differentiable on (a, b). g′(x) 6= 0.
Prove there exists a number c ∈ (a, b) such that

f(b)− f(c)

g(c)− g(a)
=
f ′(c)

g′(c)

5. Let f(x) to be continuous on [0, 1] and differentiable on (0, 1). f(0) = 0 and f(1) = 1.
Prove that there exists a number c ∈ (0, 1) such that f(c) = 1 − c and there exists
a, b ∈ (0, 1) such that f ′(a)f ′(b) = 1.

6. Let f(x) to be continuous on [a, b] and differentiable on (a, b) where a > 0. Prove

there exists c, d ∈ (a, b) such that f ′(c) =
f ′(d)

2d
(a+ b).

• Proof of Inequality

7. Prove when x > 0, ex − 1 > x.

8. Prove when x > 0,
x

1 + x
< ln(1 + x) < x

• Application of L’Hospital’s Rule: Evaluate Indeterminate Forms

9. Evaluate lim
x→∞

xn

ax
(a > 1, n ∈ N+)

10. Evaluate lim
x→0

arctan 2x+ e−x − 1

sinx
11. Evaluate lim

x→0+
xx

12. Evaluate lim
x→1

(
x

x− 1
− 1

lnx

)
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Application of Differential Calculus

1. Curve Sketching
To sketch a curve f(x) is to find the domain, the monotonicity with critical points, the
concavity with inflection points, the (local) extremum, the intercepts and the asymptotes.

(a) Monotonicity
Recall from the previous section, we know that if f ′(x) > 0 on an interval D, then
f ′(x) is increasing on D and if f ′(x) < 0 on an interval D, then f ′(x) is decreasing on
D.

(b) Concavity
Basically, concavity describes how the function is curved with respect to a straight
line. Consider the following example.

x

y

f(x)

A

B

C

Intuitively we say at point A the is curve concave up and at point C the is curve
concave down. Besides, the curve change its concavity at point B. As a reference,
at point A the curve is above its tangent line and at point C the curve is below its
tangent line. Therefore, we could construct the definition of concavity based on the
tangent line.

Definition 12. We say the function f(x) is concave up on an interval if in that
in that interval the curve is above its tangent line. And we say the function
f(x) is concave down on an interval if in that in that interval the curve is below
its tangent line. If f(x) changes concavity at x = a, then we say f(x) has an
inflection point at x = a.

Let’s mask some further observation. We could find when the function is concave up,
the slope of its tangent line is increasing (possibly f ′′(x) > 0) and when the function
is concave down, the slope of its tangent line is decreasing (possibly f ′′(x) < 0). Then
an inflection point where the function changes the concavity should has f ′′(x) = 0 or
f ′′(x) does not exist.
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Theorem 9. f(x) is concave up on an interval I if f ′′(x) > 0 on that interval
I. f(x) is concave up on an interval I if f ′′(x) < 0 on that interval I.

Proof. Without loss of generality, let f ′(x) increase on the interval I. Consider a point
x0 ∈ I and the tangent line L(x) = f ′(x0)(x − x0) + f(x0). Construct a distance
function between the curve and the straight line ϕ(x) = f(x)−L(x) = f(x)− f(x0)−
f ′(x0)(x − x0). If x > x0, by mean value theorem, we can find a number c ∈ (x0, x)
such that

f(x)− f(x0)

x− x0

= f ′(c) > f ′(x0)

since f ′(x) is increasing (f ′′(x) > 0). Then ϕ(x) = f(x)− f(x0)− f ′(x0)(x− x0) > 0.
With the same strategy, we could prove if x < x0, ϕ(x) = f(x)−f(x0)−f ′(x0)(x−x0) >
0. In conclusion, the curve is above the its tangent line.

Claim. If f(x) has an inflection point at x = a, then f ′′(a) = 0 or f ′′(a) does
not exist.

Proof. f ′′(a) has four possibilities: f ′′(a) > 0, f ′′(a) > 0, f ′′(a) > 0 and f ′′(a) does
not exist. Since first two cases implies either the function is concave up or down, the
possibilities for the change of concavity lie on f ′′(a) > 0 and f ′′(a) does not exist. We
only need to show there exists cases that when f ′′(a) > 0 and f ′′(a) does not exist,
x = a is an inflection points. The following two examples fulfill our requirements
(x = 0 is an inflection point).

x

y
f(x) = x3

f ′′(0) = 0

x

y

f ′′(0) DNE

f(x) =
1

x

(c) Local Extremum
Recall from the previous section, the local extremum should be at a critical point but
the critical point does guarantee the local extremum. Therefore, a direct way to find
local extremum is first find out all critical points and then check whether the way local
extremum (check the value of neighbor points).

Here we introduce another strategy called first derivative test. At a critical point
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x0, if

{
f ′(x) < 0, x < x0

f ′(x) > 0, x > x0

then x0 is the local minimum; if

{
f ′(x) > 0, x < x0

f ′(x) < 0, x > x0

then x0

is the local maximum.

(d) Asymptote
Recall from the first section, we have three types of asymptotes:

• If we have lim
x→a

f(x) = ±∞ and , we have x = a and x = b to be the vertical

asymptotes.

• If we have lim
x→±∞

f(x) = a, we have y = a to be the horizontal asymptote.

• More generally, if we have lim
x→∞

[f(x) − (kx + b)] = 0, then we have y = kx + b to

the oblique asymptote.

In summary, we have the following receipt to sketch the curve:

1◦ Find out the domain of the function x ∈ D.

2◦ Find out f ′(x). Classify where f ′(x) > 0 (increasing) and f ′(x) < 0 (decreasing).

Find out all the critical points and apply first derivative test on them.

3◦ Find out f ′′(x). Classify where f ′′(x) > 0 (concave up) and f ′′(x) < 0 (concave down).

Find out all the points with f ′′(x) = 0 or f ′′(x) does not exist.

And check whether these points are inflection points.

4◦ Find out all he intercepts.

5◦ Summarize all the information in a table

6◦ Find out all the asymptotes.

7◦ Sketch the curve.

Let’s look at an example.

Example 9. Sketch y = f(x) =
1√
2π
e−

x2

2 .

We know the domain is simply R. Let f ′(x) = − x√
2π
e−

x2

2 = 0, we have the critical point

to be x = 0. Let f ′′(x) =
1√
2π

(x2 − 1)e−
−x2

2 = 0, we have x = ±1. Then we could

summarize those information in a table.

x (−∞,−1) −1 (−1, 0) 0 (0, 1) 1 (1,∞)

f ′(x) + + − −
f ′′(x) + − − +

f(x) ↗ (up) infle ↗ (down) lo max ↘ (down) infle ↘ (up)

Then we calculate the limit

lim
x→∞

1√
2π
e−

x2

2 = lim
x→−∞

1√
2π
e−

x2

2 = 0

Therefore we have a horizontal asymptote y = 0. Then finally we could sketch the curve.
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x

y

−1 1

2. Optimization
Basically, the key points of optimization are modelling of the function, finding out all the
local extremum and finding out the global extremum. Here is a receipt.

1◦ Build a model

2◦ Come up with a objective function.

(If necessary, reduce the objective function to one variable).

3◦ Identify the domain.

4◦ Optimize: find out all the local extremum and find out the global extremum

(do not forget endpoints to compare with) based on the extremum value theorem

and first derivative test.

5◦ Apply reality check.

Example 10. What is the rectangle of the largest area that can be inscribed in a circle
of radius r?
We know the graph is

x

y

x2 + y2 = r2
(x, y)

And the area of the rectangle is A(x, y) = 4xy which could be reduced as A(x) =
4x
√
r2 − x2. And we know the domain should be x ∈ [0, r]. Then we could do the

optimization. We have

A′(x) = 4

(√
r2 − x2 − x√

r2 − x2

)
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Let A′(x) = 0 we have x =

√
2

2
r. With the first derivative test, we know it is the local

maximum. Then we check A(0) = 0, A(r) = 0 and A

(√
2

2
r

)
= 2r2. Then we have a

global maximum at x =

√
2

2
r. We could have a cross check here. Consider the rectangle

is fixed at the diameter and the vertex is movable.

h

2r
A =

1

2
(2r)h = rh

The area A is maximum when the height h is maximum. The height h is maximum when

the rectangle is a square when x =

√
2

2
r in the coordinate system above.

Application of Differential Calculus 51



Problem Solving V

Curve Sketching; Optimization

Problem 8: Curve Sketching: monotonicity, concavity, asymptote

1. Let’s discuss the property of function f(x) =

sin

(
1

x

)
, x 6= 0

0, x = 0

.

(a) Sketch f(x) (x 6= 0).

(b) Prove lim
x→0

sin

(
1

x

)
does not exist and then conclude f(x) is not continuous at x = 0.

(c) Consider g(x) =

x sin

(
1

x

)
, x 6= 0

0, x = 0

. Sketch g(x).

(d) Prove g(x) is continuous at x = 0 but not differentiable at x = 0.

(e) Consider h(x) =

x2 sin

(
1

x

)
, x 6= 0

0, x = 0

. Sketch h(x).

(f) Prove h(x) is differentiable at x = 0 but h′(x) is not continuous at x = 0.

2. Let

f(x) =

 x+ 2x2 sin

(
1

x

)
x 6= 0

0 x = 0

Use the definition of derivative to show that f ′(0) = 1, but then show that f(x) is not
increasing on any interval (−δ, δ).

3. Find the region of decreasing/increasing of f(x) = x3 − x2 + x+ 1.

4. Find the region of concave up/concave down of f(x) = x3 − x2 + x+ 1.

5. Sketch V (r) = ε

((
R

r

)6

− 2

(
R

r

)12
)
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Problem 9: Optimization: local extremum and global extremum
1. Find the local extremum of f(x) = x3 − 12x+ 5.

2. Find the global extremum of f(x) = lnx− x

e
+ 2.

3. Find the global extremum of f(x) = xp + (1− x)p where p > 1 and 0 ≤ x ≤ 1.

4. Consider f(x) with derivative shown in the graph

1−1−3 x

y

f ′(x)

Find the local extremum of f(x).

5. Let e < a < b, Prove ab > ba.

6. Given a fixed surface area, what is the maximum volume of a cylindrical can of that
surface area?

7. What is the area of the largest rectangle (with sides parallel to the axes) which may be

inscribed in the ellipse
x2

a2
+
y2

b2
= 1?

8. Suppose you wish to connect four points at the corners of a square. What is the total
length of the shortest path? (The path may have branches.)

(a) First prove the result with pre-calculus knowledge (basic geometry).

(b) Then prove the result with differential calculus.
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