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Introduction

The big question in this course to find the area under y = f(x) (a < x < b).

a b

y = f(x)

y

x

This requires us to have INTEGRAL. To evaluate it, we need the FUNDAMENTAL
THEOREM OF CALCULUS and some TECHNIQUES. With these tools, we could
apply the integral on VOLUME, WORK and DIFFERENTIAL EQUATION. Finally,
with the combination of the knowledge of sequence, limit, derivative and integral, we are
going to study SERIES and its APPLICATION.
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Integral and Fundamental Theorem of Calculus

1. Definition of Integral and Integrablity
The big question in this course to find the area under y = f(x) (a < x < b).

a b

y = f(x)

y

x

The first attempt is to make an approximation with a rectangle which is easy to calculate
the area. Then we have

a b

y = f(x)

y

xx∗

where the area is approximated to be A ≈ (b − a)f(x∗) and we call x∗ to be the repre-
sentative point who’s value f(x∗) represents the average height of the function. However,
the accuracy is very low and there are various ways to choose the representative points
which gives different results.

a b

y = f(x)

y

xx∗ a b

y = f(x)

y

xx∗
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Therefore we want to look for more accurate approximation. A direct attempt is to divide
the function into two pieces and make the approximation on each pieces.

a b

y = f(x)

y

xx∗1 x∗2

Then the area is approximated to be A ≈ b− a
2

(f(x∗1) + f(x∗2)). We could find that the

approximation is more accurate and the variation of representative points is smaller. Then
we are motivated to divide the function (domain) into smaller pieces.

a b

y = f(x)

y

xx∗1 x∗2 a b

y = f(x)

y

xx∗1 x∗nx∗3 x∗2

· · ·

We could see that the more pieces we take, the more accurate the approximation is and
also the smaller the variation of representative points is. With n pieces, the area is ap-

proximated to be A ≈ b− a
n

n∑
i=1

f(x∗i ). By intuition we want to take the n → ∞ to get

the most accurate result.

Then based on the above motivation, we could have the following of integral which calcu-
lates the area we need.

Definition 1. Let f(x) to be defined on [`, r]. The integral is obtained in the
following 4 steps.
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1◦ Partition the interval [`, r] into n subintervals [xi−1, xi] with equal

width ∆x = xi − xi−1 =
r − `
n

2◦ Pick up all the sample (representative) points x∗i ∈ [xi−1, xi]

3◦ Add up all the small rectangles
n∑
i=1

f(x∗i )∆x which is called Riemann sum

4◦ Take the limit lim
n→∞

n∑
i=1

f(x∗i )∆x

` r

y = f(x)

y

xx∗1 x∗nx∗i

· · ···

Then we say

• if the limit lim
n→∞

n∑
i=1

f(x∗i )∆x exists and equals for all the choices of sample

points, the f(x) is integrable on [`, r] and we use the notation

∫ r

`

f(x) dx.

• if the limit lim
n→∞

n∑
i=1

f(x∗i )∆x does no exist and does not equal for all the choices

of sample points, the f(x) is not integrable on [`, r].

In practice, the difficulty of applying the definition is to show the limit lim
n→∞

n∑
i=1

f(x∗i )∆x

exists and equals for all the choices of sample points. One possible approach is to find the

upper bound and lower bound of
n∑
i=1

f(x∗i )∆x and to apply the squeeze theorem. Let’s

look at an example.

Example 1. Prove f(t) = t2 is integrable over [0, 1].

Proof. First divide the domain into n subintervals [ti−1, ti] with ti =
i− 1

n
. Then for every
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sample point ti−1 < t∗i < ti, we have the bound of f(t∗i ) that

(
i− 1

n

)2

< f(t∗i ) <

(
i

n

)2

.

Then we add them up

1

n

n∑
i=1

(
i− 1

n

)2

≤
n∑
i=1

f(t∗i )∆t ≤
1

n

n∑
i=1

(
i

n

)2

which could be simplified as

1

n3

(n− 1)n(2n− 1)

6︸ ︷︷ ︸
→ 1

3
when n→∞

≤
n∑
i=1

f(t∗i )∆t ≤
1

n3

n(n+ 1)(2n+ 1)

6︸ ︷︷ ︸
→ 1

3
when n→∞

Then we take the limit; by squeeze theorem, we finally have lim
n→∞

n∑
i=1

f(t∗i )∆t =
1

3
. This

means the limit lim
n→∞

n∑
i=1

f(x∗i )∆x exists and equals for all the choices of sample points.

Therefore, f(t) = t2 is integrable over [0, 1].

We could generalize conclusion in the example to be a theorem.

Theorem 1. All continuous functions are integrable.

Then we are attracted to ask whether the discontinuous function integrable. Let’s look at
some examples.

Example 2. Let f(t) =

{
1 t 6= 0

0 t = 0
. Prove f(t) is integrable over [−a, a] for a > 0.

Proof. Again, we divide the interval into n subintervals. For the interval containing t = 0,
f(t∗i ) could be 0 or 1; otherwise f(t∗i ) = 1. Then we know

2a(n− 1)

n
= (n− 1)× 2a

n
+ 0× 2a

n
≤

n∑
i=1

f(t∗i )∆t ≤ n× 2a

n
= 2a

Then we take the limit, lim
n→∞

n∑
i=1

f(t∗i )∆t = 2a, which are equal for all choices of sample

points.

Example 3. Let f(t) =

{
1 1 ≤ t ≤

√
2

2
√

2 < t ≤ 2
. Prove f(t) is integrable on [1, 2].

Proof. First divide the domain into n subintervals [ti−1, ti] with ti =
i− 1

n
+ 1. Then

consider the k-th subinterval which contains
√

2.
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1 2
√

2

k th interval

y

x

2

1

We know 1 +
k − 1

n
≤
√

2 ≤ 1 +
k

n
which can be rearranged as

√
2− 1 ≤ k

n
≤
√

2− 1 +
1

n

By squeeze theorem, we know lim
n→∞

k

n
=
√

2− 1 and then lim
n→∞

k − 1

n
=
√

2− 1. Then we

can consider the Riemann sum:

2− k

n
=
k

n
+
n− k
n
× 2 ≤

n∑
i=1

f(t∗i )∆t ≤
k − 1

n
+
n− k + 1

n
× 2 = 2− k − 1

n

Take the limit, by squeeze theorem, we have lim
n→∞

n∑
i=1

f(t∗i )∆t = lim
n→∞

(
2− k − 1

n

)
=

lim
n→∞

(
2− k − 1

n

)
= 3 −

√
2 for all choices of sample points. As a result,

∫ 2

1

f(t) dt =

3−
√

2 which exists.

For the examples above, it seems that the jump or hole does not matter with integrablity.
But when the discontinuous points become infinite, this claim may not always be true any
more. Let’s look at the following two examples.

Example 4. Let f(t) =

{
1 t ∈ Q
0 t ∈ R/Q . Prove f(t) is not integrable over [0, 1].

Proof. Divide the [`, r] into n subintervals [ti−1, ti] with ti =
i

n
. Since

i− 1

n
<
i+

√
2

2
− 1

n
<

i

n
and

i− 1

n
<
i+ 1

2
− 1

n
<

i

n
, for every subinterval we can find sample points f(t∗i ) = 1

or f(t∗i ) = 0. Then the limit of Riemann sum can be either lim
n→∞

n∑
i=1

f(t∗i )∆t = 1 with

picking all the sample points to be 1 or lim
n→∞

n∑
i=1

f(t∗i )∆t = 0 with picking all the sample
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points to be 0. They are not equal for the different choices of sample points and therefore
f(t) is not integrable over [0, 1].

Example 5. Let f(t) =

{
1 t =

1

e
,

1

e2
,

1

e3
, · · ·

0 otherwise
. Prove f(t) is integrable over [0, 1].

Proof. First divide the interval [0, 1] into n subintervals. Then we want to find out how{
1

ei

}
are distributed on [0, 1].

0 11
n

1
e

1
e2

1
ej

We could find there would be infinite
1

ej
located between

[
0,

1

n

]
. Let k to the first term

less than 1
n
. Then

1

ek
<

1

n
<

1

ek−1
which implies

log(n) < k < log(n) + 1

Then consider the Riemann sum
n∑
i=1

f(t∗i )∆t. The lower bound would be all the sample

points f(t∗i ) = 0 and the upper bound would be all the possible sample points f(t∗i ) = 1
and other sample points f(t∗i ) = 0. Then we have

0 ≤
n∑
i=1

f(t∗i )∆t ≤
1

n
+
k − 1

n
<

log(n) + 1

n

By L’Hospital rule, we have lim
n→∞

log(n) + 1

n
= lim

n→∞

1
n

+ 0

1
= 0. Therefore, by squeeze the-

orem, we know lim
n→∞

n∑
i=1

f(t∗i )∆t = 0 for all choices of sample points. So f(t) is integrable

over [0, 1].

Then we should put our focus on the discontinuous points with asymptotes.

Example 6. Let f(t) =

{ 1

t
t 6= 0

0 t = 0
. Prove f(t) is not integrable on [0, 1].

Proof. Divide [0, 1] into n subintervals

[
i− 1

n
,
i

n

]
. Then for every subinterval we pick up

the sample point with the smallest value f(t∗i ). Then we know
n∑
i=1

f(t∗i ) ≥ 0 +
1

n

n∑
i=1

n

i
=

n∑
i=2

1

i︸ ︷︷ ︸
diverges
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Therefore the limit of the Riemann sum diverges and f(t) is not integrable on [0, 1].

This is also called improper integral and we are going to further discuss it.

2. Properties
As we can see from the previous section, integral is not easy to compute based on definition.
We want to find some short cut to simplify the integral. One way to do so is to decompose
the integral.

(a) Zero Interval:

∫ `

`

f(x)dx = 0

Proof. Since ∆x =
`− `
n

= 0, we have lim
n→∞

n∑
i=1

f(x∗i )∆x = 0 and there is only one

choice of x∗i = `. So

∫ `

`

f(x)dx = 0.

(b) Inverse Interval: If

∫ r

`

f(x) dx exists, then

∫ r

`

f(x) dx = −
∫ `

r

f(x) dx.

Proof. That

∫ r

`

f(x) dx exists implies lim
n→∞

n∑
i=1

f(x∗i )∆x exists, where ∆x =
r − `
n

.

For
∫ `
r
f(x) dx, ∆x′ = `−r

n
= −∆x. So lim

n→∞

n∑
i=1

f(x∗i )∆x
′ = − lim

n→∞

n∑
i=1

f(x∗i )∆x with

corresponding choices of sample points and they are all equal. Therefore,

∫ r

`

f(x) dx =

−
∫ `

r

f(x) dx.

(c) Interval Decomposition: If

∫ r

`

f(x) dx,

∫ m

`

f(x) dx and

∫ r

m

f(x) dx exist, then∫ r

`

f(x) dx =

∫ m

`

f(x) dx+

∫ r

m

f(x) dx.

Proof. Without loss of generality, by (b), let ` < r. We treat the integral

∫ r

`

f(x) dx

as area. There are three cases: ` < m < r, m < ` < r and ` < r < m.

y = f(x)

y

x
` rm

S = S1 + S2

∫ r

`

f(x) dx =

∫ m

`

f(x) dx+

∫ r

m

f(x)dxS1 S2

(i) ` < m < r
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y = f(x)

y

x
` rm

S = S2 − S1

∫ r

`

f(x) dx =

∫ r

m

f(x) dx−
∫ `

m

f(x)dx

=

∫ r

m

f(x)dx+

∫ m

`

f(x)dx

S1

S2 (mr)

(ii) m < ` < r

S

y = f(x)

y

x
` r m

S = S1 − S2

∫ r

`

f(x) dx =

∫ m

`

f(x) dx−
∫ m

r

f(x)dx

=

∫ m

`

f(x) dx+

∫ r

m

f(x) dx

S S2

(iii) ` < r < m

S1 (`m)

In summary,

∫ r

`

f(x) dx =

∫ m

`

f(x) dx+

∫ r

m

f(x) dx.

(d) Integral over One:

∫ r

`

1 dx = r − `

Proof. By definition,

∫ r

`

1 dx = lim
n→∞

n∑
i=1

f(x∗i )∆x = lim
n→∞

n∑
i=1

∆x = lim
n→∞

n × r − `
n

=

r − `. In the graph, it is the area a rectangle with height 1 and width r − `.

` r

1

x

y

(e) Integral with Constant Coefficient: If

∫ `

r

f(x) dx exists,

∫ r

`

cf(x) dx = c

∫ r

`

f(x) dx.

Proof. By definition,

∫ r

`

cf(x) dx = lim
n→∞

n∑
i=1

cf(x∗i )∆x = c lim
n→∞

n∑
i=1

f(x∗i )∆x = c

∫ r

`

f(x) dx

where ∆x =
r − `
n

with same choices of sample points.

Corollary:

∫ r

`

c dx = c(r − `)
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(f) Integral of the Sum of Functions: If f(x) and g(x) are integrable on [`, r],∫ r

`

[f(x)± g(x)] dx =

∫ r

`

f(x) dx±
∫ r

`

g(x) dx.

x

y

f(x)

g(x)

x

y

f(x)

g(x)

x

y

S1 (under f(x))

S2 (under g(x))

` r ` `r r

f(x) + g(x)

S = S1 + S2 S = S1 − S2

Proof. By definition of integral,

∫ r

`

[f(x)± g(x)] dx = lim
n→∞

n∑
i=1

[f(x∗i ) + g(x∗i )] ∆x =

lim
n→∞

(
n∑
i=1

f(x∗i )∆x+
n∑
i=1

g(x∗i )∆x

)
= lim

n→∞

n∑
i=1

f(x∗i )∆x+ lim
n→∞

n∑
i=1

g(x∗i )∆x︸ ︷︷ ︸
both limits exist by definition

=

∫ r

`

f(x) dx±

∫ r

`

g(x) dx where ∆x =
r − `
n

with same choices of sample points.

(g) Sign Preserving: If f(x) is integrable on [`, r] and f(x) ≥ 0, then

∫ r

`

f(x) dx ≥ 0.

Proof. By definition,

∫ r

`

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )︸ ︷︷ ︸
f(x)≥0

`−r
n
>0︷︸︸︷

∆x ≥ 0.

Corollary: If f(x) and g(x) are integrable on [`, r] and f(x) ≥ g(x), then

∫ r

`

f(x) dx ≥∫ r

`

g(x) dx.

Proof. Since f(x) − g(x) ≥ 0, by definition, we have

∫ r

`

f(x) dx −
∫ r

`

g(x) dx =∫ r

`

[f(x)− g(x)]︸ ︷︷ ︸
≥0

dx ≥ 0. Therefore,

∫ r

`

f(x) dx ≥
∫ r

`

g(x) dx.

Corollary: If f(x) and |f(x)| are integrable on [`, r], then

∣∣∣∣∫ r

`

f(x) dx

∣∣∣∣ ≤ ∫ r

`

|f(x)| dx.
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`

r

y = f(x)

x

y

` r

y = |f(x)|

x

y

S1

S2 S1

S2

S = |S2 − S1| S = |S1|+ |S2|
Net Area Total Area

Proof. Since −|f(x)| ≤ f(x) ≤ |f(x)|, we have −
∫ r

`

|f(x)| dx ≤
∫ r

`

f(x) dx ≤∫ r

`

|f(x)| dx. This is

∣∣∣∣∫ r

`

f(x) dx

∣∣∣∣ ≤ ∫ r

`

|f(x)| dx.

3. Fundamental Theorem of Calculus
With the properties as decomposition tools above, we still can not avoid the definition to
calculate the integral so we want to find a new tool. One guess is to make connection to

derivative to find out how f(x) is integrated along x. Let F (x) =

∫ x

`

f(t) dt. Then what

is
d

dx
F (x)?

y = f(t)

y

t
`

S(x)

x

S(x) = F (x) =

∫ x

`

f(t) dt

Let’s put it into a real world scenario. Let f(t) = v(t), the velocity of the object at t.
Let s(t) = F (t) (copying the corresponding rule F ), the distance the object has travelled
until t. From practice, s′(t) = v(t) which is F ′(x) = f(x). This is reasonable. Consider
f(x) as the rate of area F (x) increasing, F ′(x) = f(x). To prove this, let’s first prove a
premise of it.
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Theorem 2. (Mean Value Theorem of Integrals) Let f(x) be continuous on [`, r].

There exists a number a ∈ [`, r] such that f(a)(r − `) =

∫ r

`

f(x) dx.

` r

y = f(x)

x

y

S1

S2

a

f(a)

This theorem could be interpreted in two ways. One direct way is that we can find a
number a ∈ [`, r] such that the integral equals to the area of a rectangle with height f(a)
and width r − `. Then we could say f(a) is the average (mean) height of the function
f(x). Another way of interpretation is that there exists a number a ∈ [`, r] such that
S1 = S2 labeled in the graph.

Proof. Since f(x) is continuous on [`, r], by extreme value theorem, f(x) has a global
maximum f(x1) = U and a global minimum f(x2) = L. So that L ≤ f(x) ≤ U and
x1, x2 ∈ [`, r]. This implies

L(r − `) ≤
∫ r

`

f(x) dx ≤ U(r − `)

then

L ≤ 1

r − `

∫ r

`

f(x) dx ≤ U

By intermediate value theorem, there exists a number a between x1 and x2 (therefore

a ∈ [`, r]) such that f(a) =
1

r − `

∫ r

`

f(x) dx.

Then let’s explore the relationship between f(x) and F ′(x) - the fundamental theorem of
calculus.

Theorem 3. (Fundamental Theorem of Calculus) Let f(x) to be continuous on an

interval I containing the point t and let F (x) =

∫ x

`

f(t) dt, then:

(a) F ′(x) = f(x).

(b) Let G(x) to be the antiderivative (such that G′(x) = f(x)) of f(x), then∫ r

`

f(x) dx = G(r)−G(`) for all r ∈ I.

Integral and FTC 15



Proof. (a) Consider the difference between F (x) and F (x+ h),

y = f(t)

y

t
` x

F (x)

x+ ha

(Squeeze)

by definition, we have

F ′(x) = lim
h→0

∫ x+h

`
f(t) dt−

∫ x
`
f(t) dt

h

= lim
h→0

∫ x+h

x
f(t) dt

h

= lim
h→0

f(a)��h

��h
(a ∈ [x, x+ h]) by MVT of Integrals

= f(x) by squeeze theorem

(b) By (a), we know the antiderivative exists. Since F ′(x) = G′(x) = f(x), we let

G(x) = F (x) + C. Then we have

{
G(r) = F (r) + C

G(`) = F (`) + C = C
. Therefore G(r) − G(`) =

F (r) + C − C =

∫ r

`

f(x) dx.

Corollary: (Extensions of the Mean Value Theorem of Integrals) Let f(x) continuous on

[`, r]. There exists a ∈ (`, r) such that

∫ r

`

f(x) dx = f(a)(`− r).

Proof. Let F (x) =

∫ x

`

f(t) dt. By fundamental theorem of calculus, F ′(x) = f(x). And

we have

∫ r

`

f(x) dx = F (r)− F (`) = F ′(a)(`− r)︸ ︷︷ ︸
`<a<r, by MVT

= f(a)(`− r).

Note: The continuity of f(x) is the key of FTC to be true. Look at example 5,

F (x) =

∫ x

0

f(t) dt = 0. However
d

dx
F (x) = 0 6= f(x).

Let’s check two examples.

Example 7. Evaluate

∫ 1

0

x dx. By fundamental theorem of calculus, we have

∫ 1

0

x dx =

Integral and FTC 16



1

2
x2

∣∣∣∣1
0

=
1

2
.

Example 8. Evaluate

∫ π

0

sinx dx. By fundamental theorem of calculus, we have

∫ π

0

sinx dx

= − cosx|π0 = 2

4. Improper Integral
Recall the definition of integral: the integrand is defined to be defined on a finite closed
interval [`, r]. Then what about the integral with infinite interval or having asymptote in
the interval? This kind of integral are called improper integral.

Definition 2. An improper integral is a definite integral that has either or both
limits infinite or an integrand that approaches infinity at one or more points in the
range of integration.

It is obvious that the improper integral can not be computed by Riemann sum. Then the
approach is based on the combination of fundamental theorem of calculus and limit.

For example, let f(x) defined on (`,∞) and lim
x→`+

f(x) = +∞. Then with ` < a < b <

∞, we have

∫ ∞
`

f(x) dx = lim
a→`+

lim
b→∞

∫ b

a

f(x) dx = lim
a→`+

lim
b→∞

[F (b) − F (a)] = lim
b→∞

F (b) −

lim
a→`+

F (a) where F (x) is the antiderivative of f(x). If one of the limits does not exist, the

integral does not exist.
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Problem Solving I

Prove integrablity by definition; Calculate limit by definition of integral; Calculation
related to F (x) =

∫ x
`
f(t) dt; improper integral

Problem 1: Prove integrablity by definition

1. Prove

∫ 2

1

t dt =
3

2
.

2. Based on the fact f(t) = 1− 2t is continuous, compute

∫ 2

0

(1− 2t) dt.

3. Suppose f(t) is integrable and negative on the interval [0, 1]. Let g(t) =

{
f(t) 0 ≤ t < 1

2 t = 1
.

Prove g(t) is integrable on [0, 1].

4. Let f(t) =

{
A t = k

B otherwise
, where A, B and k are constants with A < B. Prove that

f(t) is integrable on any finite interval [`, r].

5. Let

f(x) =

{
1 if x = j

2k
for integer j and k, with k positive and 0 ≤ j ≤ 2k

−1 otherwise

Prove f(x) is not integrable on [0, 1].

Problem 2: Calculate limit by definition of integral

Let f(x) integrable on [0, 1]. Then

∫ 1

0

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆x = lim
n→∞

1

n

∑
i=1

f

(
i− 1

n

)
=

lim
n→∞

1

n

∑
i=1

f

(
i

n

)
. Based on that, compute the following limit.

1. lim
n→∞

i4

n5

2. lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

)
3. lim

n→∞

13 + 23 + 33 + · · ·+ n3

n4

4. lim
n→∞

n∑
k=1

6(k − 1)2

n3

√
1 + 2

(k − 1)3

n3
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Problem 3: Calculation related to F (x) =
∫ x

` f(t) dt

1. Let f(x) continuous and ϕ1(x), ϕ2(x) are differentiable. Compute
d

dx

∫ ϕ1(x)

ϕ2(x)

f(t) dt.

2. Compute
d

dx

∫ x

1

e−t
2

dt.

3. Compute
d

dx

(
sinx

∫ x3

x2
e−t

2

)
.

4. Compute
d

dx

(
ex
∫ x5

x2
cos(t2) dt

)
.

5. Solve 3 +

∫ x

a

f(t)

t2
dt = 2

√
x to find a and f(x).

6. Let F (x) =

∫ x

1

f(t) dt, where f(t) =

∫ t2

1

√
1 + u2

u
du. Find F ′′(2).

7. If x sin(πx) =

∫ x2

0

f(t) dt and f(t) is continuous, find f(4).

8. Solve f(x) = 1 + 4

∫ x

3

f(t) dt to find f(x).

9. Find the global extreme of F (x) =
∫ 2x−x2

0
cos
(

1
1+t2

)
.

10. Evaluate lim
x→0

∫ x

0

(1− tan(2t))
1
t dt

x

Problem 4: Improper Integral

1. Write the definition of

∫ ∞
`

f(t) dt.

2. Write the definition of

∫ 1

0+

1√
t
dt.

3. Prove that f(t) =
1

t2
is integrable over [1,+∞).

4. Evaluate

∫ ∞
1

e−t dt and estimate

∫ ∞
1

e−t
2

dt.

5. Evaluate

∫ ∞
−∞

8e−|x| dx.

6. Prove that

∫ r

0

t−p where r > 0 converges if and only if p < 1.
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7. Prove that

∫ ∞
`

t−p where ` > 0 converges if and only if p > 1.
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Integral Techniques: Substitution, Parts and Partial Fraction

Based on the fundamental theorem of calculus, to find the integral we only have to find
the antiderivative. With the basic derivative formula we could find the antiderivative of the
basic functions. However, when we meet the combination of basic functions, we need some
new techniques. A good clue to find them is to use the derivative rules.

1. Integration by Substitution
Consider chain rule,

F (ϕ(x)) = f [ϕ(x)]ϕ′(x)

where F ′(x) = f(x). If we note the antiderivative of f(x) as

∫
f(x) dx, we have∫

f [ϕ(x)]ϕ′(x) dx = F (ϕ(x)) + C

Then by fundamental theorem of calculus, we have∫ b

a

f [ϕ(x)]ϕ′(x) dx
t=ϕ(x)

========
dt=ϕ′(x)dx

∫ ϕ(b)

ϕ(a)

f(t) dt = F (t)|ϕ(b)
ϕ(a) = F (ϕ(t))|ba (S1)

This could also be done in another direction if it gives a simpler form to find antiderivatives.
We have ∫

f(x) dx
x=ϕ(t)

======

∫
f(t)ϕ′(t)︸ ︷︷ ︸

g(t)

dt = G[ϕ−1(t)] + C

where G′(t) = g(t). Then for the integral, we have∫ b

a

f(x) dx
x=ϕ(t)

======

∫ ϕ−1(b)

ϕ−1(a)

g(t) dt = G(t)|ϕ
−1(b)

ϕ−1(a) (S2)

Then let’s look at some examples where we apply (S1).

Example 9. Consider the following integrals:

•
∫ 1

0

cos(2t + 1) dt =
1

2

∫ 1

0

cos(2t + 1) d(2t + 1)
u=2t+1

======
1

2

∫ 5

1

cos(x) dx =
1

2
sin(x)

∣∣∣∣5
1

=

sin(5)− sin(1)

2

•
∫ 2

0

t

t2 + 3
dt =

∫ 2

0

1

2(t2 + 3)
d(t2 + 3)

u=t2+3
======

∫ 7

2

1

2u
du =

1

2
log(u)

∣∣∣∣7
3

=
1

2
log

(
7

3

)
•
∫ 2

1

1√
x(1 + x)

dx = 2

∫ 2

1

1

1 + (
√
x)2

d(
√
x) = 2 arctan

√
x
∣∣2
1

= 2 arctan(
√

2)−2 arctan(1)

•
∫ π

2

0

sin(x) cos(x) dx =

∫ π
2

0

sin(x) d(sin(x)) =
sin2(x)

2

∣∣∣∣π2
0

=
1

2
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Actually, the last integral in the example is a very special example related to to sin and
cos functions. We could explore more examples and summarize a general approach to this
kind of integral.

Example 10. Consider the following integrals:

•
∫ π

2

0

sin(x) cos(x) dx =

∫ π
2

0

sin(x) d(sin(x)) =
sin2(x)

2

∣∣∣∣π2
0

=
1

2

•
∫ π

2

0

sin(t) cos4(t) dt = −
∫ π

2

0

cos4(t)d(cos(t)) dt = −cos5(t)

4

∣∣∣∣π2
0

=
1

4

•
∫ π

2

0

sin2(t) cos2(t) dt =

∫ π
2

0

1− cos(2t)

2
× 1 + cos(2t)

2
dt =

1

4

∫ π
2

0

(1 − cos2(2t)) dt =

1

4

∫ π
2

0

sin2(2t) dt =
1

8

∫ π
2

0

(1− cos(4t)) dt =

(
t

8
− 1

32
sin(4t)

)∣∣∣∣π2
0

=
π

16

•
∫ π

2

0

cos2(t) dt =

∫ π
2

0

1 + cos(2t)

2
dt =

1

2
t+

1

4
cos(2t)

∣∣∣∣π2
0

=
π

4

In summary, this type of integrand is f(t) = sinm(t) cosn(t) where m,n ∈ Z. If m is

odd, then let u = cos(t), we could have

∫
sinm(t) cosn(t) dt =

∫
−(1 − u2)

m−1
2 un du. If

n is odd, then let u = sin(t), we could have

∫
sinm(t) cosn(t) dt =

∫
um(1− u)

n−1
2 du. If

m,n are both odd, then pull out the small one as u′(t). If m,n are both even, then use

cos2(t) =
1− cos(2t)

2
and sin2(t) =

1 + cos(2t)

2
to reduce the order repeatedly.

Then let’s look at some examples applying (S2).

Example 11. Consider the following integral:

•
∫ 1

0

√
1− x2 dx

x=sin t
=====

∫ arcsin 1

0

cos t cos t dt =

∫ arcsin 1

0

1 + cos 2t

2
dt =

1

2
t+

1

2
sin 2t

∣∣∣∣arcsin 1

0

=
1

2
(t+ sin t cos t)

∣∣∣∣arcsin 1

0

=
arcsin 1

2

•
∫ 3

2

1√
x2 − 1

dx
x=sec t

======

∫ arcsec 3

arcsec 2

sec t tan t

tan t
dt =

∫ arcsec 3

arcsec 2

sec t dt =

∫ arcsec 3

arcsec 2

1

1− sin2 t

d(sin t) =

∫ arcsec 3

arcsec 2

1

2

(
1

1− sin t
+

1

1 + sin t

)
d(sin t) =

1

2
ln

∣∣∣∣1 + sin t

1− sin t

∣∣∣∣∣∣∣∣arcsec 3

arcsec 2

=

1

2
ln

∣∣∣∣∣1 + 2
√

2

1− 2
√

2
· 1−

√
3

1 +
√

3

∣∣∣∣∣ =
1

2
ln

∣∣∣∣∣1− 2
√

6 + 2
√

2−
√

3

1− 2
√

6− 2
√

2 +
√

3

∣∣∣∣∣
•
∫ 1

0

1

(1 + x2)
3
2

dx
x=tan t

======

∫ arctan 1

0

sec2 t

sec3 t
dt =

∫ arctan 1

0

cos t dt = sin t|arctan 1
0 =

√
2

2
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In summary, here we use two powerful formulas: sin2 t+ cos2 t = 1 and tan2 t+ 1 = sec2 t.
By them, we have three substitutions:

•
√
a2 − x2 x=a sin θ

======= a cos θ (
√
a2 − x2 x=a cos θ

======= a sin θ)

•
√
x2 − a2 x=sec θ

====== a tan θ

•
√
x2 + a2 x=tan θ

====== a sec θ

Besides those specific integral, we could use substitution to explore the properties of some
general integrals. For example let’s consider the integral with symmetric interval. Let
f(x) integrable on [−a, a]. We have∫ 0

−a
f(x) dx

x=−t
=====

∫ a

0

f(−t) dt dummy variable:t=x
=============

∫ a

0

f(x) dx

Then we would have ∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx+

∫ a

0

f(x) dx

=

∫ a

0

f(−x) dx+

∫ a

0

f(x) dx

=

∫ a

0

[f(−x) + f(x)] dx

If f(x) = −f(−x), we have

∫ a

−a
f(x) dx = 0. If f(x) = f(−x), we have

∫ a

−a
f(x) dx =

2

∫ a

0

f(x) dx.

Besides, we could also explore the integral properties of periodic functions. Let f(x)
integrable and f(x+ T ) = f(x). We have∫ a+T

T

f(x) dx
x=T+t

======

∫ a

0

f(T + t) dt =

∫ a

0

f(t) dt
dummy variable:t=x

=============

∫ a

0

f(x) dx

Then ∫ a+T

a

f(x) dx =

∫ 0

a

f(x) dx+

∫ T

0

f(x) dx+

∫ a+T

a

f(x) dx

=
��

����∫ 0

a

f(x) dx+

∫ T

0

f(x) dx+
��

����∫ a

0

f(x) dx

=

∫ T

0

f(x) dx

2. Integral by Parts
Recall the product rule,

(uv)′ = uv′ + u′v
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Rearrage it, we have
uv′ = (uv)′ − u′v

Find the antiderivative on both sides, we have∫
udv = uv −

∫
vdu+ C

By fundamental theorem of calculus, we can find the integral∫ b

a

udv = uv|ba −
∫ b

a

vdu

We could visualize this technique. Consider the following diagram.

u

v

u(v) or v(u)

A2

u1 u2

A1

v1

v2

We know the area of A1 + A2 is the area of the big rectangle minus the area of the big
rectangle. This is just ∫ v2

v1

u(v) dv︸ ︷︷ ︸
A1

+

∫ u2

u1

v(u) du︸ ︷︷ ︸
A2

= u2v2 − v1v1

or, in terms of antiderivative, ∫
u dv +

∫
v du = uv + C

By arrangement, we have ∫
u dv = uv −

∫
v du+ C

This is a powerful tool to evaluate complicated integral

∫ b

a

u dv by simpler integral

∫ b

a

vdu.

Let’s look at some examples.

Example 12. Consider the following integrals:

•
∫ 2

1

lnx dx = x lnx|21 −
∫ 2

1

xd(lnx) = x lnx− x|21 = 2 ln 2− 1
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•
∫ 2

1

xex dx = xex|21 −
∫ 2

1

exdx = xex − ex|21 = e2

•
∫ π

0

t sin t dt =

∫ π

0

td(cos t) = t cos t|π0 −
∫ π

0

cos t dt = −2π − 2 sin t|π0 = −2π

• I =

∫ π

0

ex sinx dx =

∫ π

0

sinx d(ex) = sinxex|π0 −
∫ π

0

cosxex dx = −
∫ π

0

cosx d(ex) =

−ex cosx|π0 −
∫ π

0

ex cosx dx = eπ + 1− I. Then I =
eπ + 1

2
.

•
∫ √

2
2

0

arcsinx dx = x arcsinx|
√
2

2
0 −

∫ √
2

2

0

xd(arcsinx) =

√
2π

8
−
∫ √

2
2

0

x√
1− x2

dx =

√
2π

8
+

∫ √
2

2

0

d(1− x2)

2
√

1− x2
=

√
2π

8
+
√

1− x2|
√
2

2
0 =

√
2π

8
+

√
2

2
− 1

• I =

∫ π
4

0

sec3 θ dθ =

∫ π
4

0

sec θ d(tan θ) = sec θ tan θ|
π
4
0 −
∫ π

4

0

tan2 θ sec θ dθ = sec θ tan θ|
π
4
0 −∫ π

4

0

(sec3 θ − sec θ) dθ =
√

2 − I +

∫ π
4

0

sec θ dθ =
√

2− I +
1

2
ln

∣∣∣∣1 + sin θ

1− sin θ

∣∣∣∣∣∣∣∣π4
0

=
√

2 +

ln(
√

2 + 2)− I. Then I =

√
2 + ln(

√
2 + 2)

2
.

In summary, integral by parts mainly deals with the multiplication of lnx, sinx, cosx, tanx,
ex, arcsinx, arccosx and xn.

3. Integral by Partial Fraction

Consider f(x) =
h(x)

g(x)
where h(x) and g(x) are polynomials and the degree of h(x) is lower

than the degree of g(x). We want to simplify or decompose f(x) to make the integral of
f(x) easier. We can represent g(x) as

g(x) = kLm1
1 Lm2

2 · · ·Lmaa Qn1
1 Q

n2
2 · · ·Q

nb
b

where Li are linear terms as x − a and Qj are irreducible quadratic factors as x2 + bx +
c (b2 − 4c < 0). Then we can decompose f(x) as

f(x) =
a∑
k=1

(
A1

Lk
+
A2

L2
k

+ · · · Ami
Lmik

)
+

b∑
k=1

(
B1x+ C1

Qk

+
B2x+ C2

Q2
k

+ · · · Bnix+ Cni
Qni
k

)
This is called Euclidean algorithm. Then we could integrate f(x) by small pieces.

Let’s look at an example.

Example 13. Evaluate

∫ 1

0

2x3 + 11x2 + 28x+ 33

x2 − x− 6
dt.

We could make a long division to make the order of numerator is lower than the denomi-
nator.

Integral Techniques 25



2x + 13

x2 − x− 6
)

2x3 + 11x2 + 28x + 33
− 2x3 + 2x2 + 12x

13x2 + 40x + 33
− 13x2 + 13x + 78

53x+ 111

Then we know f(x) = 2t + 13 +
53t+ 11

t2 − t− 6
= 2t + 13 +

A

t− 3
+

B

t+ 2
. Then A(t + 2) +

B(t−3) = (A+B)t+2A−3B = 53t+11 which gives

{
A+B = 53

2A− 3B = 111
. Then we know

A = 54 and B = −1. Therefore we know the integral is∫ 1

0

2x3 + 11x2 + 28x+ 33

x2 − x− 6
dt =

∫ 1

0

(
2t+ 13 +

54

t− 3
− 1

t+ 2

)
dt

=
(
t2 + 13t+ 54 ln |t− 3| − ln |t+ 3|

)∣∣1
0

= 14 + 55 ln
2

3
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Problem Solving II

Evaluate the integral; Explore the general properties of integral

Problem 5: Evaluate the integral
• Integral by Substitution

1. Evaluate the following integral

(a)

∫ 2

1

1

x
cos

(
1

x2

)
dx

(b)

∫ 1

0

ex

1 + e2x
dx

(c)

∫ 1
2

1
3

1√
x(1− x)

dx

(d)

∫ 4

0

1√
25− x2

dx

(e)

∫ 1

0

1

x2 + 25
dx

(f)

∫ 2

1

x2

(x+ 2)3
dx

(g)

∫ 1

0

x2 + 1

x4 + 1
dx

(h)

∫ 6

5

2t√
t− 4

2. Evaluate the following integral

(a)

∫ π
2

0

sin3 x dx

(b)

∫ π
2

0

sin2 x cos5 x dx

(c)

∫ π
2

0

sin2 x dx

(d)

∫ π
2

0

sin2 x cos4 x dx

(e)

∫ π
4

0

tanx dx

(f)

∫ π
4

0

cscx dx

(g)

∫ π
4

0

secx dx
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(h)

∫ π
4

0

tan4 x dx

(i)

∫ π
4

0

sec5 x tanx dx

(j)

∫ π
4

0

1

1 + cos x
dx

3. Evaluate the integral

(a)

∫ a

0

b

√
1− x2

a2
dx (a, b > 0 are real numbers)

(b)

∫ 2

1

1

x2
√
x2 + 1

dx

(c)

∫ 1

0

t3

(4x2 + 9)
3
2

dx

(d)

∫ 4

1

√
t2 − 1 dt

(e)

∫ 2

1

√
4− x2 dx

(f)

∫ 1

0

1

(4x2 + 9)
3
2

dx

(g)

∫ 1
3

0

18

1− 2x2
dx

(h)

∫ 1

0

1√
4x2 + 9

dx

(i)

∫ 2

1

1

x2 + x
dx

• Integral by Parts

4. Evaluate the following integrals: xn lnα x where α would be the times of using by parts

(a)

∫ e

1

lnx√
x
dx

(b)

∫ e

1

lnx dx

(c)

∫ e

1

ln2 x dx

(d)

∫ e

1

x2 lnx dx

5. Evaluate the following integrals: xαex where α would be the times of using by parts
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(a)

∫ 1

0

xex dx

(b)

∫ 1

0

x2ex dx

(c)

∫ 1

0

x2e−x dx

6. Evaluate the following integrals: xα sinx or xα cosx where α would be the times of
using by parts

(a)

∫ π
2

0

x sinx dx

(b)

∫ π
2

0

x2 cosx dx

(c)

∫ π
2

0

x sin2 x dx

(d) an =
2

L

∫ L

0

x2 cos
(nπx
L

)
dx

7. Evaluate the following integrals: xα arcsinx or xα arccosx where α would be the times
of using by parts

(a)

∫ π
4

0

x arcsinx dx

(b)

∫ π
4

0

x arccosx dx

8. Evaluate the following integrals: eax sin(bx) or eax cos(bx)

(a)

∫ π

0

e2x cosx dx

(b)

∫ π

0

eax sin(bx) dx

(c)

∫ π

0

eax cos(bx) dx

9. Evaluate the following integrals

(a)

∫ π

0

cos(lnx) dx

(b)

∫ π
4

0

sec3 x dx

10. Evaluate

∫ 2

0

xf(x) dx where f(x) =

∫ 2

x

1√
1 + t3

dt.
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11. Consider the integral In =

∫ 1

0

tnet dt.

(a) Prove the reduction formula In = e− nIn−1

(b) Find I4 by I0

12. Consider the integral In =

∫ π
2

0

cosn x dx.

(a) Prove the reduction formula In =
n− 1

n
In−2.

(b) Find In by I0 and I1.

13. Consider the integral In =

∫ π
2

0

sinn x dx.

(a) Prove the reduction formula In =
n− 1

n
In−2.

(b) Find In by I0 and I1.

• Integral by Partial Fraction

11. Find the following integrals

(a)

∫ 1

0

1

x2 + x+ 1
dx

(b)

∫ 1

0

x+ 2

x2 + x+ 1
dx

(c)

∫ 6

5

5x+ 6

x2 − x− 2
dx

(d)

∫ 6

5

x2 − 1

x4 + 1
dx

(e)

∫ 2

1

1

x(x6 + 2)
dx

(f)

∫ 6

5

−x2 + 2x+ 1

(x− 1)2(x2 + 1)
dx

• Integral by Combination of Techniques

1. Evaluate the following integrals

(a)

∫ 1

0

1√
1 + x2

dx

(b)

∫ 1

0

√
1 + x2 dx

(c)

∫ 1

0

x2

√
1 + x2

dx
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(d)

∫ π

e

6e2x

e2x + 2ex − 3
dx

(e)

∫ 1

0

−3

1 + 2ex − e−x
dx

(f)

∫ 1

0

x2

√
4x− x2

dx

(g)

∫ 1

0

1

x+ 2
√
x+ 3

dx

(h)

∫ 1

0

1

x+ 2
√
x− 10

dx

(i)

∫ L

0

√
L2 − x2

x
dx

Problem 6: Explore the general properties of integral

1. Prove that

∫ r

`

f(t+ a) dt =

∫ r+a

`+a

f(t) dt given f(t) is integrable on R.

2. Prove the following equations:

(a)

∫ b

a

f(x) dx =

∫ b

a

f(a+ b− t) dt where f(x) is integrable and x+ t = a+ b.

(b)

∫ b

a

f(x) dx =

∫ 1

0

f((b− a)t+ a) dt where f(x) is integrable and x = (b− a)t+ a.

3. Prove

∫ π

0

f(sinx) dx = 2

∫ π
2

0

f(sinx) dx.

4. Prove

∫ π

0

xf(sinx) dx =
π

2

∫ π

0

f(sinx) dx

5. Prove

∫ r

0

(∫ s

0

f(t) dt

)
ds =

∫ r

0

(r − u)f(u) du where f(x) is continuous everywhere.
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Application of Integral Calculus

1. Volume

(a) Definition
We want to find the volume of a three-dimensional solid with arbitrary shape. Inspired
by the idea of idea, we are going to split the solid infinitely small pieces and add all
them up.

Definition 3. Consider the three-dimensional solid below. We define the volume
of it by four steps:
1◦ Partition the interval [`, r] into n subintervals [xi−1, xi] with equal

width ∆x = xi − xi−1 =
r − `
n

2◦ Pick up all the sample (representative) points x∗i ∈ [xi−1, xi]

3◦ Add up all the small rectangles
n∑
i=1

A(x∗i )∆x where A(x) is area of the

cross-section at point x

4◦ Take the limit lim
n→∞

n∑
i=1

A(x∗i )∆x

` rx∗1 x∗2 x∗i x∗n· · · · · · x

y

Then the volume of a solid on the interval [`, r] having cross-section area A(x)

at position x is equal to V =

∫ r

`

A(t) dt provided this integral exists.

(b) Method
For the solid of revolution, there are two methods to find the volume: by disks and by
shells. They differ from the way we split the solid.

Let’s look at the disk method first. Consider the solid that the region under y = f(x)
(x ∈ [`, r]) and above x = 0 rotated about x-axis.
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x

y

y = f(x)

r`

The volume of one piece at x is dV = A(x) dx = πf 2(x) dx. Then the volume of the

solid is V =

∫ r

`

πf 2(x) dx.

Then let’s look at the method of (cylindrical) shell. Consider the solid that the region
under y = f(x) (x ∈ [`, r]) and above x = 0 rotated along y-axis.

x

y

y = f(x)

r
`−`

−r

Then the volume of one piece of shell at x with height f(x) and thickness dx is

dV = 2πxf(x). Then volume of the solid is V =

∫ r

`

2πxf(x) dx.

Then we are going to compare these two methods in different situations. Let y = f(x)
(x ∈ [0, r]) rotate around x-axis and y-axis.

x

y y = f(x)

r

x

y

y = f(x)

r

By Disk V =

∫ r

0

πf 2(x) dx V =

∫ r

0

2πx[f(r)− f(x)] dx

By Shell V =

∫ f(r)

0

π[f−1(y)]2 dy V =

∫ f(r)

0

2πf(x)(r − x) dx
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If f−1 cannot be found, then we should use by disk to calculate the rotation along
y-axis case. In practice, we usually pick up the easiest way to go.

(c) Equivalence between Two Methods
It’s hard to show that two methods are equivalent in general. But we could find a
special case to prove they are equivalent.

(From the note by Dr. Fok-shuen Leung) Let f(x) be a continuously differentiable
function which passes through the original and is strictly increasing. Let R be the
region enclosed by the x-axis and y = f(x) from x = 0 to x = a. Let S denote the
solid obtained by rotating R about the y-axis.

x

y

y = f(x)

a

Then by disk, we have the volume to be

Vd =

∫ f(a)

0

π(a2 − [f−1(y)]2) dy

Then by shell, we have the volume to be

Vs =

∫ a

0

2πxf(x) dx

We could substitute to compare two volumes:

Vr
y=f(x)

=======
x=f−1(y)

∫ a

0

π(a2 − x2)f ′(x)︸ ︷︷ ︸
continuous so integrable

dt

=

∫ a

0

π(a2 − x2) d[f(x)]

= π(a2 − x2)f(x)
∣∣a
0

+

∫ a

0

2πxf(x) dx

=

∫ a

0

2πxf(x) dx

= Vc
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2. Work

(a) Definition
Work is defined as the product of the force and distance if the force is applied con-
stantly. However, if the force is not applied constantly, we have to split the process
into pieces and in every small piece the force is constant.

Definition 4. Suppose an object moves along the x-axis from x = ` to x = r,
with a force of F (x) acting in the some direction on the object at any point x.
We define the work of it by four steps:
1◦ Partition the interval [`, r] into n subintervals [xi−1, xi] with equal

width ∆x = xi − xi−1 =
r − `
n

2◦ Pick up all the sample (representative) points x∗i ∈ [xi−1, xi]

3◦ Add up all the small rectangles
n∑
i=1

A(x∗i )∆x where A(x) is area of the

cross-section at point x

4◦ Take the limit lim
n→∞

n∑
i=1

A(x∗i )∆x

x
` rxi−1 xi

x∗i
F (x∗i )

Then the work done on the object is equal to W =
∫ `
r
F (x) dx provided the

integral exists.

(b) Method
In general we could just calculate the work by definition

W =

∫ r

`

F (x) dx

However, if we have a continuous solid, we could evaluate the work alternatively -
instead of splitting the process, we split the volume. Consider a continuous solid
along y-axis bounded by [`, r].

r

`

y
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We assume that at the same height y, the forces applied on every point are the same.
Then we have

W =

∫ r

`

h(y)G(y) dV =

∫ r

`

h(y)G(y)S(y) dy

where h(y) is the distance of the points at height y have to move, G(y) is factor that
force by volume and S(y) is the area at height y.

3. Differential Equation

(a) Definition
Many quantities grow or decay with a rate proportional to themselves. For example,
a colony of bacteria double its size every hour. We could write that in equation

dy

dt
= y

It is related to derivatives and we call it differential equation.

Definition 5. (i) Differential equations are equations relating functions and
the derivatives. (ii) The solutions of the differential equations are functions
that satisfy the differential equation after substituting in. Special solution has
no arbitrary constant and general solution has no linear dependent constants
whose number is equal to the order of the differential equation. (iii) If y0 = f(t0)
specify the solution containing (t0, y0), we say y0 = f(t0) is the initial condition.
The number of initial conditions to specify a special solution equals to the order
of the linear equation.

(b) Direction Fields and Phase Portraits
We want to visualize the differential equation to help understand it. Direction fields
and phase portraits are powerful tools that help us do so. For example, consider

dy

dt
= (1− y)y

We have the phase portrait

y

dy
dt

+

− −1
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When y < 0 or y > 1,
dy

dt
< 0 and y is decreasing. When 0 < y < 1,

dy

dt
> 0 and y is

increasing. When y = 0 or y = 1,
dy

dt
= 0 and y remains steady.

Based on that, we could add more information to draw a direction field.

1

t

y

(c) Separation of Variables
If we have

dy

dt
= f(t, y) = ϕ1(t)ϕ2(y)

Then we could separate variables of t and y.

• Suppose ϕ2(y) = 0 which solves y = C. Then we have to plug it into the equation
to check whether it is a solution.

• Suppose ϕ1(y) 6= 0. Then we could have∫
dy

ϕ2(y)
=

∫
ϕ1(t) dt

which gives y = gC(x)

Then we could combine or summary two solutions to find out the final solution.

Let’s look at an example.

Example 14. Solve
dy

dt
= ty.

Suppose y = 0. Plug in, we could find it is the solution.
Suppose y 6= 0. Separate variables, ∫

dy

y
=

∫
t dt

Then we have

ln |y| = 1

2
t2 + C0
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which solves
y = ±eC0e

1
2
t2 = Ce

1
2
t2

In summary the solution is

y = Ce
1
2
t2

(d) Integrating Factors
If we have the differential equation

dy

dt
+ P (t) = Q(t)

we wish to find an integrating factor I(t) such that

dy

dt
I(t) + P (t)yI(t)︸ ︷︷ ︸

= d
dt

(yI(t))

= Q(t)I(t)

So we have
d

dt
(I(t)y) =

�
�

��dy

dt
I(t) +

dI

dt�
y =

�
�
��dy

dt
I(t) + P (t)�yI(t)

which implies ∫
dI

I
=

∫
P (t) dt

Therefore
I(t) = ±e

∫
P (t) dt+C

For convenience, we pick I(t) = e
∫
P (t). So we only have to solve

dy

dt
(yI(t)) = Q(t)I(t)

This turns out to be

∫
d(yI(t)) =

∫
Q(t)I(t) dt. So finally we get

y =

∫
Q(t)I(t) dt+ C

I(t)
=

∫
Q(t)e

∫
P (t) dt+ C

e
∫
P (t)

Let’s look at an example.

Example 15. Solve
dy

dx
− y

x
= 1. When x = 1, y = 1. The general solution is

y =

∫
e
∫
− 1
x
dx + C

e
∫
− 1
x
dx

=
ln |x|+ C∣∣ 1

x

∣∣
Plug in the initial condition, we have C = 1. Then the solution is

y = |x| ln |x|
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Problem Solving III

Evaluate the volume and work; Sketch the direction field, solve differential equations
with application

Problem 7: Evaluate the volume and work
1. Let R be the bounded region between the two curves y = 4

√
x and y = x. Find the volume

of the solid that is generated by rotating the region R about the vertical line x = 1.

2. Find the volume of the sphere x2 + y2 + z2 = r2 (r > 0).

3. A bucket with a mass of 30 kg when filled with sand needs to be lifted to the top of a 20
meter tall building. We have a rope that has a mass of 0.2 kg/m that takes 1 meter to
secure to the bucket. Once the bucket reaches the top of the building, it has a mass of
only 19 kg because there is a hole in the bottom and sand was leaking out at a constant
rate while it was being lifted to the top of the building. Find the work done lifting the
bucket, sand and rope to the top of the building.

Problem 8: Sketch the direction field, solve differential equations with appli-
cation
• Sketch direction fields and solve differential equations

1. Sketch the direction fields of the following differential equation.

(a)
dy

dx
= x− y

(b)
dy

dx
= sin(x) sin(y)

2. Solve the following differential equations

(a)
dy

dx
= x− y, y(1) = 1

(b)
dy

dx
= sin(x) sin(y), y(0) = 1

(c)
dy

dx
= (ex + x)y2

(d)
dy

dx
− x2y = ex

(e) x
dy

dx
+ y + xy2 = 0

3. Solve the following integral equations

(a) f(x) = 1 +

∫ x

1

tf(t) dt

(b) f(x) = 1 +

∫ x

1

t(1− f(t)) dt

(c) f(x) = 1 +

∫ x

0

f 2(t)

1 + t2
dt
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• Application of differential equation

4. A tank has pure water flowing into it at 10 L/min. The contents of the tank are kept
thoroughly mixed, and the contents flow out at 10 L/min. Salt is added to the tank
at the rate of 0.1 kg/min. Initially, the tank contains 10 kg of salt in 100 L of water.

5. A tank has pure water flowing into it at 10 L/min. The contents of the tank are kept
thoroughly mixed, and the contents flow out at 10 L/min. Initially, the tank contains
10 kg of salt in 100 L of water.

6. Find an infinite number of curves that intersect orthogonally all ellipse of the form
x2 + 2y2 = a2.

7. Find the orthogonal trajectories of the families of the curves defined by y2 = kx3.

8. Find the orthogonal trajectories of the families of the curves defined by ym = kxn.
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Series, Power Series and Approximation

1. Series

(a) Definition
Recall the definition of the integral,∫ r

`

f(x) dx =
∞∑
n=1

f(x∗i )∆x

which is the sum of infinite elements. In fact, this is very common. Let’s look at an
example from ancient China. In Zhuangzi, it is noted that “Cutting off a foot-long
club by half every day will not exhaust it any day.”

· · ·1
2

1
22

1
23

We could see the lengths cut off are

1

2
,

1

22
,

1

23
, · · · , 1

2n
, · · ·

In other words, on the nth day, the length of club cut off is

an =
1

2n

If we sum them up, the total length cut off up till nth day is

Sn =
n∑
i=1

1

2i
=

1

2
+

1

22
+ · · ·+ 1

2n
= 1− 1

2n
< 1

Therefore, Zhuangzi is right that we could never exhaust it. We could also take the
limit,

∞∑
i=1

1

2i
= lim

n→∞
Sn = 1

This shows that the total length cut off is approaching to the initial length of the club
but could not actually reach it.

Then we wish to make formal definitions of Sn and the infinite sum.

Definition 6. A series is a formal infinite sum of elements. The partial sum of

the series
∞∑
n=1

an (alternatively, it could be denoted as
∑
n≥1

an) is Sn = a1 + a2 +

· · ·+ an. The series converges to L if the limit of its partial sum converges to L
lim
n→∞

Sn = L. The series diverges if the limit of its partial sum diverges.
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(b) Two Basic Series

• Geometric Series:
∞∑
n=1

arn (a, r 6= 0)

If |r| 6= 1, the partial sum is

Sn =
a(1− rn)

1− r
Then we take the limit of Sn

lim
n→∞

a(1− rn)

1− r
=

{ a

1− r
(converges) |r| < 1

diverges |r| > 1

If r = 1, the partial sum is Sn = na and the limit lim
n→∞

Sn = lim
n→∞

na = +∞

diverges. If r = −1, the partial sum is Sn = −a
2

+ (−1)n
a

2
and the limit lim

n→∞
Sn =

lim
n→∞

(
−a

2
+ (−1)n

a

2

)
diverges. Therefore the series

∞∑
n=1

arn =

{ a

1− r
(converges) |r| < 1

diverges |r| ≥ 1

• p-Series:
∞∑
n=1

1

np
(p > 0)

If p > 1, we have the partial sum Sn ≤
∞∑
n=1

1

np
and Sn ≤ Sn+1 since

1

np
> 0. And

by comparing the area

x

f(x) = 1
xp

y

1

1/2p

1 2 3 4

1/3p

1/4p

· · ·

we know

Sn ≤
∞∑
n=1

1

np
≤ 1 +

∫ ∞
1

1

xp
dx
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Since

∫ ∞
1

1

xp
dx = lim

a→∞

1

1− p
x1−p

∣∣∣∣a
1

= − 1

1− p
, we know

Sn ≤
p

p− 1

Therefore Sn is monotone and bounded then converges. Therefore
∞∑
n=1

1

np
con-

verges.

If p ≥ 1, we have the partial sum Sn ≤
∞∑
n=1

1

np
and Sn ≤ Sn+1 since

1

np
> 0. And

by comparing the area

x

f(x) = 1
xp

y

1

1/2p

1 2 3 4

1/3p

1/4p

· · ·

we have
∞∑
n=1

1

np
≥
∫ ∞

1

1

xp
dx

Since

∫ ∞
1

1

xp
dx = lim

a→∞

1

1− p
x1−p

∣∣∣∣a
1

= +∞ (p < 1) or

∫ ∞
1

1

xp
dx = lim

a→∞
ln(x)|a1 =

+∞ (p = 1) diverge, we know
∞∑
n=1

1

np
diverges.

In summary we have
∞∑
n=1

1

np

{
converges p > 1

diverges p ≤ 1

When p = 1, we say
∞∑
n=1

1

n
is harmonic series.

∞∑
n=1

1

n
for sure diverges and we are

going two more proofs.
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Proof 1: We group up the series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ · · ·+ 1

16
+ · · ·

≥ 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+

1

16
+ · · ·+ 1

16
+ · · ·

= 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+

(
1

16
+ · · ·+ 1

16

)
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+

1

2
+ · · · =∞

Proof 2: Assume the harmonic series converges to L. Then we have

L = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

≥ 1 +
1

2
+

1

4
+

1

4
+

1

6
+

1

6
+

1

8
+

1

8
+ · · ·

= 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

6
+

1

6

)
+

(
1

8
+

1

8

)
+ · · ·

= 1 +
1

2
+

1

2
+

1

3
+

1

4
+ · · · = L+

1

2

which gives a contradiction.

(c) Basic Properties

i.
∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn if
∞∑
n=1

an and
∞∑
n=1

bn converge.

Proof. Let An = a1 + a2 + · · · + an, Bn = b1 + b2 + · · · + bn and Sn = (a1 ± b1) +
· · ·+ (an ± bn). Then we have

Sn = An ±Bn

Then we take the limit

lim
n→∞

Sn = lim
n→∞

(An ±Bn) = lim
n→∞

An ± lim
n→∞

Bn

which is
∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn

ii.
∞∑
n=1

kan = k

∞∑
n=1

an if
∞∑
n=1

an converges.
∞∑
n=1

kan diverges if
∞∑
n=1

an diverges.

Proof. Let Sn = a1 + · · ·+ an and S ′n = ka1 + · · ·+ kan = kSn. If
∞∑
n=1

an converges

to S, we know
lim
n→∞

S ′n = lim
n→∞

kSn = k lim
n→∞

Sn = kS
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Therefore
∞∑
n=1

kan = k
∞∑
n=1

an. If
∞∑
n=1

an diverges, we know lim
n→∞

S ′n = lim
n→∞

kSn =

k lim
n→∞

Sn also diverges and then
∞∑
n=1

kan also diverges.

iii.
∞∑
n=1

an converges if and only if,
∞∑
n=k

an converges for any positive integer k.

Proof. Let a1 + · · · + ak−1 = M . Let Sn = a1 + · · · + an and S ′n = ak + · · · + an

(n ≥ k). If
∞∑
n=1

an converges to S, we have

∞∑
n=k

an = lim
n→∞

S ′n = lim
n→∞

(Sn −M) = S −M

also converges. If
∞∑
n=k

an converges to S, we have

∞∑
n=1

an = lim
n→∞

Sn = lim
n→∞

(S ′n +M) = S +M

also converges.

iv. Divergence Test: If
∞∑
n=1

an converges, then lim
n→∞

an = 0.

Proof. lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

Example 16. Consider whether
∞∑
n=1

(−1)n converges. Since lim
n→∞

(−1)n diverges,

by divergence test,
∞∑
n=1

(−1)n diverges.

Note: It shows necessary condition of series to converge: an should finally con-
verges 0. But converging to 0 does not guarantee the convergence of the series, the
speed of an approaching to 0 also matters.

(d) Convergence Tests

• To Compare:
an > 0⇒ Sn ↗

Sn ≤M

}
⇒ Sn converges

i. Comparison Test: Let an, bn ≥ 0. If an ≥ bn and
∞∑
n=1

an converges,
∞∑
n=1

bn

converges. If an ≤ bn and
∞∑
n=1

an diverges,
∞∑
n=1

bn diverges.
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Proof. Let Sn and Tn to be the partial sum of
∞∑
n=1

an and
∞∑
n=1

bn.

If an ≥ bn ≥ 0 and
∞∑
n=1

an converges. We know Sn ≥ Tn. Let lim
n→∞

Sn = S. Then

S is the upper bound of Sn since Sn − Sn−1 = an ≥ 0. To S ≥ Sn ≥ Tn. Since

Tn is increasing by bn ≥ 0, lim
n→∞

Tn exists. Therefore,
∞∑
n=1

bn converges.

If bn ≥ an ≥ 0 and
∞∑
n=1

an diverges. We have Sn ≤ Tn. Since lim
n→∞

Sn = +∞,

lim
n→∞

Tn = +∞. So
∞∑
n=1

bn diverges.

Example 17. We have proved the harmonic series diverges. Based on this, we

could prove
∞∑
n=1

1

np
(p < 1) diverges without integral. Since

1

np
>

1

n
> 0 and

∞∑
n=1

1

n
diverges, by comparison test, we have

∞∑
n=1

1

np
diverges.

ii. Limit Comparison Test: If an ≥ 0, bn ≥ 0 and lim
n→∞

an
bn

= L > 0, then both

series converge or diverge.

Proof. Let ε =
L

2
> 0, there exists n > N ,

∣∣∣∣anbn − L
∣∣∣∣ < L

2
then

L

2
<
an
bn

<
3L

2
.

This yields

bn <
2

L
an, an <

3L

2
bn

By comparison test,
∞∑
n=N

an and
∞∑
n=N

bn both converges. Then
∞∑
n=1

an and
∞∑
n=1

bn

both converges.

Corollary:

– If lim
n→∞

an
bn

= 0 and
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

Proof. For sufficient large n, an < εbn with ε > 0. By comparison test,
∞∑
n=1

an

converges.

– If lim
n→∞

an
bn

= +∞ and
∞∑
n=1

bn diverges, then
∞∑
n=1

an diverges.

Proof. For sufficient large n, an > Mbn, by comparison test,
∞∑
n=1

an diverges.
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Example 18. Consider whether
∞∑
n=1

n+ 1√
n4 + n+ 7

converges. We need another

series
∞∑
n=1

1

n
. Since

lim
n→∞

n+ 1√
n4 + n+ 7

1

n

= lim
n→∞

√
n4 + 2n2 + 1

n4 + n+ 7
= 1

and
∞∑
n=1

1

n
diverges, by limit comparison test, we know

∞∑
n=1

n+ 1√
n4 + n+ 7

diverges.

Note: Basically, these two tests, besides comparing whether two series converge
to 0, also compare how quickly they approach to 0, which helps us determine the
convergence of two series.

• To Self-Test

iii. Ratio Test: If an > 0 and lim
n→∞

an+1

an
= L, Then we know

∞∑
n=1

an


converges L < 1

diverges L > 1

exclusive L = 1

Proof. If L < 1, let ε =
1− L

2
> 0. There exists N > 0 such that when n > N ,∣∣∣∣an+1

an
− L

∣∣∣∣ < 1− L
2

. Then we get
an+1

an
<

1− L
2

+ L ≡ r < 1.

0 1L r

1−L
2

Then we have
aN+1 < raN
aN+2 < raN+1 < r2aN+2

aN+3 < raN+2 < r2aN+1 < r3aN+1

· · ·
Therefore we have

aN + aN+1 + aN+2 + · · · < aN + raN + r2aN + · · · = aN(1 + r + r2 + · · · )
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Since
∞∑
n=1

anr
n−N converges by r < 1, by comparison test,

∞∑
n=N

an converges. Then

∞∑
n=1

an converges.

If L > 1, let ε =
L− 1

2
> 0. There exists N > 0 such that when n > N ,∣∣∣∣an+1

an
− L

∣∣∣∣ < L− 1

2
. Then

aN+1

aN
>

1− L
2

+ L ≡ r > 1.

0 1 Lr

L−1
2

For the same reason

aN + aN+1 + aN+2 + · · · > aN + aNr + aNr
2 + · · ·

Since
∞∑
n=1

anr
n−N diverges by r > 1, by comparison test,

∞∑
n=N

an diverges. There-

fore
∞∑
n=1

an diverges.

Example 19. Consider whether
∞∑
n=1

n2

2n
converges. We have

lim
n→∞

an+1

an
= lim

n→∞

n2 + 2n+ 1

2n2
=

1

2
< 1

By ratio test, we know
∞∑
n=1

n2

2n
converges.

iv. Root Test: If an ≥ 0 and lim
n→∞

n
√
an = L, then we know

∞∑
n=1

an


converges L < 1

diverges L > 1

exclusive L = 1

Proof. If L < 1 ,by applying the same trick in the proof of ratio test, we could
prove there exists N > 0 such that when n > N , an < rn (r < 1). By comparison

test,
∞∑
n=N

an converges and then
∞∑
n=1

an converges. If L > 1 ,by applying the same

trick in the proof of ratio test, we could prove there exists N > 0 such that when

n > N , an > rn (r > 1). By comparison test,
∞∑
n=N

an diverges and then
∞∑
n=1

an
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diverges.

Example 20. Consider whether
∞∑
n=1

(
1

n+ 1

)n
converges. Since

lim
n→∞

n
√
an = lim

n→∞

1

n+ 1
= 0 < 1

by root test, we know
∞∑
n=1

(
1

n+ 1

)n
converges.

v. Raabe–Duhamel’s Test: If an > 0 and lim
n→∞

n

(
1− an+1

an

)
= L, then we know

∞∑
n=1

an


converges L > 1

diverges L > 1

exclusive L = 1

Proof. If L > 1, by applying the same trick in the proof of ratio test, there exists

N > 0 such that when n ≥ N n

(
1− an+1

an

)
> r > 1. Then we have

ran < nan − nan+1

Subtract an on both sides

(r − 1)an < (n− 1)an − nan+1

Then we have
(r − 1)aN < (N − 1)aN −NaN+1

(r − 1)aN+1 < NaN+1 − (N + 1)aN+1
...

(r − 1)an < (n− 1)an − nan+1

which implies

(r − 1)(aN + aN+1 + · · ·+ an) < (N − 1)aN − nan+1 < (N − 1)aN

Then the partial sum

Sn = a1 + · · ·+ aN−1 + aN + · · ·+ an < a1 + · · ·+ aN−1 + aN +
N − 1

r − 1
aN

Since an > 0, Sn is increasing. Since Sn is bounded and monotone, Sn converges

and then
∞∑
n=1

an converges.
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If L < 1, by applying the same trick, there exists N > 2 > 0 such that when

n ≥ N n

(
1− an+1

an

)
< 1. This could be simplified as

an+1 > (n− 1)an

Therefore for n > N

(n− 1)an > (n− 2)an−1 > · · · > (N − 1)aN > aN

Then we have an >
aN
n− 1

. Since lim
n→∞

1
n
aN
n−1

=
1

aN
> 0, by limit comparison test,

∞∑
n=N

aN
n− 1

diverges as the harmonic series. By comparison test,
∞∑
n=N

an diverges

and then
∞∑
n=1

an diverges.

Example 21. We could prove
∞∑
n=1

1

np
(p > 1) converges and

∞∑
n=1

1

np
(p < 1)

diverges in another way. By binomial theorem (which will be proved in the next
sections),

(n+ 1)p = np + pnp−1 +O(np−1)

Then we know the limit

lim
n→∞

n

(
1− an+1

an

)
= lim

n→∞

n(��np + pnp−1 +O(np−1)−��np)

(n+ 1)p
= lim

n→∞

pnp

(n+ 1)p
= p

Therefore if p > 1,
∞∑
n=1

1

np
converges and if p < 1,

∞∑
n=1

1

np
diverges.

Note: The root test (rn), ratio test (rn) and Raabe–Duhamel’s test (
1

np
) all check

how fast an approaches to 0 but the requirement to pass (showing convergence)
the Raabe–Duhamel’s test is lower, which needs a slower speed approaching (finer
difference).

vi. Integral Test: Let an = f(n), where f(x) is continuous, positive, and non-

increasing for x ≥ 1. Then

∫ ∞
1

f(x) dx and
∞∑
n=1

an both converge or both diverge.

Proof. If

∫ ∞
1

f(x) dx converges to M . Then when n ≥ 2, for x ∈ [n − 1, n), we

have f(x) > f(n) = an since f(x) is non-increasing. Take the integral on both
sides (integrable since f(x) is continuous)∫ n

n−1

f(x) dx > an
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Add them up, we have ∫ ∞
1

f(x) dx > a2 + · · ·+ an + · · ·

Then we know the partial sum

Sn < a1 +

∫ ∞
1

f(x) dx = a1 +M

which is bounded. Besides, since an = f(n) > 0, Sn is increasing. Then Sn

converges and then
∞∑
n=1

an converges.

x

f(x)

y

a1

a2

1 2 3 4

a3

a4 · · ·

If

∫ ∞
1

f(x) dx diverges to +∞. Then when n ≥ 1, for x ∈ (n, n + 1], we have

f(x) < f(n) = an since f(x) is non-increasing. Take the integral on both sides
(integrable since f(x) is continuous)∫ n+1

n

f(x) dx < an

Add them up, we have

∞∑
n=1

= a1 + · · ·+ an + · · · >
∫ ∞

1

f(x) dx = +∞

also diverges.

x

f(x)

y

1 2 3 4
· · ·

a1

a2

a3

a4

Series, Power Series and Approximation 51



Example 22. Consider whether
∞∑

n=10

1

n ln(n)
. The corresponding function is

f(x) =
1

x ln(x)
. Then f ′(x) = − 1 + ln(x)

(x ln(x))2
< 0 and f(x) is non-increasing when

x > 10. Besides, f(x) is positive, continuous when x ≥ 10. Since∫ ∞
10

1

x ln(x)
dx = lim

r→∞
ln(ln(x))|r10 = +∞

diverges, by integral test,
∞∑

n=10

1

n ln(n)
diverges.

• To Explore Negative

vii. Alternating Series Test: For the alternating series
∞∑
n=1

(−1)nan where an > 0

for any n ≥ 1. If an ≥ an+1 for n ≥ 1 and lim
n→∞

an = 0, then the series converges.

Proof. We could group the partial sum S2n in two different ways.

S2n = (a1 − a2︸ ︷︷ ︸
≥0

) + · · ·+ (a2n−1 − a2n︸ ︷︷ ︸
≥0

)

Then S2 ≤ S4 ≤ · · · ≤ S2n, which means S2n is increasing. Also, we have

S2n = a1 − (a2 − a3︸ ︷︷ ︸
≤0

)− · · · − (a2n−2 − a2n−1︸ ︷︷ ︸
≤0

)− a2n ≤ a1

is bounded. Therefore,
lim
n→∞

S2n

converges. Since S2n+1 = S2n + a2n+1, we have

lim
n→∞

S2n+1 = lim
n→∞

S2n + lim
n→∞

a2n+1︸ ︷︷ ︸
=0

= lim
n→∞

S2n

also converges. Therefore lim
n→∞

Sn converges and then
∞∑
n=1

(−1)nan converges.

Example 23. Consider the whether
∞∑
n=1

(−1)n

n
converges. Since

1

n
> 0 decrease

and lim
n→∞

an = 0,
∞∑
n=1

(−1)n

n
converges.

Notice the harmonic series
∞∑
n=1

1

n
=
∞∑
n=1

∣∣∣∣(−1)n

n

∣∣∣∣ diverges. From this example, we

could see adding absolute value makes the series more easier to diverge. In fact,
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this is a general result about the absolute value of of a series.

Claim: If
∞∑
n=1

|an| converges, then
∞∑
n=1

an converges.

Proof 1. We have

an =
|an|+ an

2
− |an| − an

2

Since

0 ≤ |an|+ an
2

≤ |an|, 0 ≤ |an| − an
2

≤ |an|

by comparison test,
∞∑
n=1

|an|+ an
2

and
∞∑
n=1

|an| − an
2

converge. Therefore

∞∑
n=1

an =
∞∑
n=1

|an|+ an
2

+
∞∑
n=1

|an| − an
2

converges.
Proof 2. We have

0 ≤ an + |an| ≤ 2|an|

Since
∞∑
n=1

|an| converges,
∞∑
n=1

2|an| converges. By comparison test,
∞∑
n=1

(an + |an|)

converges. Therefore
∞∑
n=1

an =
∞∑
n=1

(an + |an|)−
∞∑
n=1

|an| also converges.

The convergence of
∞∑
n=1

|an| is stronger than the convergence
∞∑
n=1

an. we want to

define the stronger convergence as absolute convergence and weaker convergence
as conditional convergence.

Definition 7. If
∞∑
n=1

an converges but
∞∑
n=1

|an| diverges, then we say
∞∑
n=1

an

conditionally converges. If
∞∑
n=1

|an| converges, then we say
∞∑
n=1

an absolutely

converges.

2. Power Series

(a) Definition
Polynomial is the most common function in practice. When there are infinite terms,
we have a power series.
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Definition 8. A series
∞∑
n=0

an(x− c)n

is a power series about c. The constants a0, a2, . . . are the coefficients of the
series ; and c is the centre of convergence where the series always converges.

We could treat power series as a function f(x) =
∞∑
n=0

an(x− c)n when it converges.

(b) Radius of Convergence and Interval of Convergence
We are interested in when the power series converges, i.e. when the power series
converges to a function f(x), not diverging to infinity. We have a theorem to help.

Theorem 4. For
∞∑
n=0

an(x− c)n, exactly on of the following holds:

• the series converges only at x = c,

• the series converges everywhere, or,

• the series converges if |x− c| < R and diverges if |x− c| > R

Moreover, the convergence in three cases are all absolute.

Proof. First we are going to prove if the series converges at x0, the the series converges

absolutely for any x such that |x− c| < |x0 − c|. Since
∞∑
n=0

an(x0 − c)n, by divergence

test we have |an(x0 − c)n| ≤ a for some positive constant a. Thus

∞∑
n=0

|an(x− c)n| =
∞∑
n=0

|an(x0 − c)n|
∣∣∣∣ x− cx0 − c

∣∣∣∣n ≤∑
n=1

a

∣∣∣∣ x− cx0 − c

∣∣∣∣n
where |x − c| < |x0 − c|, converges as a geometry series with r < 1. Then there are

three possible cases for all the x0 such that
∞∑
n=0

an(x0 − c)n converges:

• max{|x0 − c|} = 0

• max{|x0 − c|} > 0 is infinite

• max{|x0 − c|} > 0 is finite

which imply the three cases in the theorem.

Consider case III, if we find the series converges for |x − c| < R and diverges for
|x− c| > R, we say R is the series’ radius of convergence. However, the theorem does
not guarantee the convergence of two endpoints x = c+R and x = c−R. We have to
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check them separately. Then we could find (c − R, c + R) with possible endpoints as
the interval of convergence.

Definition 9. If the series converges for |x− c| < R and diverges for |x− c| >
R, we say R is the series’ radius of convergence. The power series converge
in intervals of convergence centred on the centre of convergence, and diverge
elsewhere.

Example 24. Find the radius of convergence and interval of convergence of
∞∑
n=1

(−x)n

4nn4
.

We apply the ratio test

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ =

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣x
4

∣∣∣ =
∣∣∣x
4

∣∣∣ < 1

Then we have |x| < 4 and the radius of convergence is R = 4. Then we check the

endpoints. For x = 4,
∞∑
n=1

(−1)n

n4
converges. If x = −4,

∞∑
n=1

1

n4
converges. Therefore

the interval of convergence is [−4, 4].

(c) Operation on Power Series (with the same radius of convergence)

i.
∞∑
n=0

(an + bn)(x− c)n =
∞∑
n=0

an(x− c)n +
∞∑
n=0

bn(x− c)n

ii.

(
∞∑
n=0

anx
n

)′
=
∞∑
n=0

nanx
n−1

iii.

∫ x

0

∞∑
n=0

anx
n dx =

∞∑
n=0

an
n+ 1

xn

3. Application: Approximation

(a) Linear Approximation
Recall that, for a function f(x), we could find a tangent line at x = c where f(x) is
differentiable.

L(x) = f(c) + f ′(c)(x− c)
We could see when x is close to c, the value of L(x) is very close to f(x).

f(x)

L(x)
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Therefore, we could treat L(x) as a kind of approximation of f(x), called linear ap-
proximation.

Definition 10. Let f(x) to be differentiable at x = c. The linear approximation
of f(x) at x = c is

f(x) ≈ f(c) + f ′(c)(x− c)
We call the function L(x) = f(c)+f ′(c)(x−c) the linearization of f(x) at x = c.

Example 25. Find the linear approximation of f(x) = ex at x = 0 and make an
approximation of e0.1.
Solution. f ′(x) = ex and then f ′(0) = f(0) = 1. Therefore the linear approximation
is f(x) ≈ x+ 1. Therefore e0.1 ≈ 1.1.

We are also interested in how accurate the approximation is, i.e. how large the error
the approximation is. We have a theorem to help.

Theorem 5. Let L(x) be the linearization of f(x) at c, and let E(x) = f(x)−
L(x) be the error. Then there exists a number s between c and x such that

E(x) =
f ′′(s)

2
(x− c)2

provided f(x) is twice-differentiable in an interval containing c and x.

Proof. Without loss of generality, assume x > c. By generalized mean value theorem,
we conclude there exists a number a in (c, x) such that

E(x)

(x− c)2
=

E(x)− E(c)

(x− c)2 − (c− c)2
=

E ′(a)

2(a− c)
Since E(t) = f(t)− f(c)− f ′(c)(t− c), we have E ′(t) = f ′(t)− f ′(c). Therefore

E(x)

(x− c)2
=
f ′(a)− f ′(c)

2(a− c)
By mean value theorem

E(x)

(x− c)2
=

1

2
f ′′(s)

where s ∈ (c, a).

Example 26. Estimate the linear approximation of e0.1 around x = 0.
Solution. The error is

E(x) =
1

2
f ′′(s)x2 =

es

2
x2

where s ∈ [0, 0.1]. Since E(x) is increasing, we could estimate the bound

|E(x)| ≤ e0.1

2
(0.1)2 ≈ 0.0055
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which is small.

(b) Taylor Series

i. Definition

If possible, we wish to express f(x) in terms of
∞∑
n=0

an(x − c)n, i.e. to determine

the coefficient {an}. In its interval of convergence, we have

f(x) = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · · ⇒ f(c) = a0

f ′(x) = a1 + 2a2(x− c) + 3a3(x− c)2 + · · · ⇒ f ′(c) = a1

f ′′(x) = 2a2 + 3× 2a3(x− c) + · · · ⇒ f ′′(c) = 2a2

f (3)(x) = 6a3 + · · · ⇒ f (3)(c) = 6a3

· · · · · ·

We could conclude that an =
f (n)(c)

n!
and f(x) =

∞∑
n=0

fn(c)

n!
(x− c)n, which is called

Taylor series.

Definition 11. We say the series

∞∑
n=0

fn(c)

n!
(x− c)n

is the Taylor series of f(x) about c. When c = 0, we call the series Maclaurin
series of f(x). The degree n polynomial obtained by truncating the Taylor
series of f(x) about c is called the degree n Taylor polynomial of f(x) about
c.

Let’s look at some examples.

Example 27. We want to find the Maclaurin series of f(x) = ex. Since f (n)(x) =

ex for all n ∈ N, f (n)(0) = 1. We have ex =
∞∑
n=0

xn

n!
. It’s not hard to find the

interval of convergence is (−∞,+∞).

Example 28. We want to find the Maclaurin series of f(x) =
1

1− x
. Recall the

geometry series,
∞∑
n=0

xn =
1

1− x
. We will also prove that by derivative. We have

f (n)(x) =
(−1)n+1n!

(x− 1)n+1
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and then
f (n)(0) = n!

Therefore the series is
∞∑
n=0

xn. It’s not hard to find the interval of convergence is

(−1, 1).

Example 29. We want to find the Maclaurin series of f(x) = sin(x). We have

sin(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 + · · ·

= sin(0) +
cos(0)

1!
x+
− sin(0)

2!
x2 +

− cos(0)

3!
x3 +

sin(0)

4!
x4 + · · ·

=
1

1!
x− 1

3!
x3 +

1

5!
x5 + · · ·

=
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

It’s not hard to find the interval of convergence is (−∞,+∞).

Example 30. We want to find the Maclaurin series of f(x) = cos(x). We have

sin(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 + · · ·

= cos(0) +
− sin(0)

1!
x+
− cos(0)

2!
x2 +

− sin(0)

3!
x3 +

cos(0)

4!
x4 + · · ·

= 1− 1

2!
x2 +

1

4!
x4 + · · ·

=
∞∑
n=0

(−1)n

(2n)!
x2n

It’s not hard to find the interval of convergence is (−∞,+∞).

Example 31. We want to prove binomial theorem by expanding (1 + x)α. We
have

(1 + x)α = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + · · ·

= 1 +
α

1!
x+

α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · ·

=
∞∑
n=0

(
α

n

)
xn
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where

(
α

n

)
=

 α(α− 1) · · · (α− n+ 1)

n!
n = 1, 2, 3, . . .

1 n = 0
. By ratio test, we have

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣α− nn+ 1
x

∣∣∣∣ = |x| < 1

Therefore the radius of convergence is R = 1 when α < 0.

ii. Taylor Theorem
Having Taylor series of f(x) at c, we are interested whether the series converges
to f(x) and whether the degree n Taylor polynomial of f(x) about c is a good
approximation of f(x). We need Taylor theorem.

(Taylor Theorem) Let f(x) be such that f(x), f ′(x), f ′′(x), · · · , f (n+1)(x) ex-
ists and continuous on an interval containing c, then for any x in that interval

f(x) = f(c) +
f ′(c)

1!
(x− c) +

f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + En(x)

where

En(x) =


f (n+1)(s)

(n+ 1)!
(x− c)n+1 (Language)

1

n!

∫ x

c

f (n+1)(t)(x− t)n dt (Integral)

O((x− c)n) (Peano)

is the remainder (error term).

Example 32. We want to find the remainder (error) En(x) of the degree n Taylor
polynomial Tn(x) of f(x) = ex about 0. By Taylor theorem, we have

|En(x)| = es|x|n+1

(n+ 1)!

where s is between 0 and x. Since

lim
n→∞

es|x|n+1

(n+ 1)!
= es lim

n→∞

|x|n+1

(n+ 1)!
= 0

we know the Maclaurin series converges to ex.
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Problem Solving IV

Determine the convergence of a given series; Find the radius of convergence and interval
of convergence of a given power series; Find the power series of a given function; Find the
function of the given power series; Application: approximation and differential equation

Problem 9: Determine the convergence of a given series
Basically we are comparing (i) whether the terms in the series converge to 0 and (ii) how fast
they converge to 0. A comparison between different functions for large n maybe helpful:

nn > n! > an > na > ln(n) > sin(n)

Notice | sin(n)| ≤ 1 and | cos(n)| ≤ 1 and then we could treat them as constant when n is
large.

• Polynomial p(n) -
1

np

1. Determine whether the following series converges (If it is an alternating series, deter-
mine whether it absolutely converges or conditionally converges).

(a)
∞∑
n=1

2n2 + 4n√
n4 + 5

(b)
∞∑
n=1

1 + (−1)n√
n

(c)
∞∑
n=1

ln(n)

n

(d)
∞∑
n=1

sin(2n)

n5

(e)
∞∑
n=1

ln(n+ 4)

n2

2. Determine whether the following series converges (If it is an alternating series, deter-
mine whether it absolutely converges or conditionally converges).

(a)
∞∑
n=1

ln(n+ 4)

n2

(b)
∞∑
n=1

n

(
1

n2
− 1

n

)
(c)

∞∑
n=1

(−1)n n
√
e

n

(d)
∞∑
n=1

n√
n4 + 7
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(e)
∞∑
n=1

cos(nπ)

ln(ln(n))

• Geometric - arn

3. Determine whether the following series converges (If it is an alternating series, deter-
mine whether it absolutely converges or conditionally converges).

(a)
∞∑
n=1

n
√

1, 1

(b)
∞∑
n=1

1 + 3n

4n

(c)
∞∑
n=1

(−1)nn3

4n

(d)
∞∑
n=1

6

n9n

4. Determine whether the following series converges (If it is an alternating series, deter-
mine whether it absolutely converges or conditionally converges).

(a)
∞∑
n=1

1

n

(
r + 1

r

)
(Hint: you need discuss the value of r).

(b)
∞∑
n=1

6n + 2n

7n

(c)
∞∑
n=1

2

2n + 5

(d)
∞∑
n=1

4n

2n + 3n

5. Determine whether the following series converges (If it is an alternating series, deter-
mine whether it absolutely converges or conditionally converges).

(a)
∞∑
n=1

(n+ 4)5n

n242n

(b)
∞∑
n=1

sin(6n)

6n

(c)
∞∑
n=1

(−1)n ln(n)

5n

(d)
∞∑
n=1

sin
( π

2n

)
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• nn, n!

6. Determine whether the following series converges (If it is an alternating series, deter-
mine whether it absolutely converges or conditionally converges).

(a)
∞∑
n=1

n! + 1

(n+ 1)!

(b)
∞∑
n=1

(2n)!

(n!)2

(c)
∞∑
n=1

(3n)!3n

(4n)!

(d)
∞∑
n=1

3n

n!

(e)
∞∑
n=1

(n+ 2)n

7n2

7. Determine whether the following series converges (If it is an alternating series, deter-
mine whether it absolutely converges or conditionally converges).

(a)
∞∑
n=1

3n

n!

(b)
∞∑
n=1

(4n)!

n40

(c)
∞∑
n=1

(
1

n2
− 1

n

)n
(d)

∞∑
n=1

(n+ 2)n

7n

(e)
∞∑
n=1

cos(nπ)

n!

• Special Series by Construction

8. Determine whether the following converges.

(a) Let an =

{ 1

n
if n does not contain the digit 7

0 otherwise
. Consider

∞∑
n=1

an.

(b) Let an =

{ 1

n
if n does not contain the digit 0

0 otherwise
. Consider

∞∑
n=1

an.

Sometimes it is hard to determine how fast the terms converges to zero when the function is
not that common. Then integral test would be our most powerful tool.
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• Integral Test

8. Determine whether the following series converge by integral test.

(a)
∞∑

n=10

1

n ln(n)

(b)
∞∑
n=6

14ne−n
2

(c)
∞∑
n=2

1

n(ln(n))3

(d)
∞∑
n=2

ln(n2)

n

(e)
∞∑
n=2

1

n+ 4

(f)
∞∑
n=1

1√
2n− 1

9. Find the values of p for which the series
∞∑
n=1

ln(n)

n2p
converges.

Problem 10: Find the radius of convergence and interval of convergence of a
given power series

1. Find the interval of convergence of the following series

(a)
∞∑
n=1

(2x− 3)n

n

(b)
∞∑
n=1

(−x)n

n44n

(c)
∞∑
n=1

(1 + 3n)xn

n!

(d)
∞∑
n=1

(x+ 2)n

nn

(e)
∞∑
n=1

x3n

n ln(n)

(f)
∞∑
n=0

x2n+1

(2n+ 1)!!
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(g)
∞∑
n=0

n(x− 1)n

22n+1

(h)
∞∑
n=1

(−5)nxn

ln(n+ 1)

(i)
∞∑
n=1

(2− x)n

n42n

2. Find the interval of convergence of the following series

(a)
∞∑
n=1

ln(n)3n(x− 6)n

6n+1

(b)
∞∑
n=1

n!(−1)n(x− 3)n

(n− 1)!9n

(c)
∞∑
n=1

(x− 1)n

2nn2

(d)
∞∑
n=1

4n(x+ 6)2n

9n+1

(e)
∞∑
n=1

nnxn

n!

(f)
∞∑
n=1

(−1)nxn

n

(g)
∞∑
n=1

xn

n!

(h)
∞∑
n=0

n!(x− 1)n

2n

(i)
∞∑
n=0

2n(1− x)n

n!

(j)
∞∑
n=1

(x− 9)n

n(−5)n

3. Let
∞∑
n=0

an(x − c)n has a radius of convergence R > 0. Give an example that
∑∞

n=0 an

converges and an example that
∞∑
n=0

an diverges.

4. Write down the power series with the interval of convergences.
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(a) [2, 8]

(b) (2, 8]

(c) [2, 8)

(d) (2, 8)
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Problem 11: Given a function, find the power series
There are two approaches to the answer. One way is to apply geometric series if f(x) is a
polynomial.

∞∑
n=0

arn
∞∑
n=0

an(x− c)n

a

1− r f(x)
a =?

r =?

Another way is to apply the Taylor series:

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

With these two main approaches, we also could apply some tricks/operations on the series:
integration or differentiation term-by-term. composition, substitution and multiplication by
xn.

1. Find the power series with interval of convergence of the following functions (the center
of convergence should be 0).

(a) f(x) =
1

1− x
(b) f(x) =

1

2− x
(c) f(x) =

1

1 + x2

(d) f(x) =
3

1− 2x2

(e) f(x) =
x2

1 + 3x

(f) f(x) =
x

x2 + 1

(g) f(x) =
1 + x

1− x
(h) f(x) =

2x+ 3

x2 + 3x+ 2

(i) f(x) =
x3

4x2 + 3

(j) f(x) =
x+ 2

2x2 − x− 1

2. Find the power series with interval of convergence of the following functions (the center
of convergence should be 0).
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(a) f(x) =
1

(1− x)2

(b) f(x) =
1

(1− x)3

(c) f(x) =
1

(1 + x)3

(d) f(x) = ln(1 + x)

(e) f(x) = arctan(x)

(f) f(x) = ln(3 + x)

(g) f(x) = arctan(3x)

(h) f(x) =
2x

(1 + x2)2

3. Find the power series with interval of convergence of the following functions (the center
of convergence should be 0).

(a) f(x) = ex

(b) f(x) = sin(x)

(c) f(x) = cos(x)

(d) f(x) = (1 + x)α

4. Expand the following functions as power series as required and find the interval of con-
vergence.

(a) f(x) = ln(3 + x) about x = −2

(b) f(x) = x ln(x) about x = 1

(c) f(x) = sin(x) about x =
π

2
(d) f(x) = e3x about x = 1

(e) f(x) =
√
x about x = 25

Problem 12: Given a function, find the power series

In practice, if we meet p(n), try
1

1− x
; if we meet

1

p(n)
, try ln(1− x) or arctan(x); if we meet

factorials
1

n!
, try ex, sin(x) and cos(x). Usually the tricks of decomposition, differentiation

and integration are applied.

1. Find the what functions the following power series converge to.

(a)
∞∑
n=1

nxn−1

(b)
∞∑
n=0

nxn
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(c)
∞∑
n=0

n2xn

(d)
∞∑
n=0

(n+ 1)(n+ 4)xn

(e)
∞∑
n=0

xn

2nn(n+ 1)

(f)
∞∑
n=0

(−1)nx2n

2n+ 1

(g)
∞∑
n=0

n2 + 1

n!
xn

(h)
∞∑
n=0

x2n

(2n)!

(i)
∞∑
n=1

xn

n!(n+ 2)

2. Find
∞∑
n=1

1

n!(n+ 2)
.

3. Find
∞∑
n=1

n

(n+ 1)!
.

Problem 13: Application: approximation and differential equation

• Approximation

1. Make a Taylor approximation with 3 non-zero terms of e0.1 by ex about x = 0, ex+1

about x = −1 and about x = −1.

2. Make a Taylor approximation with 4 non-zero terms of ln(0.9) by ln(x) about x = 1,
ln(x+ 1) about x = 0 and ln(x− 1) about x = 2.

3. Make a Taylor approximation with 3 non-zero terms of
√

24 by
√
x about x = 25,√

x+ 1 about x = 24 and
√
x− 10 about x = 26.

4. Make a linear approximation of
√

2 by
√
x about x = 4 and about x = 1. Compare

which one is more accurate.

5. Suppose f(1) = 2 and f ′(x) = ex
2
. Make a linear approximation of f(1.1) and judge

the approximation.

6. Suppose the radius of a sphere is measured to be 10cm, with a maximum error of
0.001cm. Use an appropriate linear approximation to estimate the maximum error in
the calculated volume of the sphere.
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7. Integrate

∫ x

−x
e−t

2

dt in terms of power series.

8. Integrate

∫ x

0

arctan(x3) dx in terms of power series.

9. Integrate

∫ π
2

0

4a
√

1− e2 sin2 θ dθ in terms of power series.

10. Evaluate the following limits.

(a) lim
x→∞

−x+ sin(x)

x4

(b) lim
x→∞

x2 − 2 + 2 cos(x)

x4

(c) lim
x→∞

(e2x − 1) ln(1 + x2)

(1− cos(3x))2

11. Determine what degree n of Maclaurin polynomial Tn(x), of the function f(x) =
ln(1 + x) is needed to guarantee that the Maclaurin polynomial approximation of
ln(1.4) is accurate with in 10−3.

12. Determine whether the following argument is true: Given the same centers, a higher
degree Taylor polynomial is a more accurate approximation to a function than a lower
degree approximation.

• Differential Equation

14. Let f(x) = 2 sin(x) cos(x), find f (101)(0).

15. Determine whether the following argument is true: A function which has a Taylor
series representation is infinitely differentiable.

16. Find the solution of f ′′(x) = −f(x).

17. Find the solution of (1 + x)f ′(x) = αf(x).
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