MATH 101: Integral Calculus with
One Variable

Wucheng Zhang

http://blogs.ubc.ca/wucheng/


http://blogs.ubc.ca/wucheng/
http://blogs.ubc.ca/wucheng/

This work is licensed under a Creative Commons “Attribution-NonCommercial- @ @@
ShareAlike 4.0 International” license.


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Introduction

The big question in this course to find the area under y = f(z) (a < z <b).

Y

This requires us to have INTEGRAL. To evaluate it, we need the FUNDAMENTAL
THEOREM OF CALCULUS and some TECHNIQUES. With these tools, we could
apply the integral on VOLUME, WORK and DIFFERENTIAL EQUATION. Finally,

with the combination of the knowledge of sequence, limit, derivative and integral, we are
going to study SERIES and its APPLICATION.
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Integral and Fundamental Theorem of Calculus

1. Definition of Integral and Integrablity
The big question in this course to find the area under y = f(z) (a < x < b).

Y

y = f()

T

The first attempt is to make an approximation with a rectangle which is easy to calculate
the area. Then we have

Yy
y = f(x)
I /
I~ ':'\/
a z* b v

where the area is approximated to be A ~ (b — a)f(z*) and we call z* to be the repre-
sentative point who'’s value f(z*) represents the average height of the function. However,
the accuracy is very low and there are various ways to choose the representative points
which gives different results.

Y Y

y=f(@) y = /()
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Therefore we want to look for more accurate approximation. A direct attempt is to divide
the function into two pieces and make the approximation on each pieces.

Yy
y=f(x)
: |
I |
I |
I |
! |
a |j x5 b v
—a

(f(x3) + f(x3)). We could find that the

approximation is more accurate and the variation of representative points is smaller. Then
we are motivated to divide the function (domain) into smaller pieces.

Then the area is approximated to be A =~

Y Y
y = f(z) y = f(x)

I :> Ak |

) - | e |
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We could see that the more pieces we take, the more accurate the approximation is and
also the smaller the variation of representative points is. With n pieces, the area is ap-
b—a

n

n
proximated to be A = Zf(:cf) By intuition we want to take the n — oo to get
i=1

the most accurate result.

Then based on the above motivation, we could have the following of integral which calcu-
lates the area we need.

Definition 1. Let f(z) to be defined on [¢,r]. The integral is obtained in the
following 4 steps.
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1°  Partition the interval [¢, ] into n subintervals [z;_1, ;] with equal
r—1{

width Az =z, — 2,1 =
n
2°  Pick up all the sample (representative) points z} € [z;_1, 74

3° Add up all the small rectangles Z f(z7)Azx which is called Riemann sum

=1

4°  Take the limit lim Z f(z

n—oo

Y

)
\

SF- - - - - =
S
S*

8

Then we say

e if the limit lim Z f(zf)Azx exists and equals for all the choices of sample

n—o0

points, the f(z) is integrable on [¢, 7] and we use the notation / f(z)dx
¢

e if the limit lim Z f(z7)Azx does no exist and does not equal for all the choices

n—o0

of sample pomts, the f(z) is not integrable on [¢, r].

In practice, the difficulty of applying the definition is to show the limit hm Z flx
exists and equals for all the choices of sample points. One possible approach i 1s to find the

upper bound and lower bound of Z f(z7)Az and to apply the squeeze theorem. Let’s

=1
look at an example.

Example 1. Prove f(t) = t* is integrable over [0, 1].

1—1
Proof. First divide the domain into n subintervals [t;_1,¢;] with t; = ——. Then for every
n
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\2 -\ 2
sample point ¢;_; < tf < t;, we have the bound of f(¢f) that (Z—> < f(t7) < (i) :
n n

%
-\ 2
7
n

Then we add them up
e
n 4 n

=1

which could be simplified as

1) <Zf VAL < = i(

=1

1 (n—1)n(2n—1) 1 nin+1)(2n+1)
— < At < —
%% Wh;:l n—00 %% Wh;:l n—00
1
Then we take the limit; by squeeze theorem, we finally have lim Z f(& =3 This
n—oo

means the limit lim Z f(z7)Ax exists and equals for all the choices of sample points.
n—oo

Therefore, f(t) = t* is 1ntegrable over [0,1].

We could generalize conclusion in the example to be a theorem.

Theorem 1. All continuous functions are integrable. ]

Then we are attracted to ask whether the discontinuous function integrable. Let’s look at
some examples.

1 t#0
0 t=0
Proof. Again, we divide the interval into n subintervals. For the interval containing ¢ = 0,
f(tF) could be 0 or 1; otherwise f(tf) = 1. Then we know

Example 2. Let f(t) = { . Prove f(t) is integrable over [—a, a] for a > 0.

2a(n — 1)

2a . 2a
=n—-1)x—+0 —< At < — =2
- (n )Xn—i- X E f(t: nx - a

Then we take the limit, lim Z f(t7)At = 2a, which are equal for all choices of sample
n—oo

points.
1 1<t<vV2 .
Example 3. Let f(t) = { 0 Vi<t<2 Prove f(t) is integrable on [1,2].
— 1
Proof. First divide the domain into n subintervals [t;_q,¢;] with ¢; S + 1. Then

n
consider the k-th subinterval which contains v/2.
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| |
>, =k th interval

k
< V2 <14 = which can be rearranged as
n n

\/5—1§E§\/§—1+
n

We know 1 +
1

n

k —1
By squeeze theorem, we know lim — = V2 — 1 and then lim — /2 — 1. Then we

n—oo M n—o00 n
can consider the Riemann sum:
ko k —k - k—1 —k+1 k—1
o -4 10 x2< Y f(tAL < T O S
n o on n — n n n

. k—1
Take the limit, by squeeze theorem, we have lim Z f(tHAt = lim <2 - ) =
=1

n—00 4 n—00 n

k—1 2
lim (2 — ) = 3 — /2 for all choices of sample points. As a result, / f(t)dt =
1

n—oo n

3 — \/5 which exists.

For the examples above, it seems that the jump or hole does not matter with integrablity.
But when the discontinuous points become infinite, this claim may not always be true any
more. Let’s look at the following two examples.

1 teQ

0 teR/Q " Prove f(t) is not integrable over [0, 1].

Example 4. Let f(t) = {

_ i -1 i+
Proof. Divide the [¢, 7] into n subintervals [t;_1,t;] with ; = —. Since <
n n n

<

i i—1 i+3—1 i
— and < 2 < —, for every subinterval we can find sample points f(t) =1
n n n n

or f(tf) = 0. Then the limit of Riemann sum can be either lim Zf(tf)At = 1 with
i=1

n—o0

picking all the sample points to be 1 or lim Z f(t7)At = 0 with picking all the sample
=1

n—00 4
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points to be 0. They are not equal for the different choices of sample points and therefore
f(t) is not integrable over [0, 1].

1 1 1
Example 5. Let f(t) = L t= e’ €2’ 3" . Prove f(t) is integrable over [0, 1].
0 otherwise

Proof. First divide the interval [0, 1] into n subintervals. Then we want to find out how

1
{—Z} are distributed on [0, 1].

(&

®w|’—‘
P O |—

STt
L

s= T

1 1
We could find there would be infinite ~ located between {O, —] . Let k to the first term
e n
1
less than . Then — < < ——7 which implies
e ek—

log(n) < k < log(n) + 1

Then consider the Riemann sum Z f(t:)At. The lower bound would be all the sample

i=1
points f(tf) = 0 and the upper bound would be all the possible sample points f(¢f) =1

and other sample points f(¢7) = 0. Then we have

k —1 log(n)+1
0< At < — <
Z 1 . .
1 1 L4+0
By L’Hospital rule, we have lim M = lim 2 = 0. Therefore, by squeeze the-

n—00 n n— o0

orem, we know lim Z f(t)At = 0 for all choices of sample points. So f(t) is integrable

n—oo

over [0, 1].

Then we should put our focus on the discontinuous points with asymptotes.

1
Example 6. Let f(t) = { t t#0 . Prove f(t) is not integrable on [0, 1].
0 t=0
— 1
Proof. Divide [0, 1] into n subintervals Z—, ‘. Then for every subinterval we pick up
n on

the sample point with the smallest value f(t7). Then we know

= .. I =n =1
izlf(fi)ZOJrgiZl;:;g

diverges

Integral and FTC 10



Therefore the limit of the Riemann sum diverges and f() is not integrable on [0, 1].

This is also called improper integral and we are going to further discuss it.

. Properties
As we can see from the previous section, integral is not easy to compute based on definition.
We want to find some short cut to simplify the integral. One way to do so is to decompose
the integral.

‘
(a) Zero Interval: / flz)dz =0

Proof. Since Ax = £ ¢ = 0, we have lim Zf )JAz = 0 and there is only one

n n—o00

choice of zf = ¢. So / f(z)dz = 0.
¢

¢
(b) Inverse Interval: If / f(z) dz exists, then / f(x - / f(z)dx
r—{
Proof. That / f(x)dx exists implies lim Z f(z7)Ax exists, where Az = )
n—o0o n
¢ A ; _ — = —
For [ f(z)dz, Az’ = & Az. So nh_)IEOZf nh_>nolto YAz with

corresponding choices of sample points and they are all equal. Therefore, / flx)de =
¢

—/ff(x)dm

(c) Interval Decomposition: If / f(z)dx, / f(z)dzx and / f(z)dx exist, then

[ s = [ sy [ oy .

Proof. Without loss of generality, by (b), let £ < r. We treat the integral / f(z)dx
¢

as area. There are three cases: { <m <r,m</{<randf <r <m.

) l<m<r
Y

il
:
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Yy

S (mr) u=f(x) S=% 5
e 1T
S | 5 | / f() dv = /m o) de - /m Sla)ts
m{ ¢ 7 v -/ f(;z:)dx—k/g flx)dx

Y

N%

~

Insummary,/ f(x dx—/ f(z dx—l—/ f(z)dz.

(d) Integral over One: / lde =r—1¢
‘

» r—{
Proof. By definition, / ldx = J;rgoz flz7)Az = lim Z Az = lim n x =

) n—o00 n—o00 n
r — £. In the graph, it is the area a rectangle with height 1 and width r — /.
Y

1f -

| |
| |
| |
¢ r 7

0 r r
(e) Integral with Constant Coefficient: If/ f(z) dx exists, / cf(z)dr = c/ f(z)dx
¢

Proof. By definition, / cf(x )d:c—nh_glchf JAz = ¢ lim Zf Ax—c/ f(z

n—oo
r—1/
where Az = —— with same choices of sample points.
n

Corollary: / cdr = c(r — 1)
¢
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(f) Integral of the Sum of Functions: If f(x) and g(x) are integrable on [/, 7],

/;[f():lzg d:v—/f dxj:/ g(x) da.

Y Y Y

-
both limits exist by definition
" r—/{
/ g(x) dx where Az = —— with same choices of sample points.
¢ n

(g) Sign Preserving: If f(x) is integrable on [¢, 7] and f(z) > 0, then / f(z)dx > 0.
¢

Proof. By definition, / f(z)dx = hm Zf Am > 0.
\,_/

=1 p)>0

Corollary: If f(x) and g(z) are integrable on [¢, ] and f(z) > g(x), then/ f(z)dx >
¢

/;g(x) dx.

Proof. Since f(x) — g(xz) > 0, by definition, we have / f(z)dx —/ g(x)de =
¢ ¢

/gr [f(z) — g(z)] dx > 0. Therefore, /; f(z)dx > / g(z) da.

SN—— 4

>0

Corollary: If f(x) and | f(z)| are integrable on [/, r], then / f(z)dx
¢

</ |f(@) da.
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y = f(x)
|
SQ |
|
¢ *71 |
LV r
=[Sy — 54| S = |Si| + |S:]
Net Area Total Area

Proof. Since —|f(x)] < f(x) < |f(z)|, we have —/ |f(x)]dx < / flz)dx <

/|f )| dz. Th1s1s/f ) dz /|f )| dz.

3. Fundamental Theorem of Calculus
With the properties as decomposition tools above, we still can not avoid the definition to
calculate the integral so we want to find a new tool. One guess is to make connection to
x

derivative to find out how f(z) is integrated along =. Let F'(z) = / f(t)dt. Then what
¢
d
—F ?
is o (x)

S(z) = F(z) = /@ oL

Let’s put it into a real world scenario. Let f(t) = v(¢), the velocity of the object at t.
Let s(t) = F(t) (copying the corresponding rule F'), the distance the object has travelled
until ¢. From practice, §'(t) = v(t) which is F'(z) = f(x). This is reasonable. Consider
f(z) as the rate of area F'(z) increasing, F'(z) = f(x). To prove this, let’s first prove a
premise of it.

Integral and FTC 14



Theorem 2. (Mean Value Theorem of Integrals) Let f(z) be continuous on [/, r].

There exists a number a € [¢, r] such that f(a)(r — ¥¢) = / f(z)dz.
¢

Y Yy = f(:lf)
S, )
Sl !
fla)} W// '
¢ CIL r X

This theorem could be interpreted in two ways. One direct way is that we can find a
number a € [¢,r]| such that the integral equals to the area of a rectangle with height f(a)
and width r — ¢. Then we could say f(a) is the average (mean) height of the function
f(z). Another way of interpretation is that there exists a number a € [¢,r] such that
S1 = S5 labeled in the graph.

Proof. Since f(z) is continuous on [/, 7], by extreme value theorem, f(x) has a global
maximum f(x;) = U and a global minimum f(xs) = L. So that L < f(z) < U and
x1, X9 € [¢,r]. This implies

L(T—E)S/;f(x)deU(r—ﬁ)

then

1 T
< <
L_r_g/ef(:p)dm_U

By intermediate value theorem, there exists a number a between x; and xs (therefore

a € [¢,r]) such that f(a) = —/ f(z)dx.

Then let’s explore the relationship between f(x) and F’(x) - the fundamental theorem of
calculus.

Theorem 3. (Fundamental Theorem of Calculus) Let f(x) to be continuous on an

interval I containing the point t and let F(x) = / f(t) dt, then:
¢

(a) F'(z) = f(x).
(b) L ot G(z) to be the antiderivative (such that G'(x) = f(z)) of f(z), then
f(z)de =G(r) — G(¢) for all r € I.
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Proof. (a) Consider the difference between F(z) and F(x + h),
Y

y = f(t)

/’\\//

F@)) 1

/! xlaa:—kh

(Squeeze)

by definition, we have

= A (a € [z,2 + h)) by MVT of Integrals
h—0 N
= f(x) by squeeze theorem

(b) By (a), we know the antiderivative exists. Since F'(z) = G'(z) = f(x), we let

G(r) = F(x) + C. Then we have { gEZ)) z ?EZ;Ig: o Therefore G(r) — G(¢) =

F(r)+C—C’:/€rf(:r;)dx.

Corollary: (Extensions of the Mean Value Theorem of Integrals) Let f(z) continuous on

[0, r]. There exists a € (¢,r) such that / fz)dx = f(a)(l — ).
¢
Proof. Let F(x) = / f(t)dt. By fundamental theorem of calculus, F'(z) = f(x). And

‘
we have / f(x)dz=F(r)—F)=F'(a)(l —7)= f(a)({ — 7).
y4 S———
¢<a<r,by MVT
Note: The continuity of f(z) is the key of FTC to be true. Look at example 5,

Flz) = /O " F(#)dt = 0. However %F(x) — 04 f(a).

Let’s check two examples.

1 1
Example 7. Evaluate / xdx. By fundamental theorem of calculus, we have / rdr =
0 0
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Example 8. Evaluate / sin x dx. By fundamental theorem of calculus, we have / sin x dx
0 0

= —cosz|y =2

. Improper Integral

Recall the definition of integral: the integrand is defined to be defined on a finite closed
interval [/, r]. Then what about the integral with infinite interval or having asymptote in
the interval? This kind of integral are called improper integral.

Definition 2. An improper integral is a definite integral that has either or both
limits infinite or an integrand that approaches infinity at one or more points in the
range of integration.

It is obvious that the improper integral can not be computed by Riemann sum. Then the
approach is based on the combination of fundamental theorem of calculus and limit.

For example, let f(z) defined on (¢,00) and h% f(z) = 4+o00. Then with £/ < a < b <
z—
00 b

00, we have / f(z)dxr = lim lim / f(x)dr = lim lim [F(b) — F(a)] = lim F(b) —
¢ a—{+ b—oo a—{+ b—oo b—o0

lir?+ F(a) where F'(z) is the antiderivative of f(z). If one of the limits does not exist, the

a—

integral does not exist.
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Problem Solving I

Prove integrablity by deﬁnition Calculate limit by definition of integral; Calculation
related to F(z) = [ f(t) dt; improper integral

Problem 1: Prove integrablity by definition

1.

. Let f(t) = {

2 3
Prove / tdt = —.
1 2

2
. Based on the fact f(¢) = 1 — 2t is continuous, compute / (1 —2t)dt.
0

< 1
Suppose f(t) is integrable and negative on the interval [0, 1]. Let g(¢) = { g(t) 1?__ f <
Prove ¢(t) is integrable on [0, 1].

A t=k

., where A, B and k are constants with A < B. Prove that
B otherwise

f(t) is integrable on any finite interval [¢, r].

. Let

fa) = 1 if z = & for integer j and k, with k positive and 0 < j < 2*
| —1 otherwise

Prove f(z) is not integrable on [0, 1].

Problem 2: Calculate limit by definition of 1ntegral

Let f(x) integrable on [0,1]. Then / flz)dx = hm Zf Ax = hm Zf (

1 :
lim — Z f (1) Based on that, compute the following limit.
n—oo N, n

Jm 5
1 1
lim + +
n—oo \ N + 1 n -+ 2 n-+n
P+ 29434

lim 1
n—oo n

"L 6(k — 1) (k—1)3
fm > =1
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Problem 3: Calculation related to F(z) = [, f(t)dt

d
1. Let f(z) continuous and ¢;(x), pso(z) are differentiable. Compute —

T J o (x)

x

d 2
2. Compute — e dt.
dz [,

d =

3. Compute — (sinx/ e_t2>.
dx 22
d T i 2

4. Compute — | e cos(t*) dt |.
dx 22

5. Solve3+/ %Qt)dt:%/f to find a and f(x).
IT@
u

6. Lot F(x) = / " F()dt, where f(t) — / t du. Find F"(2).

7. If zsin(mz) = / f(t)dt and f(t) is continuous, find f(4).
0

8. Solve f(z) =1 +4/$ f(t)dt to find f(z).
3

9. Find the global extreme of F'(z) = f2x7$2 Ccos (#)

0
/ (1— tan(2))} dt
10. Evaluate lim 22

x—0 x

Problem 4: Improper Integral

1. Write the definition of / f(t)dt.
¢

1
1
2. Write the definition of / —= dt.
o+ \/z
1
3. Prove that f(t) = = is integrable over [1, +00).

t2
4. Evaluate / et dt and estimate / et dt.
1 1
5. Evaluate/ 8¢l 4z,

6. Prove that / t7? where r > 0 converges if and only if p < 1.
0

Integral and FTC
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7. Prove that / t™? where ¢ > 0 converges if and only if p > 1.
¢

Integral and FTC
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Integral Techniques: Substitution, Parts and Partial Fraction

Based on the fundamental theorem of calculus, to find the integral we only have to find
the antiderivative. With the basic derivative formula we could find the antiderivative of the
basic functions. However, when we meet the combination of basic functions, we need some
new techniques. A good clue to find them is to use the derivative rules.

1. Integration by Substitution
Consider chain rule,

F(p(z)) = fle(z)]¢(z)
where F'(z) = f(z). If we note the antiderivative of f(x) as /f(ac) dx, we have

/ﬁwmwmmszw@»+c

Then by fundamental theorem of calculus, we have

/fMMMI O / ftyd = FOIEY = Fe@)l  (S1)

dtgox

This could also be done in another direction if it gives a simpler form to find antiderivatives.
We have
JECL
g(t)

where G'(t) = ¢(t). Then for the integral, we have

pH(b) .
t/f =20 [T g = Gl (s2)
¢~ 1(a)

=Gl (1) +C

Then let’s look at some examples where we apply (S1).

Example 9. Consider the following integrals:

! 1t w=zer1 17 1
. / cos(2t + 1) dt = 5/ cos(2t + 1) d(2t + 1) ien —/ cos(r) dr = = sin(x)
0 0 1

2
sin(5) — sin(1)
()
=—log|( =
;3 2 3

2
—dt = —_d(t* 4 3) == —d ——1
'/0 t2+3 /0 Y | 3 T = g loe(w)
/ \/— o) / V) = 2arctan \/_|1 — 2arctan(v/2)—2arctan(1)
x L
° /2 sin(x) cos(x / d(sin(x)) = sin” ()
0 2

|

0
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Actually, the last integral in the example is a very special example related to to sin and
cos functions. We could explore more examples and summarize a general approach to this
kind of integral.

Example 10. Consider the following integrals:

2 2 2 1
° / sin(z) cos(x) dx —/ sin(z) d(sin(x)) = sin"(z) =
0 2 |, 2
: S1F 1
° /2 sin(t) cos* / cos*(t)d(cos(t)) dt = o ( ) ==
0 0 o 4
H 2 1—cos(2t) 1 (2 1
° / sin®(t) cos® / cos(2t) X +COS ) = —/ (1 — cos?(2t))dt =
o 0 4
1 [z 1 t 1
Z_L/OQSm :§ (1—Cos (4t)) dt = <§—3—2$1n(4t)) ) _1_6
z 51 2t 1, 1 2
o /2 cos?(t) dt = /2 o cos( )dt —t+ —cos(2t)| =—
0 2 2 4 0

In summary, this type of integrand is f(t) = sin™(t) cos™(t) where m,n € Z. If m is

odd, then let u = cos(t), we could have /sinm(t) cos” (1) dt = /—(1 - u2)mT_1u” du. If

n is odd, then let u = sin(t), we could have [ sin™(¢)cos™(t)dt = [ u™(1 — u)%1 du. If

m,n are both odd, then pull out the small one as u'(t). If m,n are both even, then use

11— 2t 1 2t
cos?(t) = 1= cos(2) and sin*(t) = %S()

5 to reduce the order repeatedly.

Then let’s look at some examples applying (S2).

Example 11. Consider the following integral:

1 arcsin 1 arcsin 1
xr=sin 1 + cos 2t
o/ \/1—$2dm—t/ Costcostdt:/ Tdt:
0 0 0

arcsin 1 arcsin 1

arcsin 1
0 0 2

’ 1 r=sect arcsec 3 secttant arcsec 3 arcsec 3 1
¢ 2 — dz — —dt= sectdt = —
2 zt—1 arcsec 2 tant arcsec 2 arcsec 2 1 —sin“t

arcsec 3 . arcsec 3

1 1 1 1 1 t

d(sint) = / 5 — + . d(sint) = = In ﬂ
arcsec 2 2 \1 —sint 1 4sint 2 1 —sint

14+2v2 1-3 —
. = —In
1-2v2 14+v3] 2 |1-2v6—-2vV2+3
1 arctan 1 2 arctan 1
]_ x=tan t arctan 2
o/ —dx——t—i/ >ee dt:/ costdt = sint[" 1—£
0 ( 0 0

1+ a2)2 sec3t 2

1t+1'2t 1(t+'t t)
— — Sin = — SINn T COS =
o' T 2 !

arcsec 2

1
—In
2
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In summary, here we use two powerful formulas: sin®¢+ cos?’t = 1 and tan®t + 1 = sec? t.
By them, we have three substitutions:

r=asin 6 r=a cos 6 .
e Va2 — 1?2 ———=acosf (Va? — 22 ——= asindb)

xr=sec

o V12 — g2 ——=atanb
x=tan 6

o V12 + a2 ——— asecl

Besides those specific integral, we could use substitution to explore the properties of some
general integrals. For example let’s consider the integral with symmetric interval. Let
f(z) integrable on [—a,a]. We have

/_ D flx) de == /0 (ot dp iy ariablet= /O i) de

Then we would have
/ (@) da _/ dx+/ f@

/f dx+/ f(x) d

—z) + f(z)] dx

0

a a

If f(z —f(—=x), we have/ flz)dx = 0. If f(z) = f(—x), we have/ f(z)de =

/f . .

Besides, we could also explore the integral properties of periodic functions. Let f(x)
integrable and f(z +T) = f(x). We have

atT =T+t “ . @ dummy variable:t=x .
/T f(x) de 222 / AT+ t)dt = / f(t) dt / f(x) da
Then a+T 0 T a+T
| s@dr= [ pwdes / fayde+ [ jo)do

- [svios [ swyes [ petin
:/UTf(x)dx

2. Integral by Parts

Recall the product rule,
(uwv) = wv' +u'v
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Rearrage it, we have
/ !/ /
w' = (uwv) —u'v

Find the antiderivative on both sides, we have

/udv:uv—/vdu—i-C

By fundamental theorem of calculus, we can find the integral

b b
/ udv = uv|’ — / vdu
a a

We could visualize this technique. Consider the following diagram.

v

u(v) or v(u)

MEF-—====-=- =

mE----

|
|
|
|
|
Ui U9

We know the area of A; + Ay is the area of the big rectangle minus the area of the big
rectangle. This is just

Vg U
/ u(v) dv —i—/ v(u) du = ugvg — v10q

V1 ui
NS > NS >
Vv VvV

A1 A2

/udv—i—/vdu:uv—l—C’
/udv:uv—/vdu+0

b b
This is a powerful tool to evaluate complicated integral / u dv by simpler integral / vdu.
a a

or, in terms of antiderivative,

By arrangement, we have

Let’s look at some examples.

Example 12. Consider the following integrals:

2 2
o/ lnxdx:xlnxﬁ—/ zd(lnz) = zlnz — 2| =2In2 -1
1 1
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2
2
ze® dr = xe®|} — / e'dr = xe” — e"|] = ¢*
1

/ tsintdt = / td(cost) = tcost|) — / costdt = —2m — 2sint|j = —27
0

s ™ s
o [ = / e smxdx—/ sinx d(e”) :Sinxex|3—/ cosze® dr = —/ coszd(e’) =
0 0 0
™

- e"+1
—e®coszxl) — | e‘cosxdr=e€"+1—1. Then I = :
0
. arcsinx dr = xarcsinz|? — xzd(arcsinz) = —— — ——dv =
0 0 8 o Vi—-u

V2r ﬁd(l—xQ) V2r V2 \/—ﬂ' V2
[

2
o ]:/ sec Gdﬁ—/ sec f d(tan 6) :secﬁtan8|§—/4 tanzﬁsecedﬁzsec%anﬂg—
0

0 0

I I 1 1+Lsingll?
/(sec?’@—sece)d@:\/_—[—l—/ secGalQ:\/_—[—i——ln—i_—s%n =V2+
0 0 2 1 —sinf||,
241 242
In(v3+2) — 1. Then 1 = V2 néf+ ),

In summary, integral by parts mainly deals with the multiplication of In z, sin x, cos x, tan x,
e®, arcsin x, arccos z and z".

. Integral by Partial Fraction

h(z)

Consider f(x) = 7(2) where h(x) and g(z) are polynomials and the degree of h(z) is lower
g(x
than the degree of g(x). We want to simplify or decompose f(z) to make the integral of
f(z) easier. We can represent g(x) as
g(w) = kLY Ly - - L Q" Q5% - - @y

where L; are linear terms as  — a and @Q; are irreducible quadratic factors as 2 + bz +
¢ (b? — 4c < 0). Then we can decompose f(x) as

‘ Al Ag B11'+01 Bgl‘—FOg Bnﬁ—{—C’nz
=S (e ) B (0 g S5

k=1 k

This is called Euclidean algorithm. Then we could integrate f(z) by small pieces.
Let’s look at an example.

19,3 2
2 11 28z + 33
Example 13. Evaluate v 2x * 6x i dt.
0 x?—x—
We could make a long division to make the order of numerator is lower than the denomi-

nator.
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2¢ +13

?—x—6) 22°+112% + 28z + 33
— 2% + 222+ 12z

1322 + 40z + 33
— 1322+ 132 + 78

93z + 111

53t 4+ 11 A B

Thenweknow f(x):2t+13+m22t+13+m+t4_—2 ThenA(t+2)+
. . A+ B =253

B(t—3)=(A+B)t+2A—-3B =53t+11 Whlchglves{ 94— 38 — 111 ° Then we know

A =54 and B = —1. Therefore we know the integral is
19,3 2 1
2 11 28z + 33 54 1
/ i s dt:/ A4+ 134 2 — — ) dt
0 x*—x—0 0 t—3 t+2
= ( +13t +54Inft — 3| — Inft + 3])

2
=14+55In -
+ n3
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Problem Solving 11

[ Evaluate the integral; Explore the general properties of integral

Problem 5: Evaluate the integral
e Integral by Substitution

1. Evaluate the following integral

(a) /jicos <$) dz

2. Evaluate the following integral

(a) /2 sin® 2 dx
0

2 ¢ cos® v dx

sin
sin® x dx

sin® x cos* x dx

tan x dx
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tan® z dx

|
/ sec® x tan x dx
0
1
Y
0 + cosx

3. Evaluate the integral

/ Wil-— d.r (a,b > 0 are real numbers)

0) [ e
(c)/o mdaz
(d) /14\/Hdt
e) /12de

! 1
<f>/ -
0 (4x2—|—9)§
518
d
(g)/o 1—2:2 %
h)/ L4
—F— ax
0 \/4$2+9
2
1
i d
(1)/1 2tz

e Integral by Parts

4. Evaluate the following integrals: =" In® x where o would be the times of using by parts

W [ 2L

\/_
(b) /1 Inz dz
(c) /161n2:r;da;

(d) / 2 Inz dx
1

(h)
(1)

jus
4
s
4
jus
4

5. Evaluate the following integrals: e where o would be the times of using by parts
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(a) /01 xe® dx

6. Evaluate the following integrals: z“sinz or z® cosx where o would be the times of
using by parts

(a) /2msina7dx
0

(b) /QxQCosxdx
0

2 [ 9 nww
(d) an—z/o x” cos (T) dx

7. Evaluate the following integrals: z“ arcsin x or £ arccos x where o would be the times
of using by parts

4
(a) / x arcsin x dz
0

(b) /4 x arccos x dz
0

8. Evaluate the following integrals: e® sin(bx) or ¢** cos(bx)

(a) /07r e cos x dx
(b) /0 " e sin(ba) da
(c) /OTr e cos(bx) dx

9. Evaluate the following integrals

(a) /07r cos(Inz) dx
(b) /0 sec® v dx

ISE

! dt
V1t

2 2
10. Evaluate/ xf(x)dx where f(z) —/
0 T
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1
11. Consider the integral I,, = / t"e’ dt.
0

(a) Prove the reduction formula I,, = e — nl,_

(b) Find I, by I

Jus

2
12. Consider the integral I,, = / cos" x dzx.
0
. n—1
(a) Prove the reduction formula I,, = I, .

(b) Find I, by Io and I;.

Jus

2
13. Consider the integral I,, = / sin” x dx.
0
n—1

(a) Prove the reduction formula I,, = I, .

(b) Find I,, by Iy and I;.

e Integral by Partial Fraction
11. Find the following integrals

! 1
—d
(a)/o 2zl
/ T+ 2
$2+x+1
/6 5z + 6

s 12— 13— 2

6 2
/5x4+
/19[::66—1-2

—2?+2x+1
f d
()/5 @ —12@ 11"

e Integral by Combination of Techniques

1. Evaluate the following integrals

a)/o ﬁdm‘
b) /de

), i
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dx
/62$+26$—3
/ — dx
0 1+26x—6x
f —d:z:
)/0 Viax — 22
1
1
—d
(g)/o T+ 2vVr+3 v

1
1
h |
()/0 r+2v/x — 10 ’
N

Problem 6: Explore the general properties of integral

r+a

1. Prove that / f(t+a)dt= f(t)dt given f(t) is integrable on R.
l l+a

2. Prove the following equations:

b b
a) / flz)dx = / f(a+b—t)dt where f(x) is integrable and z +t = a + b.

b) /bf(x) dx = /01 f((b—a)t + a)dt where f(x) is integrable and z = (b — a)t + a.

3. Prove/ f(sinz)dx = 2/2 f(sinz)dx
0
4. Prove/ xf(sinx) / f(sinz)

5. Prove / ( / f(t dt> / (r — u) f(u) du where f(x) is continuous everywhere.
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Application of Integral Calculus

1. Volume
(a) Definition
We want to find the volume of a three-dimensional solid with arbitrary shape. Inspired
by the idea of idea, we are going to split the solid infinitely small pieces and add all
them up.

Definition 3. Consider the three-dimensional solid below. We define the volume
of it by four steps:

1°  Partition the interval [¢, r] into n subintervals [z;_1, x;] with equal
r—1{

width Az = 2; — ;-1 =

2°  Pick up all the sample (representative) points =} € [z;_1, 7]

3° Add up all the small rectangles Z A(z})Az where A(x) is area of the
i=1
cross-section at point x

4°  Take the limit lim ZA(xf)Ax
n— o0 s

] ]
I I
* X ... * 600
¢ x7| 25 x; Xy,

Then the volume of a solid on the interval [¢, r] having cross-section area A(z)

at position z is equal to V = / A(t) dt provided this integral exists.
¢

(b) Method
For the solid of revolution, there are two methods to find the volume: by disks and by
shells. They differ from the way we split the solid.

Let’s look at the disk method first. Consider the solid that the region under y = f(z)
(x € [¢,r]) and above x = 0 rotated about z-axis.
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The volume of one piece at z is dV = A(z)dx = 7 f*(z) dz. Then the volume of the
solid is V = / 7f*(x) dx.
¢

Then let’s look at the method of (cylindrical) shell. Consider the solid that the region
under y = f(z) (z € [¢,r]) and above x = 0 rotated along y-axis.

Then the volume of one piece of shell at x with height f(z) and thickness dz is

dV = 2nxf(x). Then volume of the solid is V' = / 2nx f(z) dx.
¢

Then we are going to compare these two methods in different situations. Let y = f(z)
(x € [0,r]) rotate around z-axis and y-axis.

yy:f(x) Y
y = f(x)

|
r L

T

By Disk vz/ 7 f2(x) da V:/Or27m;[f(r)—f(:c)]dx

) £r)
By Shell V:/O lf ' y)Pdy V= /0 2nf(x)(r —x)de

Application of Integral Calculus 33



If f~! cannot be found, then we should use by disk to calculate the rotation along
y-axis case. In practice, we usually pick up the easiest way to go.

Equivalence between Two Methods
It’s hard to show that two methods are equivalent in general. But we could find a
special case to prove they are equivalent.

(From the note by Dr. Fok-shuen Leung) Let f(x) be a continuously differentiable
function which passes through the original and is strictly increasing. Let R be the
region enclosed by the z-axis and y = f(x) from x = 0 to z = a. Let S denote the
solid obtained by rotating R about the y-axis.

Yy
y = f(x)
I 1 I
I - = |
I N —= I
I ! 17 ! I
I ! ! I
I PRl | Al I
Y N
\\_ __’/ a x

Then by disk, we have the volume to be

f(a)
Vim [ e~ 1 )P dy
0
Then by shell, we have the volume to be
VS:/ 2nx f(x) dx
0

We could substitute to compare two volumes:

w% / m(a® — 1) f(x) dt
AN )

z=f"1y

-
continuous so integrable

= [ #a — ) dis(e)
= 7r(a2—:v2)f(zt)g+/0 2nx f(x) dx

= /a 2rxf(x) dx
-
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2. Work
(a) Definition
Work is defined as the product of the force and distance if the force is applied con-
stantly. However, if the force is not applied constantly, we have to split the process
into pieces and in every small piece the force is constant.

7

Definition 4. Suppose an object moves along the z-axis from x = ¢ to z = r,
with a force of F'(z) acting in the some direction on the object at any point x.
We define the work of it by four steps:
1°  Partition the interval [¢, r| into n subintervals [z; 1, x;] with equal
r—/¢

n
2°  Pick up all the sample (representative) points z} € [z;_1, x;]

3° Add up all the small rectangles Z A(x])Ax where A(z) is area of the
i=1
cross-section at point x

4°  Take the limit lim ZA(&?;)A&?
i=1

n—o0 4
> *
Z;
| | | | |
[ [T 1 [ x
14 Ti1 x; r

Then the work done on the object is equal to W = ff F(z)dx provided the
integral exists.

(b) Method

In general we could just calculate the work by definition

W:/;F(x)dx

However, if we have a continuous solid, we could evaluate the work alternatively -
instead of splitting the process, we split the volume. Consider a continuous solid
along y-axis bounded by [/, r].
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We assume that at the same height y, the forces applied on every point are the same.
Then we have

W= /@ h(y)G(y)dV = /grh(y)G(y)S(y) dy

where h(y) is the distance of the points at height y have to move, G(y) is factor that
force by volume and S(y) is the area at height y.

3. Differential Equation
(a) Definition
Many quantities grow or decay with a rate proportional to themselves. For example,
a colony of bacteria double its size every hour. We could write that in equation

dy _
dt

It is related to derivatives and we call it differential equation.

7

Y

Definition 5. (i) Differential equations are equations relating functions and
the derivatives. (ii) The solutions of the differential equations are functions
that satisfy the differential equation after substituting in. Special solution has
no arbitrary constant and general solution has no linear dependent constants
whose number is equal to the order of the differential equation. (