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Sets and Maps

A. Set

1. Definition
(Cantor) A set is a collection into a whole of definition distinct objects of our intuition or
our thought, which called elements of the set.
Note. According to the definition, if we know the elements, we know the set.

2. Examples

N natural numbers N0 non-negative integers

Z integers Q rational numbers

R real numbers ∅ empty set

3. Notation

(a) x ∈M : x is an element of M .

(b) y /∈M : y is not an element of M .

(c) { }: used to specify an set by listing its elements.

(d) {x|the properties of x} or {x ∈ X|the properties of x}

4. Subset A is subset of B, written A ⊂ B, if every element of A is an element of B, i.e.
x ∈ A =⇒ x ∈ B.
e.g. ∅ ⊂ N ⊂ N0 ⊂ Z ⊂ Q ⊂ R

5. Operations

(a) A ∩B: x ∈ A ∩B ⇐⇒ x ∈ A and x ∈ B
(b) A ∪B: x ∈ A ∪B ⇐⇒ x ∈ A or x ∈ B
(c) A \B: A \B = {x ∈ A|x /∈ B}
(d) Cartesian Product

i. Pair and Tuple: An ordered pair (a, b) is a pair of objects in which the order
is significant ((a, b) 6= (b, a)). A pair could also be treated a 2-tuple. A tuple is
a finite ordered list (sequence) of elements. An n-tuple is a sequence (or ordered
list) of n elements, where n is a non-negative integer.

ii. Definition: A×B := {(a, b)|a ∈ A and b ∈ B}
Note. In general: A1 × · · · × An := {(a1, . . . , an)|a1 ∈ A1, . . . , an ∈ An}

A×B

A

B

b

a

(a, b)
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iii. Examples

• R2 = R× R
{0} × R

R× {0}

(x, y)

(x, 0)

(0, y)

• Rn = R× R︸ ︷︷ ︸
n

B. Map

1. Definition
Let X, Y to be sets. A map f from X to Y is a rule which to each x ∈ X assigns precisely
one element of f .

2. Notation We denote the map as

f : X −→ Y

x 7→ f(x)

where f is the name of the map, X is the domain, Y is the codomain (target) and x 7→ f(x)
is the rule.

3. Examples

• f : Z −→ N0

n 7→ n2

• t : R× R −→ R
(a, b) 7→ a+ b

• Identity:
idM : M −→M

x 7→ x

• First Projection:
π1 : A×B −→ A

(a, b) 7→ a

• Constant Map:
f : X −→ Y

x 7→ y0

• Dirichlet Function:

f : R −→ R

x 7→
{

1 x ∈ R
0 x ∈ R \Q

4. Non-examples
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• f : Z −→ N
n 7→ n2 is not well defined at 0.

• t : R −→ R
x 7→ log(x)

is not well defined for x ≤ 0.

• g : R −→ R
x 7→ y such that y2 = x

is not well defined since y is not unique.

5. Image and Preimage
Let f : X −→ Y be a map, A ⊂ X, B ⊂ Y be subsets. We say f (A) := {f(x)|x ∈
A} = y ∈ Y |∃x ∈ A : f(x) = y is the image of A and f−1(B) := {x|f(x) ∈ B} = {x ∈
X|f(x) ∈ B} is the preimage of B.
Note. We have not assigned any meaning to the symbol f−1 and it may not be an inverse.
For example, let’s check out π1.

X

Y

f

X

Y

f

A

f(A)

x

y = f(x)

B

f−1(B)

It can happen that x /∈ A but f(x) ∈ f(A).

6. Injective, Surjective and Bijective

(a) f : X −→ Y is injective (one-to-one) if ∀x, x′ ∈ X. f(x) = f(x′) implies x = x′.

(b) f : X −→ Y is surjective (one-to-one) if ∀y ∈ Y , f(x) = y. (Equally, f(X) = Y .)

(c) f : X −→ Y is bijective if it is both injective and surjective.
Remark 1: If f : X −→ Y is bijective, there is a well-defined map

f−1 = g : Y −→ X

y 7→ x such that there is a unique x ∈ X such that f(x) = y

The rule applies to all y ∈ Y because f is surjective and the rule is unambiguous
because f is injective. This map is the inverse of f .
Remark 2: If f is bijective and B ⊂ Y then f−1(B) = f−1(B) where the left side is
the preimage of B under f and the left side is image of B under f−1.

7. Map Composition

Let X
f−→ Y

g−→ Z. Then we define the composition

g ◦ f X −→ Z

x 7→ g(f(x))
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In this case we say the diagram commutes.

X Y

Z

f

g
gf = g ◦ f

8. Diagram Commutation
A diagram of sets and maps is commutative if any of two sets in the diagram, all compo-
sition of maps from one to the other equal.
For example,

X Y
f

gh

A Bi

this diagram commutes if and only if gf = ih.

9. Propositions

(a) Let f : X −→ Y be a map, A,B be subsets, then f−1(A ∩B) = f−1(A) ∩ f−1(B).

(b) f : X −→ Y be a map, A,B be subsets, then f(A ∪B) ⊂ f(A) ∪ f(B).

(c) Let f : X → Y be a map, A,A′ ⊂ X subsets of X, and B,B′ ⊂ Y subsets of Y . then
f(A ∪ A′) = f(A) ∪ f(A′), and f−1(B ∪B′) = f−1(B) ∪ f−1(B′).
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Vector Space

A. Field

1. Definition
A field is a triple (F,+, ·) where

+ : F× F −→ F addition

· : F× F −→ F multiplication

if the following axioms are satisfied:

• ∀α, β, γ ∈ F, (α + β) + γ = α + (β + γ)

• ∀α, β ∈ F, α + β = β + α

• ∃0 ∈ F,∀α ∈ F, α + 0 = α

• ∀α ∈ F,∃ − α ∈ F, α + (−α) = 0

• ∀α, β, γ, (αβ)γ = α(βγ)

• ∀α, β ∈ F, αβ = βα

• ∃1 ∈ F,∀α ∈ F, α · 1 = α

• ∀α ∈ F,∃ − α ∈ F, α · α−1 = 1

• ∀α, β, γ ∈ F, (α + β)γ = αγ + βγ

Note: The property can be explained by an abelian addition group (closure, associativity,
identity elementary, inverse elementary, commutativity) and an abelian multiplication
group and a distributive law.
e.g.

− (R,+, ·)
− (Q,+, ·)
− (C,+, ·)
− (Z,+, ·) is not a field, lack of multiplication inverses

2. Facts:

(a) 0 is unique.
Proof: Assume 0, 0′ ∈ F satisfy the axiom 3, then 0 = 0 + 0′ = 0′ + 0 = 0′.

(b) −α is unique.
Proof: Assume γ, δ ∈ F satisfy α+γ = 0 and α+δ = 0, then γ = γ+0 = γ+(α+δ) =
(γ + α) + δ = (α + γ) + δ = 0 + δ = δ + 0 = δ.

(c) 1 is unique.
Proof: Assume 1, 1′ ∈ F satisfy the axiom 7, then 1 = 1 · 1′ = 1′ · 1 = 1′.

(d) α−1 is unique.
Proof: Assume γ, δ ∈ F satisfy α · γ = 1 and α · δ = 1, then γ = γ · 1 = γ · (α · δ) =
(γ · α) · δ = (α · γ) · δ = 1 · δ = δ · 1 = δ.

(e) ∀λ ∈ F, 0λ = 0.
Proof: Let λ ∈ F, we have 0 ·λ = (0 + 0) ·λ = 0 ·λ+ 0 ·λ, then 0 = 0 ·λ+ (−(0 ·λ)) =
0 · λ+ 0 · λ+ (−(0 · λ)) = 0 · λ+ (0 · λ+ (−(0 · λ))) = 0 · λ+ 0 = 0 · λ
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(f) ∀λ ∈ F, (−1)λ = −λ.

(g) (−1)(−1) = 1.

(h) ∀λ, µ ∈ F, (λµ)−1 = λ−1µ−1.

(i) ∀λ, µ ∈ F, λµ = 0⇐⇒ λ = 0 or µ = 0.

3. Important case: complex number

(a) Definition: the field (C,+, ·) is defined as:

• a set of C = R2

• addition(addition in R2)

+ : C× C→ C
(a, b) + (c, d) 7→ (a+ c, b+ d)

• multiplication

· : C× C→ C
(a, b) · (c, d) 7→ (ac− bd, ad+ bc)

[rationale: (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i]

(b) Axioms checking:
(1) - (4) sames as (R2,+)
(5) - (9) checked

(c) Abbreviation (1, 0) = 1, (0, 1) = i

4. Characteristic

(a) Definition: F is a field. ∀n ∈ N, if n · 1 = 1 + · · ·+ 1︸ ︷︷ ︸
n

6= 0, then F has characteristic 0;

else the smallest prime number p ∈ N such that p ·1 = 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0 is characteristic

of F.
Notes:

• 1 can be an element in F or N. 1N · 1F = 1F
• −nλ = −(nλ) = −(λ+ · · ·+ λ︸ ︷︷ ︸

n

)

nλ = λ+ · · ·+ λ︸ ︷︷ ︸
n

(b) Remark: if p = CharF > 0, then p is prime.
Proof: Assume p is not prime. (1) p = 1 is not possible because p·1 = 1 6= 0. (2) Then
let p = p1p2 where p1, p2 > 1, then p ·1 = 0 which is p ·1 = (p1p2 ·1) = (p1 ·1)(p2 ·1) = 0
implies p1 · 1 = 0 or p2 · 1 = 0. Then p is not minimal with property p · 1 = 0 which
gives a contradiction. So p is prime.

(c) Example:
- CharQ = 0
- CharR = 0
- CharC = 0
- CharFp = p
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B. Vector Space

1. Definition A triple (V,+, )̇ where V is a set and + : V × V −→ V and · : F× V −→ V
which is (λ, x) 7→ λx are maps is called vector space if

• ∀x, y, z ∈ V, (x+ y) + z = x+ (y + z)

• ∀x, y ∈ V, x+ y = y + x.

• ∃0 ∈ V such that x+ 0 = x for ∀x.

• ∀x ∈ V, ∃x̃ such that x+ = 0. (Notation: x̃ = −x and x+ (−y) = x− y)

• ∀λ, µ ∈ F, x ∈ V, λ(µx) = (λµ)x.

• ∀x ∈ V, 1x = x.

• ∀λ ∈ F, x, y ∈ V, λ(x+ y) = λx+ λy.

• ∀λ, µ ∈ F, x ∈ V, (λ+ µ)x = λx+ µx

Note: (1) If F = R, we call it real vector space or vector space over R. (2) If F = C, we
call it complex vector space or vector space over C.

2. Remarks

(a) 0 is unique.

(b) ∀x ∈ V , the x̃ is unique.

(c) ∀x ∈ V, 0x = 0.

(d) ∀x ∈ V, (−1)x = −x.

(e) −0 = 0

(f) λ0 = 0

(g) λx = 0⇐⇒ λ = 0 or x = 0

3. Examples

(a) Rn

(b) M = {f |f : [0, 1] −→ R}

C. Subspace

1. Definition
Let V be a vector space over F, U ⊂ V . Then U is called a (vector) subspace of V, if:

• U 6= ∅.
• ∀x, y ∈ U, x+ y ∈ U .

• λ ∈ F, x ∈ U, λx ∈ U
2. Remarks

Assume U ⊂ V is a subspace, then:

• 0 ∈ V is contained in U .

• ∀x ∈ U , −x ∈ U .

Proof: ∀x ∈ U , 0 = 0 · x ∈ U and −x = (−1)x ∈ U .
Corollary If U is a subspace of V , then U together with the addition and scalar multi-
plication inherited from (V,+, ·) is itself a vector over F.
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3. Facts

(a) If U1, U2 are vector subspaces of V , then U1

⋂
U2 is also a vector subspace of V .

(b) Let V be vector space over F and U1, U2 be subspace of V . Then that if U1

⋂
U2 = V ,

then U1 = V or U2 = V or both.
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Dimensions

A. Linear Combination

1. Definition
Let v1, . . . , vr ∈ V . The set

L(v1, . . . , vr) := {λ1v1 + · · ·+ λrvr|vi ∈ F} ⊂ V

of all linear combinations of v1, . . . , vr is called the linear null of the r-tuple (v1, . . . , vr) of
vectors. For the ”0-tuple” consisting of no vectors and denoted by ∅, we write L(∅) = {0}.
(
∑
r=1

λrvr = 0)

2. Remarks

(a) L(v1, . . . vr) ⊂ V is a subspace.

(b) Let V be an F-vector space.Let v1, . . . , vn ∈ V . Then L(v1, . . . , vn) is the small-
est subspace of V containing v1, . . . , vn. More precisely, U ⊂ V is a subspace and
v1, . . . , vn ∈ U , then L(v1, · · · , vn) ⊂ U .

B. Linear independence and dependence

1. Definition
Let V be an F-vector space, v1, . . . , vr ∈ V is linear independent if and only if α1v1 + · · ·+
αrvr = 0 implies (α1, . . . , αr) = (0, . . . , 0); otherwise (v1, . . . , vr) is dependent.

2. Remarks

(a) (v1, . . . , vr) is linearly independent if and only if none of the vector vi is a linear
combination of the others. Alternatively, (v1, . . . , vr) is linearly dependent if and only
if ∃i ∈ {1, . . . , r} such that vi ∈ L(v1, . . . , v̂i, . . . , vr)

(b) If 0 is among the vi or if there is a repeated vector among the vi then (v1, . . . , vr) is
linearly dependent.

C. Basis

1. Definition
(v1, · · · , vr) is a basis of V if:

• (v1, . . . , vr) is linear dependent

• V = L(v1, . . . , vr)

Note: Canonical basis (e1, . . . , en) of Fn where e1 = (1, 0, . . . , 0), e1 = (0, 1, . . . , 0),...,
e1 = (0, 0, . . . , 1).
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2. Remark
If (v1, . . . , vn) is a basis of V , then ∀v ∈ V , there exists exactly one (α1, . . . , αn) ∈ Fn with
v = α1v1 + · · ·+ αnvn.

Corollary Hence
Fr → V

(α1, . . . , αn) 7→
r∑
i=1

αivi

is bijective. In another view, (v1, . . . , vr) as basis determines V .

3. Basis Extension Theorem
Suppose V is a vector space over F. Assume (v1, . . . , vr) is a linearly independent fam-
ily of vectors. And that (v1, . . . , vr, w1, . . . , ws). Then by suitably choosing vectors from
(w1, . . . , ws), one can extend (v1, · · · , vr) to a basis of V .

Corollary

• (r = 0) Given V = L(w1, . . . , ws) then suitably choosing elements from w1, · · · , ws to
form a basis of V since L(∅) = {0} counts as linearly independent.

• Every finite dimensional vector space has a basis.

4. Exchange Lemma
V is a vector space over F. If (v1, . . . , vr) is linear independent and (w1, . . . , ws) spans V .
Then ∀k ∈ {1, . . . , r}, ∃l ∈ {1, . . . , s} such that (v1, . . . , v̂k, . . . , vk, wl) is independent.
Alternative Version: If (v1, . . . , vn) and (w1, . . . , wm) are basis of V , then for each vi there
exists some wj so that on replacing vi by wj in (v1, . . . , vn) we can still have a basis.

Corollary

• If (v1, . . . , vr) is linear independent and (w1, . . . , ws) spans V , then r ≤ s

• If (v1, . . . , vr) and (w1, . . . , ws) are basis of V , then r = s.

D. Dimension

1. Definition
If the the vector space V over F has a basis (v1, . . . , vn), then n is called the dimension of
V , which is dimV := Length(v1, . . . , vn).
Note: dimV is the maximum number of linearly independent vectors in V and the mini-
mum number of spanning vectors for V .
Note: dimFn = n

2. Finite Dimension And Infinite Dimension

(a) The F vector space is called finite-dimensional if there exists a family v1, . . . , vn ∈ V ,
n ∈ N0 such that V = L(v1, . . . , vn).
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(b) If V possesses no basis (v1, . . . , vn) for 0 ≤ n < ∞, then V is called an finite-
dimensional vector space and we write dimV =∞

3. Remarks

(a) Let v1, . . . , vr be vectors in V and r > dimV . Then (v1, . . . , vr) is linear dependent.

(b) If V is finite-dimensional and U ⊂ V is a subspace, then U is also finite-dimensional.

(c) If U is a subspace of finite-dimensional vector space V , then dimU < dimV is equiv-
alent to U 6= V .

Note: By remark (b) and (c), if U ⊂ V , then a basis (v1, . . . , vr) of U can always be ex-
tended to a basis of V : just applying the basis extension theorem to (v1, . . . , vr, w1, . . . , wn)
where (w1, . . . , wn) is a basis of V . Here if U ( V , the basis (v1, . . . , vr) is genuinely
lengthened.

4. Dimensional formula of subspaces
Let U1 and U2 be finite-dimensional subspaces of V , then dim(U1

⋂
U2) + dim(U1 +U2) =

dimU1 + dimU2.

E. Vector Space operations

1. U1

⋂
U2 := {u|u ∈ U1 and u ∈ U2}.

2. U1

⋃
U2 := {u|u ∈ U1 or u ∈ U2}.

3. U1 + U2 := {x+ y|x ∈ U1, y ∈ U2} ∈ V .

4. U1 ⊕ U2 = V
⇐⇒ U1 + U2 = V and U1

⋂
U2 = {0} - complementary subspaces

⇐⇒ dim(U1 + U2) = dimU1 + dimU2

⇐⇒ ∀v ∈ V can be written uniquely as v = u1 + u2 where u1 ∈ U1, u2 ∈ U2
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Linear Maps

A. Definitions

1. Linear Map
Let V and W be vector spaces over F. A map f : V −→ W is called linear or homomor-
phism if for all x, y ∈ V , λ ∈ F, we have:

• f(x+ y) = f(x) + f(y)

• f(λx) = λf(x)

2. Kernel f : V −→ W
Kerf := {v ∈ V |f(v) = 0}

3. Image f : V −→ W
Imf := f(V )

4. morphisms f : V −→ W

(a) monomorphism: injective.

(b) epimorphism: surjective.

(c) isomorphism: bijective.

(d) endomorphism: V = W .

(e) automorphism: bijective and V = W .

B. Facts And Remarks

1. Linear Map

(a) IdV is a linear map.

(b) If V
f−→ W

g−→ Y are linear maps, then gf : V −→ Y is also a linear map.

(c) If f : V −→ W and g : V −→ W are linear map and λ ∈ F, then λf and f + g are
linear maps.
Corollary Hom(V,W ) is vector space over F.

(d) If f is a linear map, then f(0) = 0.

2. Linear Map Related to Kernel
f : V −→ W is linear then f is injective if and only if Ker(f) := {0}.

3. Linear Map Related to Isomorphism
If f : V −→ W is an isomorphism, then f−1 : W −→ V is also an isomorphism.
Corollary The importance of isomorphism: ϕ : V −→ W
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• Isomorphism ϕ applies some structure (i.e. linear properties) of V to W . Here linear
property means the formulated interns of vector space’s set, addition and scalar mul-
tiplication. For example, dim(U1

⋂
U2) = dim(ϕ(U1)

⋂
ϕ(U2)). However, non-linear

property means the property is not linear. For example, x ∈ V = R2 which is a pair,
but ϕ(U) need not to be a circle if U ⊂ R2 is a circle.

• Isomorphism can relate linear map with one another. In the diagram below,

V W

V ′ W ′

f

ϕ1 ϕ2

f ′

ϕ1 and ϕ2 are isomorphism, then a complicated f and be simplified to f ′ = ϕ−1
2 fϕ1.

4. Linear Map Related to Basis and Dimension

(a) (Universal Mapping Properties) V,W are vector spaces over F and (v1, . . . , vn) be a
basis of V . ∀(w1, . . . , wn) ∈ W , there exists a unique linear map f : V −→ W such
that f(vi) = wi where i = 1, . . . , n.

(b) Let V and W be vector spaces over F and let (v1, . . . , vn) be a basis of V . A linear
map f : V −→ W is an isomorphism if and only if (f(v1), . . . , f(vn)) is a basis of W .

(c) Any two n-dimensional vector spaces over F are isomorphic (There exists a linear map
f such that f : V ∼= W ).

(d) (Dimension Formula for Linear Maps) V is a finite-dimensional vector space and f :
V −→ W is a linear map. Then

dim Kerf + dim Imf = dimV

(e) A linear map between two spaces of the same dimension is surjective if and only if it
is injective.

(f) Sylvester Inequality: rkA+ rkB − n ≤ rkAB ≤ min{rkA, rkB}.
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Matrix

A. Definitions

1. Matrix
An m× n matrix (m,n ∈ N) with m× n entries in the field F is a map

A : {1,m} × {1, n} −→ F

(i, j) 7−→ aij

where aij is the (i, j) entry of A where i is the row index and j is the column index. We
think A as an array 

a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 · · · · · · amn



We always think of elements of Fm as columns

a1
...

am

 ∈ Fm.

Then we can write A = (A1, . . . , An) where Aj ∈ Fm is the jth column. Here (Aj)i = aij -
the ith entry of the jth column. And also we can write A = (aij).
Note: M(m × n,F), the set of all m × n matrices with entries in F, is an F-vector space
where + and · are entry wise. And dimM(m× n,F) = mn.

2. Matrix-Vector Product

(a) Special case
Let f : Fn −→ Fm be a linear. f is completely determined by f(e1), . . . , f(en) ∈ Fn.
[f ] = (f(e1), . . . , f(en)) ∈ M(m× n,F) is a matrix of f . Let A = [f ] and Aj = f(ej),
then we would have an isomorphism by universal mapping properties.

Hom(Fn,Fm) −→M(m× n,F)

f 7→ [f ]

LA ← A

Then LA is the unique linear map such that LA(ej) = Aj.
We can rewrite this into a theorem: Let A ∈M(m× n,F). Then the map

Fn −→ Fm

x 7−→ Ax

is linear. And conversely, if Fn −→ Fm is a linear map, there exists a unique matrix
A ∈M(m× n,F) with f(x) = Ax for ∀x ∈ Fn.

Matrix 17



Then we can give the definition of the matrix-vector product. LetA ∈M(m×n,F), x ∈
Fn, we define the matrix-vector product by Ax := LA(x) ∈ Fm.

M(m× n,F)× Fn −→ Fm

(A, x) 7−→ Ax

Let A = (A1, . . . , An). In terms of column view, it is the linear combination of the
columns of A with coefficient given by x:

Ax = LA(x) = LA(
n∑
j=1

xjej) =
n∑
j=1

xjLA(ej) =
n∑
j=1

xjAj

In terms of entry view, it would be

(Ax)i = (
n∑
j=1

xjAj)i =
n∑
j=1

xj(Aj)i =
n∑
j=1

xjaij =
n∑
j=1

aijxj

(b) General Case
Consider the following diagram:

V W

Fn Fm

f

ΦB

[f ]BC

ΦC

where f : V −→ W is a linear map, B = (v1, . . . , vn) is the basis of V , C = (w1, . . . , wm)
is the basis of W and Φ is the canonical basis isomorphism:

Kn ∼=−→ V

(λ1, . . . , λn) 7→ λ1v1 + · · ·+ λnvn

respect to the the basis (v1, . . . , vn). Then we have a unique m × n-matrix making
diagram commute

[f ]BC = ΦCfΦ−1
B

And in column view, the jth column of [f ]BC is the coordinate vector of f(vj) with
respect to basis C.

[f ]BC (ej) = [f(vj)]C

(c) Change of basis
Consider a endomorphism f : V → V with dimension, with canonical basis, then we
want to transform it into a basis B. Consider the diagram

Fn Fn

Fn Fn

A

ΦB

[A]BB

ΦB

then we have
[A]BB = ΦBAΦ−1

B
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B. Matrix Multiplication

1. Definition
Let A ∈ M(m × n,F) and B ∈ M(n × p,F), then AB ∈ M(m × p,F) is defined to the
unique matrix such that

Fp Fn

Fm

B

AB
A

commutes. This also means LAB = LA ◦ LB and (AB)x = A(Bx). (Also it is [fg]AC =
[f ]BC [g]AB .) Therefore AB is only defined if the number of rows of B equal to the number
of the columns of A. Then we can find the kth column of AB is

(AB)k = AB(ek) = A(Bk) =
n∑
j=1

(Bk)jAj =
n∑
j=1

bjkAj

and the lth entry of the jth column is

(AB)lk = (
n∑
j=1

bjkAj)l =
n∑
j=1

bjk(Aj)l =
n∑
j=1

bjkalj

Note: Another way to find basis transformation, [A]SS = [id]BS [A]BB [id]SB

2. Properties

(a) (Non-commutative) AB 6= BA.

(b) (Associative) A(BC) = (AB)C.

(c) (Distributive) A(B + C) = AB + AC, (A+B)C = AC +BC.

C. Rank

1. Definition

V W

Fn Fm

f

ΦB

A=[f ]BC

ΦC

(a) For linear map f , the rank of f is rkf = dim Imf .

(b) For the corresponding matrix A, the rank of A is rkA = dim ImA.
The column rank of A, col rkA, is the maximum number of linearly independent columns of A and
the row rank of A, row rkA, is the maximum number of linearly independent rows of A.

Note: By using the dimension formula of linear map, we can get dim Kerf +rkf = n or dim KerA+rkA =
n.

2. Proposition
row rkA = col rkA = rkA
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D. Row Echelon Form

1. Definition
A matrix A ∈M(m× n,F) is row echelon form (REF) if:

• Every zero row is below every non-zero row.

• The first non-zero entry of every non-zero row is to the right of the first non-zero entry
of every row above.

Note: The leading entry of the non-zero row is called pivot. The column with a pivot is
called pivot column and the row with a pivot is called pivot row.

2. Proposition
Let A be in REF then:

• the rows of A are linearly independent,

• the pivot columns of A are linearly independent.

Corollary If A is in REF, then:

• The pivot rows of A form a basis of row space of A.

• The pivot columns of A are a basis of column space of A.

E. Elementary Row Operation

1. Definition And the Corresponding Matrices

(a) R1 Swap row i and row j of the matrix A ∈ M(m × n,F). And the corresponding
matrix Tij ∈M(m×m,F) where TijA is the required matrix would be

Tij =



1
. . .

0 1
. . .

1 0
. . .

1


(b) R2 Multiply row i of the matrix A ∈ M(m × n,F) by a non zero scalar λ. And

the corresponding matrix Di(λ) ∈M(m×m,F) where Di(λ)A is the required matrix
would be

Di(λ) =



1
. . .

1

λ

1
. . .

1
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(c) R3 Replace row Ai f the matrix A ∈ M(m × n,F) by Ai + λAj for some i 6= j and
λ ∈ F. And the corresponding matrix Lij(λ) ∈ M(m × m,F) where Lij(λ)A is the
required matrix would be

Lij(λ) =



1
. . .

1 λ
. . .

1
. . .

1


Note: Tij, Di(λ), Lij(λ) are all invertible.

2. Proposition
Every matrix can be converted to a matrix in REF by applying a sequence of elementary
row operations.

3. Row equivalent

(a) Definition
A,A′ are row equivalent if they can be obtained from each other by a sequences of
elementary row operations.

(b) Remarks
If A,A′ are row equivalent:

• Row space of A and row space of A′ are the same.

• rkA = rkA′.

• Null space of A and null space of A′ are the same.

• If A′ is in REF, then the columns of A corresponding to the pivot column of A′

forms a basis of column space of A. (Since the pivot columns of A′ form a max
independent subfamily of columns of A′.)

Corollary (Algorithm) Put matrix A into REF, we can:

• find a basis of row space of A by taking the pivot rows,

• find rkA,

• find a basis for the column space of A.

F. Inverse Matrix

1. Definition
The inverse matrix A−1 of A is the matrix of inverse map associated to A.
Note: Obviously the map associated to A should be isomorphism.

2. Remarks
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(a) A matrix is invertible only if it is a square matrix.

(b) A matrix A is invertible if and only if the REF of A has a pivot in every row and every
column.

(c) If A is invertible, (A−1)−1 = A.

(d) (AB)−1 = B−1A−1.

(e) AB = In ⇐⇒ BA = In ⇐⇒ B = A−1

3. Algorithm
If A is invertible, by applying row elementary operations, we have Ek · · ·E1A = In. Then
we have A−1 = Ek · · ·E1In since Ek · · ·E1AA

−1 = InA
−1.
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Determinant

A. Definition

1. Theorem
There exits a unique map

det : M(n× n,F) −→ F
with the following properties:

• det is linear in each row,

• If the (row) rank is smaller than n, then detA = 0.

• det In = 1, where In is an n× n identity matrix.

Note:

• For the first property, it means, for example, in the row k with the following fix rows
A1, . . . , Ak−1, Ak+1, . . . , An, the function Fn −→ F, given by

x = (x1, . . . , xn) 7→ det



A1

...

Ak−1

x

Ak+1

...

An


is linear.

• For the second property, rkA < n⇐⇒ detA = 0

2. Proof of the Theorem
Lemma:

• Exchange Two rows: detA′ = − detA

• Scale one row by λ: detA′ = λ detA

• Add one row by another times λ: detA′ = detA

3. Definition
The map det : M(m× n,F) −→ F is called the determinant and the number detA ∈ F is
called the determinant of A.

B. Determinantal Formula for the Inverse Matrix

1. Theorem
If A ∈M(n× n,F) is invertible, then

A−1 =
1

detA
Ã

where Ã ∈M(n× n,F) is the adjugate matrix of A defined by ãij := (−1)i+j detAji.
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2. Application on 2× 2 Matrix(
a b

c d

)−1

=
1

ad− bc

(
d −c
−b a

)
C. Determinant of the Transposed Matrix

1. Definition
Let A = (aij) ∈M(n× n,F), then the transpose matrix of A is

At = (atji) ∈M(n× n,F)

2. Remark
Let A ∈M(m× n,F) and B ∈M(n× p,F),

(AB)t = BtAt

3. Theorem
For any square matrix A, detA = detAt.

Corollary Row (Laplace) Expansion

D. Determinant of the Matrix Product

1. Theorem Let A,B ∈M(n× n,F), we have

detAB = detA · detB

2. Corollary

(a) If A is invertible, then detA−1 =
1

detA
.

(b) We can define detF for any endomorphism

F : V −→ V

where V is a finite dimensional vector space over F, with the following properties:

• detF 6= 0⇐⇒ f is an isomorphism.

• det gf = det f det g.

• det IdV = 1.
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System of Linear Equations

A. Basic Definitions

1. Systems of Linear Equations
We write the system of linear equations with all coefficients aij, bk ∈ F,

a11x1 + · · ·+ a1nxn = b1
...

...

am1x1 + · · ·+ amnxn = bm

as Ax = b, where A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

, x =

x1
...

xn

 as unknowns and b =

 b1
...

bm

.

2. Homogeneous and Inhomogeneous
If b = 0, then this linear equation system is homogeneous.
If b 6= 0, then this linear equation system is inhomogeneous. (Ax = 0 is the associated
equation system.)

3. Solution set
The solution set of the system of equations associated to (A, b) is defined to be Sol(A, b) :=
{x ∈ Fn|Ax = b} = A−1{b}.
Note: If Sol(A, b) 6= ∅, the system of equations is solvable.

B. Algorithm

1. Reduced Row Echelon Form (RREF)
A reduced row echelon form is a row echelon form such that:

• Every pivot is 1.

• Every pivot is the only non-zero entry in its column.

2. Theorem
Every matrix is row equivalent to a unique matrix in RREF.

3. Algorithm

(a) Transform augmented matrix (A|b) into RREF (Ã|b̃).
(b) We pick non-pivot column in the RREF (Ã|b̃) as free variables.

(c) Write out the vector form of the solution:x1
...

xn

 =

c1
...

cn

+ xj1

d11
...

d1n

+ · · ·+ xjk

dk1
...

dkn
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C. The Criterion for Solvablity and The Structure of the Solution Set

1. Homogeneous System
We have Ax = 0, then Sol(A, 0) = A−1{0} = KerA. To find KerA, is to find the basis
of KerA. We can first consider the dimension of KerA. dim KerA = dim KerÃRREF =
n − rkÃ = n −# of pivots = # of free variables. We can see that the ith basis vector of
KerA is obtained by setting the ith free variable to 1 and others to 0.

In other word, the general solution is the sum of the free variables multiplying the param-
eter vector:

~x = xj1 ~v1 + · · ·+ xjk ~vk

where j1, . . . , jk are the non-pivot column and ~v1, . . . , ~vk are the basis vectors of KerA.

2. Inhomogeneous System
We have Ax = b where b 6= 0. Then we transform augmented matrix (A|b) into RREF

(Ã|b̃). Since Ax = b is equivalent to EAx = Eb which is Ãx = b̃, where E is elementary

row operation, Sol(A, b) = Sol(Ã, b̃).

If the system Ax = b is consistent, which means there is no pivot in augmented column
of (Ã|b̃), then Sol(A, b) 6= ∅. If the system Ax = b is inconsistent, which means there is

pivot in augmented column of (Ã|b̃), then rk(A|b) > rkA and Sol(A, b) = ∅.

3. Criterion

(a) Ax = b is solvable if and only if rkA = rk(A|b).
(b) Ax = b is uniquely solvable if and only if KerA = 0, which is rkA = n.

(c) If A is a square matrix, Ax = b is uniquely solvable if and only if detA 6= 0.

4. Structure of the Solution
If x0 is a solution of Ax = b, that is Ax0 = b, then Sol(A, b) = x0 + KerA := {x+ x0|x ∈
KerA}.
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Euclidean Vector Space

A. Definition

1. Inner Product
Let V be a real vector space. An inner product on V is

〈, 〉 : V × V → R
(x, y) 7→ 〈x, y〉

with the following properties:

• bilinear, i.e. if x ∈ V then

〈x, ·〉 : V → R
v 7→ 〈x, v〉

and
〈·, y〉 : V → R

v 7→ 〈v, y〉
are linear.

• symmetric, i.e. ∀x, y ∈ V, 〈x, y〉 = 〈y, x〉.
• positive definite, i.e. ∀x 6= 0, 〈x, x〉 > 0.

2. Examples

(a) Let A ∈M(n× n,R) and V = Rn, 〈x, y〉A = xtAy where A is symmetric and positive
definite.

(b) (Standard Inner Product) Let V = Rn, 〈x, y〉 = xty (= 〈x, y〉In).

(c) Let V = cont Map([0, 1],R) which a real vector space, 〈f, g〉 =

∫ 1

0

f(t)g(t) dt.

3. Euclidean Vector Space
A euclidean vector space is a pair (V, 〈, 〉), where V is a real vector space and 〈, 〉 is an
inner product on V .

B. Norm And Angle

1. Norm
Let (V, 〈, 〉) be a Euclidean vector space and x ∈ V , then ||x|| =

√
〈x, x〉 is the norm

(length) of x.

2. Theorem
(Cauchy-Schwartz Inequality) Let (V, 〈, 〉) be a Euclidean vector space, then ∀x, y ∈ V ,
|〈x, y〉| ≤ ||x|| · ||y||.

3. Remarks
Let (V, 〈, 〉) be a Euclidean vector space, then:
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(a) ∀x ∈ V, ||x|| ≥ 0.

(b) ∀x ∈ V, ||x|| = 0⇐⇒ x = 0.

(c) ∀x ∈ V, λ ∈ R, ||λx|| = |λ| · ||x||.
(d) ∀x, y ∈ V , ||x+ y|| ≤ ||x||+ ||y||.
(e) ||a + b||2 − ||a − b||2 = 4〈a, b〉. Then we have 〈a, b〉 = 0 ⇐⇒ ||a + b|| = ||a − b|| ⇐⇒
−→
Oa ⊥

−→
Ob⇐⇒ The parallelogram is a rectangle.

4. Angle
Let (V, 〈, 〉) be a Euclidean vector space, x, y ∈ V , x, y 6= 0, then there exits a unique
α ∈ [0, π] such that

cosα =
〈x, y〉
||x|| ||y||

because by Cauchy-Schwartz inequality −1 ≤ 〈x, y〉
||x|| ||y||

≤ 1 and cos : [0, π] → [−1, 1] is

bijective. The the α is called the angle between x and y.

Note: With the definition of length and angle, we can study Euclidean geometry on
vector space.

C. Orthogonal Vector

1. Orthogonality
Two elements v, w of a Euclidean vector space are said to be orthogonal or perpendicular
to each other (written v ⊥ w), if 〈v, w〉 = 0.

2. Orthogonal Complement
Let (V, 〈, 〉) be a Euclidean vector space, M ⊂ V , then the orthogonal complement of M

is M⊥ := {v ∈ V |∀x ∈M, 〈x, v〉} =
⋂
x∈M

Ker〈x, ·〉.

3. Remarks

(a) M⊥ is a subspace of V .

(b) If M = L(v1, . . . , vn), then M⊥ = {v1, . . . , vr}⊥

4. orthonormal System
(v1, . . . , vn) is an orthonormal system (family) if:

• ∀i = 1, . . . , r, ||vi|| = 1.

• ∀1 ≤ i < j ≤ r, vi ⊥ vj. (Alternatively, ∀i, j ∈ {1, . . . , r}, 〈vi, vj〉 = δij =

{
0 if i 6= j

1 if i = j
.)

5. Lemmas

(a) Every orthonormal system is linear independent.
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(b) Let (v1, . . . , vn) be an orthonormal basis for V . Then ∀x ∈ V ,

x =
n∑
i=1

〈x, vi〉vi

D. Orthonormalization

1. Lemma
(QR-Factorization) If v1, . . . , vr ∈ V is an orthonormal basis and U = L(v1, . . . , vr). Then
V = U⊕U⊥, i.e. ∀v ∈ V , ∃!u ∈ U,w ∈ U⊥ such that v = u+w. We denote w = ProjU(v),

the projection of v onto u. Moreover u =
r∑
i=1

〈v, vi〉vi.

2. Gram-Schmidt Orthonormalization Process
If (v1, . . . , vn) is linearly independent, Uk = L(v1, . . . , vk) where dimUk = k ∈ {1, . . . , n}
and {0} = U0 ⊂ U1 ⊂ · · · ⊂ Un ⊂ V . Then there exits a unique an orthonormal system
(ṽ1, . . . , ṽn) such that:

• L(ṽ1, . . . , ṽk) = Uk
• 〈ṽk, vk〉 > 0

3. Formula of Gram-Schmidt Orthonormalization
If (v1, . . . , vn) is the basis of V , we have

ṽ1 =
v1

||v1||
and by the recursion formula

ṽk+1 =
vk+1 −

∑k
i=1〈vk+1, ṽi〉ṽi∣∣∣∣∣∣vk+1 −

∑k
i=1〈vk+1, ṽi〉ṽi

∣∣∣∣∣∣
we can find the orthonormal basis (ṽ1, . . . , ṽn) of V .

4. Corollary

(a) Let (V, 〈, 〉) be a Euclidean vector space and U is a finite dimensional subspace of
V . There exists a unique linear map ProjU : V → U with ProjU |U = IdU and
Ker(ProjU) = U⊥. This map is called the orthogonal projection onto U .

(b) If U is a subspace of a finite-dimensional Euclidean vector space and U⊥ = 0, then
U = V .

E. Orthogonal Maps

1. Definition
Let V, V ′ be Euclidean vector spaces. A linear map ϕ : V → V ′ is orthogonal or isometric
if ∀x, y ∈ V, 〈x, y〉 = 〈ϕ(x), ϕ(y)〉.
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2. Remarks

(a) Every orthogonal linear maps is injective.

(b) If ϕ : V → V is an orthogonal endomorphism and dimV < ∞, then ϕ is an isomor-
phism and ϕ−1 is also orthogonal.

(c) Let V, V ′ to be Euclidean vector spaces and (v1, . . . , vn) be an orthonormal basis of
V . Then a linear map: V → V ′ is orthogonal if and only if (f(v1), . . . , f(vn)) is an
orthonormal system in V ′.

3. Orthogonal Matrix
Let O(V ) be the set of orthogonal isomorphisms on Euclidean vector space V . If V = Rn

with the standard inner product, we use O(n) to represent O(V ). Usually we consider
them to be matrices, O(n) ⊂M(n× n,R), called orthogonal matrices.

4. Remarks
A ∈ O(n)
⇐⇒ Ae1, . . . , Aen is an orthonormal basis of Rn

⇐⇒ the columns of Aform and orthonormal basis ofRn

⇐⇒ AtA = In
⇐⇒ A is invertible and A−1 = At

⇐⇒ AAt = In
⇐⇒ the rows of A form an orthonormal basis of Rn

Note: If A ∈ O(n), by detA detAt = det In, we have detA = ±1. If detA = 1, A is called
special orthogonal matrix. We denote the set of them as SO(n).

F. Group

1. Group
A group is a pair (G, ·) where G is a set and · is an operation

· : G×G→ G

(g, h) 7→ g · h = gh

subject to:

• (Associativity) ∀g, h, k ∈ G, (gh)k = g(hk).

• (Neutral Element) ∀e ∈ G such that ∀g ∈ G, ge = eg = g.

• (Inverse Element) ∀g ∈ G, ∃h ∈ G such that gh = hg = e. (We denote h as g−1).

2. Remarks

(a) The neutral/identity element e is unique.

(b) The inverse element g−1 of g is unique.

3. Abelian Group
If a group (G, ·) has the additional property of being ”commutative,” i.e. ∀g, h ∈ G, gh =
hg, then (G, ·) is called an abelian group.
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4. Subgroup
Let (G, ·) be a group and H ⊂ G. H is a subgroup if:

• ∀g, h ∈ H, gh ∈ H. (H is closed under the group operation in G).

• e ∈ H.

• ∀g ∈ H, g−1 ∈ H. (H is closed under inverse.)
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Eigenvalues and Dynamic Systems

A. Basic Definitions

1. Eigenvalues and Eigenvectors
Let V be a vector space over F and f : V → V be an endomorphism. If there exits a
λ ∈ F and a vector v ∈ V and v 6= 0 such that f(v) = λv, then we call the coefficient λ
eigenvalues and the vector v eigenvector.

2. Eigenspaces and Geometric Multiplicity
Assume λ ∈ F and v ∈ V, v 6= 0 such that f(v) = λv. This is equivalent to (f −λId)v = 0,
which means v ∈ Ker(f−λId). By definition, it is easy to prove Ker(f−λId) is a subspace
of V . Therefore, if λ is an eigenvalue of f , the subspace

Eλ := Ker(f − λId)

is called the eigenspace of f for the eigenvalue λ, and its dimension dim Ker(f − λId) is
called geometric multiplicity of the eigenvalue.

B. Characteristic Polynomial

1. Definition
By the definition of eigenvector, we hope Ker(f − λId) 6= {0}. This is equivalent to
det(f − λId) = 0. Consider the commutative diagram below,

V V

Fn Fn

f

ΦB

A=[f ]BB

ΦB

we would have det(f − λId) = det(A− λIn). And we have

det(A− λIn) = det(A1 − λI1
n, . . . , A

n − λInn )

=
n∑
k=1

ak(−1)kλk

where ak =
∑

i1<···<ik

det(A1, . . . , I i1n , . . . , I
ik
n , A

n). Then here comes the definition. If f :

V → V is an endomorphism of an n-dimensional vector space over F, then there exits
coefficients a0, . . . , an−1 ∈ F with

det(f − λId) = (−1)nλn + an−1λ
n−1 + · · ·+ a1λ+ a0 =: Pf (λ)

for all λ ∈ F. (And actually a0 = (−1)n detA.) Pf is called the characteristic polynomial
of f . Since we want Pf (λ) = det(f − λId) = 0, the eigenvalues are the zeros of the char-
acteristic polynomial.
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Note: λ being an eigenvalue of f is independent for the choice of basis, so the roots
of the characteristic polynomial are independent of the choice of basis.

2. Polynomial And Zeros

(a) Definition
Let λ be a formal symbol. An expression such that as

P (λ) = anλ
n + · · ·+ a1λ+ a0

where a0, . . . , an ∈ F is called a polynomial with coefficients in F. And if an 6= 0, the
degree of P is n.

Let’s call the set of these polynomials Pn,F. Since anλ
n + · · ·+ a1λ+ a0 = (an, . . . , a0),

we can say Pn,F = Fn+1. Therefore, Pn,F is a vector space over F with dimPn,F = n+1.

We can treat it as a map P : F→ F determined by the coefficients. Let Map(F,F) =
F#F be the vector space over F of all the maps F → F where #F is the number of
elements in F and dim Map(F,F) = #F. Then we can find a map P such that

P : Pn,F −→ Map(F,F)

n∑
i=0

ait
i 7→

{
F→ F
λ 7→

∑n
i=0 ait

i

If #F < n+ 1, P cannot be injective.
If #F ≥ n+ 1, P is injective, we can identify Pn,F with its image in Map(F,F). More-
over, if F is infinite such as Q,R,C, then P is injective for any n. From now on, we
assume F is infinite.

Corollary A polynomial of degree n can have no more than n zeros.

(b) Fundamental Theorem of Algebra Each complex polynomial of degree n ≥ 1,
that is, each map P : C→ C of the form

P (z) = cnz
n + · · ·+ c1z + c0

with n ≥ 1, c0, . . . , cn ∈ C and cn 6= 0 has least one zero.

(c) Lemma If P (λ) is a polynomial of degree n, n ≥ 1 and λ0 ∈ F is one of the zeros,
then

P (λ) = (λ− λ0)Q(λ)

for some well-determined polynomial Q of degree of n− 1.
Corollary Each complex polynomial P splits into linear factors, that is, if P (λ) =
anλ

n + · · · + a1λ + a0 with an 6= 0 and λ1, . . . , λr ∈ C are the pairwise distinct zeros
of P , we have

P (λ) = cn

r∏
i=1

(λ− λi)mi
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with well-determined exponents mi ≥ 1, called the multiplicities of the zeros. In
particular, if P is a characteristic polynomial of f : V → V , the mi is called the
algebraic multiplicities of the eigenvalues λi.

C. Diagonalization

1. Definition
Let V be a finite dimensional vector space over F and f : V → V is an endomorphism.
Suppose B = (v1, . . . , vn) is a basis of V consisting eigenvector for f , corresponding to the
eigenvalue λ1, . . . , λn such that f(vi) = λivi and vi 6= 0. Consider the diagram below,

V V

Fn Fn

f

ΦB

A=[f ]BB

ΦB

we would have A(ei) = Φ−1fΦ(ei) = λiei. The A =

λ1

. . .

λn

 is diagonal. Con-

versely, if f : V → V and there exits a basis B such that A = [f ]B is diagonal. Then

A(ei) = λiei where A =

λ1

. . .

λn

. Then Φ−1fΦ(ei) = λiei, f(Φ(ei)) = λiΦ(ei). So

B = (Φ(e1), . . . ,Φ(en)) is a basis consisting eigenvalues of f . Therefore, it is reasonable
to give the definition of diagonalizability.

Definition: f : V → V where V is a finite dimensional vector space over F is diago-
nalizable if there exists a basis of V consisting eigenvalues of f .

2. Remark
A ∈ M(n× n,F) is diagonal is equivalent to that there exists a matrix P ∈ M(n× n,F)
such that D = P−1AP is diagonal. Then A = PDP−1 where P is a change basis matrix
whose columns are eigenvectors of A.

3. Lemma
Suppose λ1, . . . , λk are distinct eigenvalues of f and E1, . . . , Ek are the corresponding
eigenspaces with bases B1, . . . ,Bk. Then (B1, . . . ,Bk) is linear independent.

Corollary The sum of the geometric multiplicities of the eigenvalues of f is at most
dimV . And the equality meets if and only if f is diagonalizable.

Corollary (Criteria 1) To determine if f is diagonalizable:

• find all basis of Eλ of eigenvalues,

• for each basis of Eλ of eigenvalues, put them together to see if there are dimV many
eigenvectors.
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4. Fact
Let λ to be an eigenvalues of f : V → V , then geometric multiplicity of λ is smaller or
equal to the algebraic multiplicity.

Corollary (Criteria 2) Diagonalization can go wrong in two ways:

• Characteristic polynomial may not have enough roots.

• Any of the eigenvalues could be deficient. (An eigenvalue is deficient if geometric mul-
tiplicity is smaller to the algebraic multiplicity.)

Note: If we consider F = C, then the two way of diagonalization will be:

• impossible,

• if the F = R and λ is deficient, it will help to pass to C because dim(f − λId) is
determined by number of pivots and if a matrix in M(n × n,R) is REF, it is still in
REF if it is considered as a matrix in M(n× n,C).

D. Discrete Dynamic System

1. General Solution
We have a dynamic system involving two variables

xn+1 = a11xn + a12yn

yn+1 = a21xn + a22yn

Let rn =

(
xn
yn

)
to be the state vector and A =

(
a11 a12

a21 a22

)
. Then the system can be

abbreviated to rn+1 = Arn. To find rn = Anr0 where r0 =

(
x0

y0

)
, we need to know An.

Assume A is diagonalizable with eigenvectors (v1, v2) corresponding to the eigenvalues

λ1, λ2. An easy way is to diagonalize A = PDP−1 where D =

(
λ1

λ2

)
is diagonal,

then An = PDnP−1 where Dn =

(
λn1

λn2

)
. Another way is to assume r0 = c1v1 + c2v2

where c1, c2 are undetermined (If r0 is known, we can solve c1, c2). Then xn = Anx0 =
c1A

nv1 + c2A
nv2 = c1λ

n
1v1 + c2λ

n
2v2 would be the general solution of the dynamic system.

2. Equilibrium State
In general, if A diagonalizable, λ1 is the eigenvalue such that λ1 > |λi| to all eigenvalues,

then the limiting growing rate lim
n→∞

yn+1

yn
= λ1 and lim

n→∞

xn+1

xn
= λ1. And λ1 determine the

largest tern behaviour of the state vector. Also lim
n→∞

xn
yn

= 1.

If 1 > λ1 > |λi|, the state would converge to origin.
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The Principle Axes Transformation

A. Self-adjoint Operator

1. Definition
Let (V, 〈, 〉) be a Euclidean vector space. An operator or endomorphism f : V → V is said
to be self-adjoint if 〈f(v), w〉 = 〈v, f(w)〉 for all v, w ∈ V .

2. Facts

(a) Any two eigenvectors v and w of a self-adjoint operator f corresponding to distinct
eigenvalues λ 6= µ are orthogonal to each other, since (f(v), w) = (v, f(w)) implies
〈λv, w〉 = 〈v, µw〉, thus (λ− µ)(v, w) = 0.

(b) If v is an eigenvector of the self-adjoint operator f : V → V , then the subspace
v⊥ := {w ∈ V |w ⊥ v} is invariant under f , that is, f(v⊥) ⊂ v⊥, since 〈f(w), v〉 =
〈w, f(v)〉 = 〈w, λv〉 = 0.

B. Symmetric Matrix

1. Definition
A matrix A is symmetric if At = A.

2. Remark
If (V, 〈, 〉) is a Euclidean vector space and (v1, . . . , vn) is an orthonormal basis of V , the
matrix A of an endomorphism is given by aij = 〈vi, f(vj)〉.

Corollary (Spectral Theorem) If (v1, . . . vn) is an orthonormal basis for the Euclidean
vector space V , an operator f : V → V is self-adjoint if and only if its matrix A with
respect to (v1, . . . , vn) is symmetric.

C. The Principle Axes Transformation for Self-adjoint Endomorphism

1. Theorem If (V, 〈, 〉) is a finite-dimensional Euclidean vector space and f : V → V is a
self-adjoint endomorphism, there exists an orthonormal basis of eigenvectors of f .

Lemma Each self-adjoint endomorphism of an n-dimensional Euclidean vector space V
with n > 0 has an eigenvector.

2. Corollary

(a) (For self-adjoint operator) Given a self-adjoint endomorphism f : V → V of an n-
dimensional Euclidean vector space, it is always possible to find an orthogonal trans-
formation

P : Rn ∼=−→ V
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(”principal axes transformation”), which reduces f to a diagonal matrix D := P−1DP
the form

D =



λ1

. . .

λ1

. . .

λr
. . .

λr


Here λ1, ..., λr are the distinct eigenvalues of f , the number of each appearing on the
diagonal being equal to the geometric multiplicity.

(b) (For Symmetric real matrices) If A is a symmetric real n x n matrix, there is an
orthogonal transformation P ∈ O(n), such that D := P−1AP is a diagonal matrix with
the eigenvalues of A as diagonal entries, each appearing with its geometric multiplicity.
The way to find P is normalize every basis of eigenspace Eλi and put all the basis
together.

(c) (Spectral Decomposition) If f : V → V is a self-adjoint endomorphism of a finite-
dimensional Euclidean vector space, λ1, ..., λr its distinct eigenvalues, and Pk : V → V
the orthogonal projection onto the eigenspace Eλk , then

f =
r∑

k=1

λkPk
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Quadratic Form

A. Definition

1. Quadratic Form
Let F be a field, char(F) 6= 2. Let V be an F-vector space. β : V × V → F is a symmetric
bilinear form. Then

q : V → C
x 7→ β(x, x)

is the associated quadratic form. We can recover β from q,

β(x, y) =
1

2
(q(x+ y)− q(x)− q(y))

Then β is also the the bilinear form associated to q.

2. Example

(a) Let Sym(n × n,F) = {A ∈ M(n × n,F)|A = At}. Then define quadratic form qA
associated to βA : Fn × Fn → F where βA(x, y) = xtAy. Since

Sym(n× n,F)→ {quadratic forms Fn → Fn}

A 7→ qA

is bijective, given the quadratic form q associated to β : Fn×Fn → F define the matrix
A such that aij = β(ei, ej).

(b) Hessian form

(
∂2f

∂xi∂xj
(P )

)
.

(c) Conic sections: if q : Rn → R is a quadratic form, then q(x) = 1 is the associated
conic section.

3. The Matrix of the Quadratic Form
Let q : V → F be a quadratic form corresponding to symmetric bilinear form β. B =
(v1, . . . , vn) is a basis of V . Then matrix of the quadratic form [q]B ∈ Sym(n × n,F) is

defined by ([q]β)ij = β(vi, vj). Then, assuming v =
n∑
i=1

xivi and w =
n∑
j=1

yjvj. Then we

have

β(v, w) = β(
n∑
i=1

xivi,
n∑
j=1

yjvj) =
∑

1≤i,j≤n

xiyjβ(vi, vj) = xt[q]By = [v]tB[q]B[w]B

Therefore, the map

{quadratic forms q : V → Fn} −→ Sym(n× n,F)
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q 7→ [q]B

is bijective. Put it into a diagram we can see

V F

Fn

q

ϕ
[q]B

4. Definition Let q : V → F to be a quadratic form, β to be the corresponding symmetric
bilinear form. The kernel of q is Ker(q) := {x ∈ V |β(·, x) : V → Fis the zero map}. The
rank of q is dimV − dim Kerq. We call q is non-degenerate if Kerq = {0}.

5. Theorem Let dimV = n <∞, q is a quadratic form associated to the symmetric bilinear
form β. Then there exists a basis B of V such that [q]B is diagonal.

6. Proposition
rk(q) is the max dimension of a subspace U ⊂ V such that q|U is non-degenerate.

B. Quadratic Forms Over F

1. Quadratic Form Over C
Let F = C, dimV = n <∞ and q : V → C is a quadratic form with rkq = k. Since F = C,
∀x ∈ C, ∃y such that y2 = x call any of these

√
x. Arrange an ”orthonormal basis” such

that q(v1), . . . , q(vk) 6= 0 and q(vk+1), . . . , q(vn) = 0. Then replace vi by
1√
q(vi)

for i ≤ l

so that q(
1√
q(vi)

vi) = β(
1√
q(vi)

vi,
1√
q(vi)

vi) =
1

q(vi)
q(vi) = 1. Then we have [q]B =

(
Ik 0

0 0

)
Consider it in a diagram, we have

V C

Cn

q

ϕ
[q]B

where

[q]B :

x1
...

xn

 7→ x2
1 + · · ·+ x2

k

2. Quadratic Form Over R
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(a) Sylvester Inertia Theorem Let F = R, dimV = n < ∞ and q : V → R is a
quadratic form. There exists a basis B such that [q]B = Ir 0 0

0 −Is 0

0 0 0


where r, s ≥ 0 and r + s ≤ n (It is obvious that [q]B is unique). We call B Sylvester
basis, r + s is the rank of q and r − s is the signature of q. Consider it in a diagram,
we have

V R

Rn

q

ϕ
[q]B

where

[q]B :

x1
...

xn

 7→ x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

r+s

(b) Method of finding Sylvester Basis

• Follow the proof of the existence of a Sylvester basis. The inductive proof converts
into a recursive algorithm. Start by finding a vector v1, such that q(v1) 6= 0. Then
find v2 in v⊥1 , such that q(v2) 6= 0. Then find v3 in v1, v2⊥, such that q(v3) 6= 0,
etc.

• Find an orthonormal basis consisting of eigenvectors of A. Then normalize each
eigenvector by rescaling it by the inverse of the square root of the absolute value
of the corresponding eigenvalue.

• Follow the algorithm explained in the box on page 183 of the textbook. This means
to do elementary symmetric operations on A, until A is in Sylvester form, and do
the same column operations on the identity matrix to get the matrix P , such that
P tAP = S, which is the matrix which contains the Sylvester basis as columns. An
elementary symmetric operation is simply an elementary row operation followed by
the same column operation (or the other way around, it gives the same answer).

Note: Sylvester basis is not unique.

(c) Conic Section Conic section is q(x) = 1 where q : V → R is a quadratic form. By
Sylvester Inertia Theorem, we could have λ2

1x
′2
1 + · · · + λnx

′2
n = 1. Then L(x′1) are

coordinate axes: principle axes q(x) = 1. If λi > 0, then the intersection of q(x) = 1

with L(x′i) would be λ2
ix
′2
i = 1 which gives xi = ± 1√

λi
and

1√
λi

would be the ith

semi-axis. If λi < 0 there would be no intersection with ith principle axis.
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Classification of Matrices

A. Class And Classification

1. Equivalence
Let M be a set. By an equivalence relation on M (x ∼ y, x, y ∈ M) one understands a
relation which satisfies the following axioms: reflexivity, symmetry and transitivity.

2. Equivalence Class
Let ∼ be a equivalence relation on M . For x ∈ M the subset [x] := {y|x ∼ y} ⊂ M is
called the equivalence class of x with respect to ∼.

3. Canonical Projection
Let M/ ∼:= {[x]|x ∈ M} to be set of equivalence classes (the quotient of M by ∼).
Then the map π : M → M/ ∼ mapping x to [x] is called the canonical projection of the
equivalence relation ∼.

4. Classification Classification up to ∼ is to find the canonical projection and the corre-
sponding M/ ∼. There are two ways to do:

(a) Classification by means of characteristic data: find a well-known set D with
a surjective map c : M → D with the property x ∼ y ⇐⇒ c(x) = c(y). Then the map
M/ ∼→ D is well-defined and bijective. In this case, we call c(x) is a characterizing
datum for x respect to ∼.

(b) Classification by representatives: find an easily-understood subset M0 ⊂ M
such that π|M0 : M0 →M/ ∼ is bijective. Then for each x ∈M there exists a unique
representative x0 ∈ M0 with x ∼ x0. So M0 contains exactly one sample from each
equivalence class.

5. Matrix equivalence
Two m × n matrices A,B ∈ M(m × n,F) are said to be equivalent, written A ∼ B, if
there exists invertible matrices P ∈M(m× n,F) and Q ∈M(m×m) with B = Q−1AP .

Fn Fm

Fn Fm

A

P

B

Q

6. Similarity
Two n× n matrices A,B are said to be similar if there exists an invertible n× n matrix
P such that B = P−1AP .

Fn Fn

Fn Fn

A

P

B

P
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B. Classification by Four Fundamental Theorem in Linear Algebra

1. Rank Theorem General matrices over F, B = P−1AQ

(a) A is equivalent to B ⇐⇒ rkA = rkB.

(b) Normal form is (
Ir 0

0 0

)
where r is the rank of the matrix.

2. Sylvester Inertia Theorem Symmetric real matrix, B = P tAP

(a) A is symmetric equivalent to B ⇐⇒ rkA = rkB and sgnA = sgnB

(b) The normal form is  Ir 0 0

0 −Is 0

0 0 0


3. Principal Axes Theorem Symmetric real matrix, B = P−1AP = P tAP, P ∈ O(n)

(a) A is orthonormal similar to B ⇐⇒ eigenvalues are equal.

(b) The normal form is λ1

. . .

λn


4. Jordan Normal Form Complex square matrix

(a) A is similar to B ⇐⇒ A,B have the same Jordan normal form
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