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Basic Analytic Geometry

1. Introduction and Basic Concepts
We wish to visualize the functions with two or three variables, for example z = f(x, y)
and F (x, y, z) = 0. Therefore we have to explore the property of not only 2 dimensional
coordinates R2 but also 3 dimensional coordinates R3.
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First let look at some geometries in R2 and R3.

Example 1. Geometries in R2 and R3:

• In R2: y = x is a straight line.

• In R2: x2 + y2 = 1 is a circle.

• In R3: x2 + y2 + z2 = 1 is a sphere.

• In R3: z = 0 is a plane.

• In R3:

{
z = 0

x2 + y2 + z2 = 1
is a circle.

• In R3: x2 + y2 + z2 ≤ 1 is a solid ball.

• In R3: x2 + y2 + z2 < 1 is an interior of a solid ball.
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In summary, we could generalize the geometry of different equations.

• In R2, f(x, y) = 0 is a curve.

• In R3, F (x, y, z) = 0 is a surface.

• In R3, irreducible

{
F (x, y, z) = 0

G(x, y, z) = 0
is a curve.

• In R3, F (x, y, z) ≤ 0 or F (x, y, z) ≥ 0 is a solid region.

• In R3, F (x, y, z) > 0 or F (x, y, z) < 0 is the interior of a solid region.

Then we wish to have a further discussion on solid regions and interiors of solid regions,
which requires a general definition of open set and closed set.

Definition 1. Open set is a set S ⊂ Rn such that every point P ∈ S has a neighbour
Br(P ) := {Q ∈ Rn||PQ| < r} for some positive r > 0. closed set is set S ⊂ Rn such
that its complement Sc = Rn − S is open.

Let’s look at some examples.

Example 2. Examples of open sets and closed sets.

(a) S = {x ∈ R|0 < x < 1} is an open set. S = {x ∈ R|0 ≤ x ≤ 1} is a closed set. S =
{x ∈ R|0 ≤ x < 1} is neither a closed set or open set.

(b) S = {(x, y) ∈ R2|0 < x < 1, 0 < y < 1} is an open set. S = {(x, y) ∈ R2|0 ≤ x ≤ 1,
0 ≤ y ≤ 1} is an closed set. S = {(x, y) ∈ R2|0 ≤ x ≤ 1, 0 < y < 1} is neither a closed
set or open set.

(c) S = {(x, y, z) ∈ R3|x2 + y2 + z2 = 4} is a closed set. S = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 4}
is a closed set. S = {(x, y, z) ∈ R3|x2 + y2 + z2 < 4} is an open set.

For those solids, we also have a definition for boundaries.

Definition 2. Boundary of S is a set of all points P such that every neighbourhood
of P contains both points in S and points in Sc.

For example, the boundary of S = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 4} is {(x, y, z) ∈ R3|
x2 + y2 + z2 = 4}.

2. Vector

(a) Definitions
To explore the geometries in R2 and R3, we need to study the basic elements of R2

and R3 - vectors.

Definition 3. Vector is defined as a geometric object that has magnitude (or

length) and direction. Mathematically, vector
−→
PQ = 〈x2− x1, y2− y1, z2− z1〉 if

P = 〈x1, y1, z1〉 and Q = 〈x2, y2, z2〉. An alternative way to represent vector is

~v = 〈a, b, c〉 = a~i+ b~j + c~k.
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P (x1, y1, z1)

Q(x2, y2, z2)

−→
PQ = 〈 x2 − x1, y2 − y1, z2 − z1〉

Note that if we only need the direction information of a vector we could normalize the
vector. The length of the vector ~v = 〈a, b, c〉 is |~v| =

√
a2 + b2 + c2 ≥ 0. If |~v| > 0,

then the unit vector (also called direction vector) of ~v is

~u =
1

|~v|
~v =

~v

|~v|

whose length is |~u| = 1. And the unit angles are cosα =
a

|~v|
, cos β =

b

|~v|
and

cos γ =
c

|~v|
. Notice cos2 α + cos2 β + cos2 γ = 1 and 〈cosα, cos β, cos γ〉 =

~v

|~v|
= ~u. If

|~v| = 0, if is impossible to find the direction vector of ~v since ~v = ~0 is just a dot.

(b) Operations Let ~a = 〈x1, y1, z1〉 and ~b = 〈x2, y2, z2〉.
i. Addition: ~a+~b = 〈x1 + x2, y1 + y2, z1 + z2〉

ii. Subtraction: ~a−~b = 〈x1 − x2, y1 − y2, z1 − z2〉
iii. Scalar Multiplication: k~a = 〈kx1, ky1, kz1〉

~a

~b
~a+~b

~a

~b

−~b

~a−~b

~a

k~a (k > 0)
k~a (k < 0)

k~a (k = 0)

iv. Dot Product

A. Definition: ~a ·~b = x1x2 + y1y2 + z1z2

Note: ~a ·~b could be abbreviated as ~a~b.

B. Linear Properties:

• ~v · ~v = v2
1 + v2

2 + v2
3 = |~v|2

• ~v · ~w = ~w · ~v
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• ~v · (c~w) = c(~v · ~w)

• ~u · (~v + ~w) = ~u · ~v + ~u · ~w
C. Corollary: ~a ·~b = |~a||~b| cos θ where 0 ≤ θ ≤ π is the angle between ~a and ~b.

Proof. By cosine rule, |~a −~b|2 = |~a2 +~b2| − 2|~a|~b| cos θ. By the linear property

of dot product, |~a − ~b|2 = (~a − ~b)2 = |~a|2 + |~b|2 − 2~a · ~b. Therefore, we have

~a ·~b = |~a||~b| cos θ.

D. Projection: Let ~v, ~w ∈ Rn and ~w 6= ~0. We wish to decompose ~v such that

~v = vector parallel to ~w + vector perpendicular to ~w

We say the vector parallel to ~w is the projection of ~v on ~w and note it as ~v~w.

~w

~v

~v~w

Then we have

~v~w = s
~w

|~w|

where s is the scalar projection s =
~v · ~w
|~w|

.

Proof. We know that ~v~w ‖ ~w since

~v~w =
s

|~w|︸︷︷︸
scalar

~w

and (~v − ~v~w) ⊥ ~w since

(~v − ~v~w) · ~w = ~v · ~w − ~v · ~w
|~w|

~w

|~w|
· ~w = ~v · ~w − ~v · ~w ��~w2

�
��|~w|2

= 0

v. Cross Product

A. Definition: The cross product of ~a and ~b is defined as

~a×~b =

∣∣∣∣∣∣
~i ~j ~k

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣ =~i

∣∣∣∣y1 z1

y2 z2

∣∣∣∣−~j ∣∣∣∣x1 z1

x2 z2

∣∣∣∣+ ~k

∣∣∣∣x1 y1

x2 y2

∣∣∣∣
Consequently, we know ~a×~b = 〈y1z2 − z1y2, z1x2 − x1z2, x1y2 − x2y1〉.

B. Length: |~a×~b| = |~a||~b| sin θ where 0 ≤ θ ≤ π is the angle between ~a and ~b.

Direction: perpendicular to ~a and ~b and determined by right hand rule.
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~a

~b

~a×~b

C. Linear Properties:

• ~a×~b = −~b× ~a
• ~a×~b ⊥ ~a, ~a×~b ⊥ ~b
• ~a×~b = 2S4 where the triangle 4 is spanned by ~a and ~b.

• ~a×~b = 0⇔ ~a ‖ ~b
D. Application

• Find a normal vector ~v such that ~v is perpendicular to the plane spanned by−→
PQ and

−→
PR. This requires ~n ⊥

−→
PQ and ~n ⊥

−→
PR.

P
Q

R

−→
PQ×

−→
PR

−→
PR×

−→
PQ

~n =
−→
PQ×

−→
PR

~n =
−→
PR×

−→
PQ

or

• Find the area of triangle spanned by ~a and ~b.

~b

~a

h S =
1

2
|~a|h =

1

2
|~a||~b| sin θ =

1

2
|~a×~b|

• Find the volume of a parallelepiped spanned by ~u, ~v and ~w.

~u

~v

~w

h

V = Sh = |~u× ~v|
∣∣∣∣~w · ~u× ~v|~u× ~v|

∣∣∣∣ = |~w · (~u× ~v) |

V = |~w · (~u× ~v) | =

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
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3. Curves and Surfaces in R3

(a) Plane
Basically, there are four ways to define a plane: using three points, using a point and
line, using two vectors spanning and using one point and a normal vector.

After defining the plane, we could represent them in the following equations:

i. Vector+Point
If we know the point on the plane is (x0, y0, z0) and the normal vector 〈A,B,C〉.
Then for any point (x, y, z) on the plane

(x0, y0, z0)

~n = 〈A,B,C〉

(x, y, z)

we know 〈A,B,C〉 · 〈x− x0, y − y0, z − z0〉 = 0. Therefore we have the plane is

A(x− x0) +B(y − y0) + C(z − z0) = 0 (1)

ii. General
By i, if we let D ≡ −(Ax0 +By0 + Cz0), we have the plane is

Ax+By + Cz +D = 0 (2)

iii. Intercept
If the plane has intercepts with the x-axis, y-axis and z-axis which are a, b and c,

x

z

y
a

b

c

then we know two vectors spanning the plane are 〈−a, 0, c〉 and 〈−a, b, 0〉. Then
the normal vector is ~n = 〈−a, 0, c〉 × 〈−a, b, 0〉 = 〈−bc,−ac,−ab〉. Then by i, we
know the plane is

−bc(x− a)− acy − abz = 0
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which could be simplified as
x

a
+
y

b
+
z

c
= 1 (3)

(b) Line
Basically, there are two ways to define a straight line: using the intersection of two
planes and using a point on the line and a direction vector of the line.

~T

After defining the line, we could represent them in the following equations.

i. General
The general equation is {

A1x+B1y + C1z +D1 = 0

A2x+B2y + C2z +D2 = 0
(1)

Then we could find a point (0, y′, z′) as a solution of the system of equations and
a normal vector ~n = 〈A1, B1, C1〉 × 〈A1, B1, C1〉.

ii. Parametric equation If we know the point ~r0 = 〈x0, y0, z0〉 on the line and the
direction vector ~v = 〈a, b, c〉,

~v

O

P
−→r0

then we know the equation would be

~r = ~r0 + t~v = 〈x0 + ta, y0 + tb, z0 + tc〉 (2)

Alternatively, it is 
x = x0 + ta

y = y0 + tb

z = z0 + tc

If a, b, c 6= 0, we could eliminate t,

plane︷ ︸︸ ︷
x− x0

a
=
y − y0

b
=
z − z0

c︸ ︷︷ ︸
plane

(2.1)
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If a = 0 and b, c 6= 0, we know 
x = x0

y = y0 + tb

z = z0 + tc

(2.2)

If a, b = 0 and c 6= 0, we know {
x = x0

y = y0
(2.3)

(c) Quadric Surface
The general form of a quadric surface is

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0

We usually use 3D surfaces, cross-sections and level curves

i. Sphere: x2 + y2 + z2 = r2

ii. Ellipsoid:
x2

a2
+
y2

b2
+
z2

c2
= 1

x y

z

iii. Cone: z2 =
x2

a2
+
y2

b2

If a = b, we have a circular cone; if a 6= b, we have a elliptical cone.

x y

z

x

y

z = c

(
x2

a2
+
y2

b2
= c)

iv. Paraboloid: z =
x2

a2
+
y2

b2

If a = b, we have a circular paraboloid; if a 6= b, we have a elliptical paraboloid.
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x y

z

x

z
y = 0

(z = x2)

x

y

z = c

(
x2

a2
+
y2

b2
= c)

v. hyperbolic paraboloid: z =
x2

a2
− y2

b2

This means the cross-sections z = c (c = 0) such that
x2

a2
− y2

b2
= c are hyperbolas.

x
y

z

x

y

z = c

x2

a2
− y2

b2
= c

y

z

x = 0

z = −y
2

b2

x

z

y = 0

z =
x2

a2

vi. Hyperboloid: x2 + y2 − z2 = c (c 6= 0)
Note: if c = 0, the hyperboloid turns into a cone.

x y

z

x y

z

c = 1: z2 = x2 + y2 − 1 c = −1: z2 = x2 + y2 + 1
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Notice that larger |c| will make the surfaces further away from the center.

4. Measurement by Vector Calculation

(a) Angle
There are four types of angles: the angle between two vectors, the angle between two
lines, the angle between two planes and the angle between a line and a plane.

~a

~b

θ

cos θ =
~a ·~b
|~a| · |~b|

−→v1 −→v2

θ

cos θ =
−→v1 · −→v2

|−→v1 | · |−→v2 |

θα

−→n1 −→n2

cos θ =
−→n1 · −→n2

|−→n1| · |−→n2|
α = θ or π − θ

α ∈
[
0,
π

2

]

α
θ

~n
~v

cos θ =
~n · ~v
|~n| · |~v|

α =
π

2
− θ or θ − π

2

α ∈
[
0,
π

2

]θ ∈ [0, π] θ ∈
[
0,
π

2

]

(b) Distance

i. Distance between two points P1 (x1, y1, z1) and P2 (x2, y2, z2) is

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z1)2

ii. Distance between the point P0(x0, y0, z0) and the plane Ax+By + Cz +D = 0 is

d =
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2

Proof. Let P (x, y, z) on the plane such that Ax+By+Cz+D = 0. Then we have

the distance is d =

∣∣∣∣−−→P0P ·
~n

|~n|

∣∣∣∣ =

∣∣∣∣〈x− x0, y − y0, z − z0〉 ·
〈A,B,C〉√
A2 +B2 + C2

|
∣∣∣∣ =

|A(x− x0) +B(y − y0) + C(z − z0) +D|√
A2 +B2 + C2

=
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2
.

P0 (x0, y0, z0)

~n = 〈A,B,C〉

P (x, y, z)

iii. Distance between the point M1 and the line defined by point M and direction

vector
−→
S is

d =
|
−−−−→
M0M1 ×

−→
S |

|
−→
S |

Basic Analytic Geometry 13



Proof. Consider the area of the triangle, we know
1

2
|
−−−−→
M0M1 ×

−→
S | = 1

2
|
−→
S |d.

L

M0

M1

~S

iv. The distance between two lines defined by points M, N and direction vectors
−→
S1,
−→
S2

is

d =
|(
−→
S1 ×

−→
S2) ·

−−→
MN |

|
−→
S1 ×

−→
S2|

L1

L2

M

N

−→
S1

−→
S2
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Multivariable Functions and Limits

1. Basic Concepts
Previously, we discussed real-valued functions of a single variable y = f(x). From now
on, we are going to start the discussion of real-valued functions of multiple variables.

Definition 4. Real-valued multivariable function is a function

f : Rn −→ R
(x1, . . . , xn) 7−→ f(x1, . . . , xn)

The domain of f is D(f) = {(x1, . . . , xn) ∈ R|defined under f}. The range
of f is {z ∈ R|z = f(x1, . . . , xn), (x1, . . . , xn) ∈ D(f)}. The graph of f is
{(x1, . . . , xn, xn+1) ∈ Rn+1|xn+1 = f(x1, . . . , xn), (x1, . . . , xn) ∈ D(f)}. Level curves
are graphs {(x1, . . . , xn) ∈ D(f)|f(x1, . . . , xn) = c}.

It’s not hard to find that if n = 2, the level curves are curves in 2D space; if n = 3, the
level curves are surfaces in 3D spaces.

Let’s look at an example.

Example 3. Consider f(x, y) =
√
xy where domain is D(f) = {(x, y) ∈ R|xy > 0}. The

range is (−∞,∞). The graph is

x

y

z

And the level curves are xy = c2. The following level curves are c = 1, c = 2, c = 3.

x

y
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2. Limit

(a) Definition
We want to define the limit of multivariable functions and from now on the discussion
will be focused on functions of two variables as an example. The key point of limit
is “approaching” - getting closer. This indicates that the distance getting smaller
which is characterized as 0 < |x − a| < δ and |f(a) − L| < ε. |f(a) − L| < ε is still
valid but we have to change the distance |x − a| to |~x − ~a| such as |(x, y) − (a, b)| =√

(x− a)2 + (y − b)2.

Definition 5. We say lim
(x,y)→(a,b)

f(x, y) = L if:

• every neighbourhood of (a, b) contains points of D(f) different from (a, b),

• ∀ε > 0, ∃δ > 0, when 0 <
√

(x− a)2 + (y − b)2 < δ, |f(x, y)− L| < ε.

Note that the point (a, b) is not actually required to be in the domain of f . Also
the definition only requires the decrease of distance but has nothing to do with the
direction of (x, y) approaching (a, b). Therefore if the limit exists, it should be the
same for all the direction (x, y) approaches (a, b). Let’s look at some examples.

Example 4. Let f(x, y) =

{
−1 xy > 0

1 xy < 0
. We want to check whether lim

(x,y)→(0,0)
f(x, y)

exits. Though (0, 0) is not in the domain of f(x, y), it would be the evidence that the
limit does not exist. We could check the limit of (x, y) approaching (0, 0) in different
direction. We have lim

(x,y)→(0,0)
x=y

f(x, y) = 1 and lim
(x,y)→(0,0)
x=−y

f(x, y) = −1. Therefore, the

limit does not exist.

x

y

1

1 −1

−1

Example 5. Let f(x, y) = (x2 + y2)α (α > 0). We want to show that lim
(x,y)→(0,0)

(x2 +

y2)α = 0. Let ε > 0, we need to find δ such that if
√
x2 + y2 < δ, then |f(x, y)α−0| < ε.

This implies |(x2 + y2)α| < ε and then
√
x2 + y2 < ε

1
2α = δ. Therefore, the required

δ = ε
1
2α .

Multivariable Functions and Limits 16



z

√
x2 + y2

ε

δ = ε
1
2α

α = 1
α =

1

2

α =
1

4

Example 6. Let f(x, y) =
xy

x2 + y2
((x, y) 6= (0, 0)). We want to show that lim

(x,y)→(0,0)
f(x, y)

does not exist. So we are going to try different directions. Along x = 0, lim
(x,y)→(0,0)

x=0

f(x, y) =

0. Along y = 0, lim
(x,y)→(0,0)

y=0

f(x, y) = 0. However, along y = x, lim
(x,y)→(0,0)

y=x

f(x, y) =

lim
x→0

x2

2x2
=

1

2
6= 0. Therefore, the limit does not exist.

Example 7. Let f(x, y) =
x4y4

(x2 + y4)3
((x, y) 6= (0, 0)). We want to show that

lim
(x,y)→(0,0)

f(x, y) does not exist. So we are going to try different directions. Along

x = 0, lim
(x,y)→(0,0)

x=0

f(x, y) = 0. Along y = 0, lim
(x,y)→(0,0)

y=0

f(x, y) = 0. Along y = x,

lim
(x,y)→(0,0)

y=x

f(x, y) = lim
x→0

x8

(x2 + x4)3
= lim

x→0

x2

(x2 + 1)3
= 0. Along y = mx, lim

(x,y)→(0,0)
y=mx

f(x, y) =

lim
x→0

x8(m4 + 1)

(x2 +m4x4)3
= lim

x→0

x2(m4 + 1)

(m4x2 + 1)3
= 0. However, along y = xα, lim

(x,y)→(0,0)
y=xα

f(x, y) =

lim
x→0

x4+4α

(x2 + x4α)3
. If α =

1

2
, lim
x→0

x4+4α

(x2 + x4α)3
=

1

8
. Therefore, the limit does not exist.

Example 8. Let f(x, y) =
x3 + y3

x2 + y2
((x, y) 6= (0, 0)). We want to show that lim

(x,y)→(0,0)
f(x, y) =

0. Let ε > 0, we want to find δ > 0 such that

∣∣∣∣x3 + y3

x2 + y2

∣∣∣∣ < ε if
√
x2 + y2 < δ. This

suffices if ∣∣∣∣ x3

x2 + y2

∣∣∣∣ < ε

2
,

∣∣∣∣ y3

x2 + y2

∣∣∣∣ < ε

2
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Since

∣∣∣∣ x3

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣x3

x2

∣∣∣∣ = |x| and

∣∣∣∣ y3

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣y3

y2

∣∣∣∣ = |y|, this then suffices if

|x| < ε

2
, |y| < ε

2

Since we know {(x, y) ∈ R2||x| < ε

2
, |y| < ε

2
} ⊂ {(x, y) ∈ R2|

√
x2 + y2 <

ε

2
},

x

y

ε
2

we finally take δ =
ε

2
.

(b) Rules of limits
Let f, g be the function of (x, y). Every neighbourhood of (a, b) contains points of
D(f) ∩D(g). And lim

(x,y)→(a,b)
f(x, y) = A and lim

(x,y)→(a,b)
g(x, y) = B. Then we have

i. lim
(x,y)→(a,b)

[f(x, y)± g(x, y)] = A±B

Proof. By definition, we know ∀ε1 > 0, ∃D1 such that when 0 <
√

(x− a)2 + (y − b)2 <

δ1, 0 < |f −A| < ε1 and ∀ε2 > 0, ∃D2 such that when 0 <
√

(x− a)2 + (y − b)2 <

δ2, 0 < |g − B| < ε2. Let δ = min{δ1, δ2} and ε1 = ε2 =
ε

2
. Then when

0 <
√

(x− a)2 + (y − b)2 < δ, we have

0 < |(f + g)− (A+B)| ≤ |f − A|+ |g −B| < ε

2
+
ε

2
= ε

by trigonometry inequality. Therefore lim(x,y)→(a,b)[f+g] = A+B. And then when

0 <
√

(x− a)2 + (y − b)2 < δ, we have

0 < |(f − g)− (A−B)| ≤ |f − A|+ |g −B| < ε

2
+
ε

2
= ε

by trigonometry inequality. Therefore lim(x,y)→(a,b)[f − g] = A−B.

ii. lim
(x,y)→(a,b)

f(x, y)g(x, y) = AB Proof. Let ε > 0. By definition of the limits of g

and f , ∃D1 such that when 0 <
√

(x− a)2 + (y − b)2 < δ1, |f − A| <
√
ε

3
(1).

∃D2 such that when 0 <
√

(x− a)2 + (y − b)2 < δ2, |f − A| < ε

3B
(2). ∃D3 such

that when 0 <
√

(x− a)2 + (y − b)2 < δ3, |g −B| <
√
ε

3
(3). ∃D4 such that when
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0 <
√

(x− a)2 + (y − b)2 < δ4, |g − B| < ε

3A
(4). Take δ = min{δ1, δ2, δ3, δ4},

when 0 <
√

(x− a)2 + (y − b)2 < δ, we would have (1)(2)(3)(4) all are satisfied.
Since

(f − A)(g −B) = fg − Ag −Bf + AB

which comes out to be

|fg − AB| = |(f − A)(g −B) + Ag +Bf − 2AB|
= |(f − A)(g −B) +B(f − A) + A(g −B)|
< |f − A||g −B|+B|f − A|+ A|g −B|

=

√
ε

3

√
ε

3
+B

ε

3B
+ A

ε

3A

= ε

So ∀ε > 0, we find the δ > 0 such that when 0 <
√

(x− a)2 + (y − b)2 < δ,
|fg − AB| < ε. By definition lim

(x,y)→(a,b)
fg = AB.

iii. lim
(x,y)→(a,b)

f(x, y)

g(x, y)
=
A

B

Proof. First we are going to prove a lemma lim
(x,y)→(a,b)

1

g
=

1

B
. Let ε > 0. By

definition, we know that there is a δ1 such that when 0 <
√

(x− a)2 + (y − b)2 <

δ1, |g − B| < |B|
2

. Therefore, | |B| − |g| | ≤ |g − B| < |B|
2

by triangle inequality

which implies |g| > |B|
2

and then implies 0 <
1

|g|
<

2

|B|
. Also, by definition there

is δ2 such that when 0 <
√

(x− a)2 + (y − b)2 < δ2, we have 0 < |g −B| < |B|
2

2
ε.

Let δ = min{δ1, δ2}. Then when 0 <
√

(x− a)2 + (y − b)2 < δ, we have

|1
g
− 1

B
| = |g −B|

|gB|
=

1

|g|
1

|B|
|g −B|

<
2

|B|
1

|B|
|B|2

2
ε = ε

and also |1
g
− 1

B
| =

1

|g|
1

|B|
|g − B| > 0. Therefore, we have lim

1

g
=

1

B
. By the

calculate property ii, we have lim
(x,y)→(a,b)

f

g
=
A

B
.

(c) Continuity
The definition of continuity of multivariable functions is similar to the definition of
continuity of single variable function.
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Definition 6. f is continious at (a, b) if:

• (a, b) ∈ D(f),

• lim
(x,y)→(a,b)

f(x, y) = f(a, b) exists

Usually, the following functions are continuous:

• If for all i ∈ {1, . . . , k} when we remain x1, . . . , xi−1, xi+1, . . . , xk constant such
that gi(xi) = f(xc1, . . . , x

c
i−1, xi, x

c
i+1, . . . , x

c
k) and gi is continuous on Ii, then f is

continuous on {(x1, . . . , xk)|xj ∈ Ij},
• polynomials in x1, . . . , xk are continuous on Rk,

• rational functions
P (x1, . . . , xm)

Q(x1, . . . , xn)
where P and Q are polynomials are continuous

when Q(x1, . . . , xn) 6= 0 (alternatively {(x1, . . . , xk) ∈ Rk|Q(x1, . . . , xn) 6= 0} where
k = max{m.n}),
• composition of continuous functions.

Consequently, extreme value theorem and intermediate value theorem could also be
applied onto the continuous multivariable functions.
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Differentiation of Multivariable Functions

1. Partial Derivatives

(a) Definition
We want to define the derivative of multivariable functions. Recall that the key point
of derivative of single variable is find the how quick f is changing corresponding to f
- the division of ∆f by ∆x. However, there are multiple variables to vary, how can we
determine the change of f correspondingly and define the derivative correspondingly?

An easy way to go is make only one variable changing and other variables constant.
For functions of two variables, we could make y constant and find how quickly f is
changing with respect to x or we could make x constant and find how quickly f is
changing with respect to y.

x

y

z

This means we just take the derivative of g1(x) = f(x, yc) with respect to x and
g2(y) = f(xc, y) with respect to y. However, this kind of derivatives only tell us part
of the stories. We call this kind of derivatives partial derivatives.

Definition 7. The first partial derivatives of the function f(x, y) with respect

to the variables x and y are the functions
∂f

∂x
(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h

and
∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
provided the limits exist.

In general, there are multiple ways to denote partial derivative. For the first partial
derivative of f with respect to xi we have

∂f

∂x
=
∂z

∂x
= Dxif = Dif = fi

given by

lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
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And the value of the partial derivative at (a1, a2, . . . , an) is denoted as

∂f

∂x

∣∣∣∣
(a1,...,an)

=
∂z

∂x

∣∣∣∣
(a1,...,an)

= Dxif(a1, . . . , an) = Dif(a1, . . . , an) = fi(a1, . . . , an)

Example 9. Consider f(x, y) = ex sin(y). We have
∂f

∂x
(x, y) = ex sin(y) and

∂f

∂y
(x, y) =

ex cos(y).

(b) Higher and Mixed Partial Derivatives
Partial derivatives of second and higher orders are calculated by taking partial deriva-
tives of already calculated partial derivatives. For the second partial derivatives of a
function with two variables, we have two pure derivatives

∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2
= f11 = fxx

and
∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2
= f22 = fyy

Also we have two mixed derivatives

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂y
= f12 = fxy

and
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
= f21 = fyx

Notice the order in the notations. In

∂nf

∂xk · · · ∂xi · · · ∂xj←−−−−−−−−−−−−−
the order is from right to left. In

f ∂xj ···∂xi···∂xk−−−−−−−−→
, f j···i···k−−−−→

the order is from left to right.

Example 10. Consider f(x, y, z) = zexy. We have fx = zyexy and fz = exy Then we
have fxz = yexy and fzx = exy.

You may notice that the two mixed partial derivatives are the same. This is not always
true but we have a theorem to clarify it.
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Theorem 1. (Equality of Mixed Partials) Let f(x11, . . . , xn) be the function
domain on D , if:

• all partial derivatives of order smaller than n are continuous of neighbour
of P ,

• two partials of order n with the same differentiation are continuous at P ,

then these two partials are equal at P .

Let’s consider the special case of this theorem: the function of two variables.

Theorem*: Let function f(x, y) domain on D . If all first and second partial deriva-
tives are continuous in a neighbourhood at P , then fxy(P ) = fyx(P ).
Proof. Let P = (a, b) and the neighbourhood contains a rectangle with vertex (a, b),
(a, b+ k), (a+ h, b) and (a+ h, b+ k).

(a, b)

(a, b+ k) (a+ h, b+ k)

(a+ h, b)

Let Q = f(a+ h, b+ k)− f(a, b+ k)− f(a+ h, b) + f(a, b). There are ways to group
Q. We could have

Q = (f(a+ h, b+ k)− f(a, b+ k)︸ ︷︷ ︸
v(b+k)

)− (f(a+ h, b)− f(a, b)︸ ︷︷ ︸
v(b)

)

and
Q = (f(a+ h, b+ k)− f(a+ h, b)︸ ︷︷ ︸

u(a+h)

)− (f(a, b+ k)− f(a, b)︸ ︷︷ ︸
u(a)

)

where
v(y) = f(a+ h, y)− f(a, y), u(x) = f(x, b+ k)− f(x, b)

Then by mean value theorem, we know there exists 0 < θ1 < 1 (b < b + kθ1 < b + k)
such that

Q = v(b+ k)− v(b) = kv′(b+ kθ1) = k[fy(a+ h, b+ kθ1)− fy(a, b+ kθ1)]

Then by mean value theorem again, we know there exists 0 < θ2 < 1 (a < a + hθ2 <
a+ h) such that

k[fy(a+ h, b+ kθ1)− fy(a, b+ kθ1)] = khfyx(a+ hθ2, b+ kθ1)
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Similarly, by mean value theorem, there exists 0 < θ3, θ4 < 1 such that

Q = khfxy(a+ hθ4, b+ kθ3)

Therefore, by equating Q, we have

khfyx(a+ hθ2, b+ kθ1) = khfxy(a+ hθ4, b+ kθ3)

Cancelling kh, we have

fyx(a+ hθ2, b+ kθ1) = fxy(a+ hθ4, b+ kθ3)

We take the limit h→ 0 and k → 0 and then we have

fyx(a, b) = fxy(a, b)

2. Linearization and Differentiation

(a) Review of Linearization of Single Variable Function
Recall that the linearization of f(x) at x = a is basically to use a tangent line to
approximate

L(x) = f(a) + f ′(a)(x− a)

We could find that being able to find the non-vertical tangent line is equivalent to
being differentiable at a and is equivalent to the existence of f ′(a). Also they could
imply that f(x) is continuous.

⇐⇒

⇐⇒

⇐⇒∃f ′(a)

f(x) is differentiable at

x = a

graph y = f(x) has a vertical
tangent line at x = a

=⇒

f(x) is continuous at

x = a

Let’s consider the differentiation and the tangent line in a more careful way.

x

y

y = f(x)

L(x)

a x = a+ h

Differentiation of Multivariable Functions 24



By definition, we have f ′(a) = lim
x→a

f(x)− f(a)

x− a
. This is equivalent to, by rearranging

the equation, 0 = lim
x→a

(
f(x)− f(a)

x− a
− f ′(a)

)
= lim

x→a

f(x)− (

L(x)︷ ︸︸ ︷
f(a) + f ′(a)(x− a))

x− a
=

lim
x→a

f(x)− L(x)

x− a
. This also be interpreted as the error E(x) = f(x) − L(x) is much

smaller than the distance ∆x = x − a when x → a. This is the requirement of
differentiablity and the existence of non-vertical tangent line.

(b) Linearization of Functions of Two Variables and Tangent Plane
To linearize z = f(x, y) at (a, b), we want to find the tangent plane instead of tangent
line. To find a plane, we need to find a point on the plane and find the direction of
the plane. It not hard to see that point (a, b, f(a, b)) is for sure on the plane. The
direction normal vector could be found by two vector spanning the plane. These two
vector could be found by partial derivative along x and along y.

x

y

z

The vector along x is ~v1 = 〈1, 0, ∂f
∂x
〉 and the vector along y is ~v2 = 〈0, 1, ∂f

∂y
〉. Then

the normal vector is

~n = ~v1 × ~v2 = 〈−∂f
∂x
,−∂f

∂y
, 1〉

Therefore the equation of the plane is

− ∂f

∂x

∣∣∣∣
(a,b)

(x− a)− ∂f

∂x

∣∣∣∣
(a,b)

(y − b) + (z − f(a, b)) = 0

which could be simplified as

z =
∂f

∂x

∣∣∣∣
(a,b)

(x− a) +
∂f

∂x

∣∣∣∣
(a,b)

(y − b) + f(a, b)
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This is the tangent plane of f(x, y) at (a, b) if exists. Then the linearization of f(x, y)
at (a, b) is

L(x, y) =
∂f

∂x

∣∣∣∣
(a,b)

(x− a) +
∂f

∂x

∣∣∣∣
(a,b)

(y − b) + f(a, b)

However, the existence of linear approximation function does not imply the existence
of the actual tangent plane.

(c) Differentiation of Functions of Two Variables
Borrowing the idea of differentiablity on single variable function, we define the differ-

entiablity of functions of two variables by taking the limit of
f(x, y)− L(x, y)

|(x, y)− (a, b)|
.

Definition 8. We say that the function f(x, y) is differentiable at the point
(a, b) if

lim
(x,y)→(a,b)

f(x, y)− L(x, y)√
(x− a)2 + (y − b)2

= 0

where L(x, y) = f1(a, b)(x − a) + f2(a, b)(y − b) + f(a, b) is the linear approxi-
mation.

In a more general case, let f : Rn −→ R at ~a = 〈a1, . . . , an〉. f(x) is linearly approxi-
mate to L(~x) = f(~a) + f1(~a)(x1− a1) + · · ·+ fn(~a)(xn− an). Then the differentiablity

of f(~x) is defined as lim
~x→~a

f(~x)− L(~x)

|~x− ~a|
= 0.

(d) Consequences

i. Mean Value Theorem
Similar to single variable functions, functions with two variables also mean value
theorem.

Theorem 2. (Mean Value Theorem) If f1(x, y) and f2(x, y) are continuous
in a neighbourhood of the point (a, b), and if the absolute values of h and
k are sufficiently small, then there exist numbers θ1 and θ2, each between 0
and 1, such that

f(a+ h, b+ k)− f(a, b) = hf1(a+ hθ1, b+ k) + kf2(a, b+ kθ2)

Proof. Reconstruct f(a+ h, b+ k)− f(a, b),

f(a+ h, b+ k)− f(a, b) = f(a+ h, b+ k)− f(a, b+ k)︸ ︷︷ ︸
∆u(x)

+ f(a, b+ k)− f(a, b)︸ ︷︷ ︸
∆v(y)

where u(x) = f(x, b + k) and v(y) = f(a, y). Then by mean value theorem on
single variable, we know there exists 0 < θ1 < 1 such that u(a + h) − u(a) =
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hu′(a+ hθ1) = hf1(a+ hθ1, b+ k). And similarly there exists 0 < θ2 < 1 such that
v(b+ k)− v(b) = kv′(b+ kθ2) = kf2(a, b+ kθ2). Therefore, we have

f(a+ h, b+ k)− f(a, b) = hf1(a+ hθ1, b+ k) + kf2(a, b+ kθ2)

ii. Claim: If f1 and f2 are continuous in a neighbourhood of the point (a, b), then f
is differentiable at (a, b).
Proof. We know, by mean value theorem of multivariables,∣∣∣∣f(a+ h, b+ k)− f(a, b)− f1(a, b)h− f2(a, b)k√

h2 + k2

∣∣∣∣
=

∣∣∣∣hf1(a+ hθ1, b+ k) + kf2(a, b+ kθ2)− f1(a, b)h− f2(a, b)k√
h2 + k2

∣∣∣∣ 0 < θ1, θ2 < 1

=

∣∣∣∣h(f1(a+ hθ1, b+ k)− f1(a, b))√
h2 + k2

+
k(f2(a, b+ kθ2)− f2(a, b))√

h2 + k2

∣∣∣∣
≤

∣∣∣∣h(f1(a+ hθ1, b+ k)− f1(a, b))√
h2 + k2

∣∣∣∣+

∣∣∣∣k(f2(a, b+ kθ2)− f2(a, b))√
h2 + k2

∣∣∣∣
≤ |(f1(a+ hθ1, b+ k)− f1(a, b))|+ |(f2(a, b+ kθ2)− f2(a, b))|

When we take the limit h→ 0 and k → 0, we know |(f1(a+ hθ1, b+ k)− f1(a, b))|+
|(f2(a, b+ kθ2)− f2(a, b))| → 0. Therefore

lim
(h,k)→(0,0)

∣∣∣∣f(a+ h, b+ k)− f(a, b)− f1(a, b)h− f2(a, b)k√
h2 + k2

∣∣∣∣ = 0

and f(x, y) is differentiable.

iii. Claim: If f(x, y) is differentiable at (a, b), then
∂f

∂x

∣∣∣∣
(a,b)

and
∂f

∂y

∣∣∣∣
(a,b)

exist.

Proof. They are true by definition, which requires L(x, y) = f1(a, b)(x − a) +
f2(a, b)(y − b) + f(a, b).

iv. Claim: If f(x, y) is differentiable at (a, b), f(x, y) is continuous at (a, b).
Proof. This proof would be similar to the same claim for single variable that
differentiablitly implies continuity. We have f(a + h, b + k) − f(a, b) = (f(a +

h, b + k) − f(a, b) − f1(a, b)h − f2(a, b)k) + (f1(a, b)h + f2(a, b)k) =
√
h2 + k2 ×

f(a+ h, b+ k)− f(a, b)− f1(a, b)h− f2(a, b)k√
h2 + k2

+ (f1(a, b)h+ f2(a, b)k). Therefore

we have

lim
(h,k)→(0,0)

(f(a+ h, b+ k)− f(a, b))

= lim
(h,k)→(0,0)

√
h2 + k2 lim

(h,k)→(0,0)

f(a+ h, b+ k)− f(a, b)− f1(a, b)h− f2(a, b)k√
h2 + k2

+ lim
(h,k)→(0,0)

f1(a, b)h+ f2(a, b)k

= 0

Therefore, f(x, y) is continuous at (a, b).
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(e) Summary
In summary, we have the following diagram:

⇐⇒

=⇒

(i) fx, fy are continuous

(ii) f is differentiable at (a, b)

=⇒=⇒

(iv) fx(a, b), fy(a, b) exists (v) f is continuous at (a, b)

(iii) exists a non-vertical tangent plane at (a, b)

Notice that: (ii) can’t imply (i), (iv) can’t imply (ii) and (v), (v) can’t imply (iv) and
(ii), (ii) can’t imply (i). Here are some counter examples.

Example 11. Consider f(x, y) =
√
x2 + y2. Since lim

(x,y)→(0,0)

√
x2 + y2 = 0 = f(0, 0),

f(x, y) is continuous at (0, 0). However, fx(0, 0) = lim
x→0

√
x2 − 0

x− 0
= lim

x→0

|x|
x

does not

exists. This example shows that: continuity of f(x, y) does not imply the existence of
first partial derivative (v does not imply iv).

Example 12. Consider f(x, y) =

{ xy

x2 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)
. We have fx(0, 0) =

lim
x→0

(
0x

x2 + 0
− 0

)
= 0 and fy(0, 0) = lim

y→0

(
0y

y2 + 0
− 0

)
= 0 exists. However we have

lim
(x,y)→(0,0)

y=x

xy

x2 + y2
= lim

x→0

x2

2x2
=

1

2
and lim

(x,y)→(0,0)
y=0

xy

x2 + y2
= 0. Therefore lim

(x,y)→(0,0)

xy

x2 + y2

does not exists. This example shows that existence of first partial derivative does not
imply the continuity of f(x, y) (iv does not imply v).

Example 13. Consider f(x, y) =


xy√
x2 + y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)
. Since 0 ≤ |x| |y|√

x2 + y2
≤

|x|, by squeeze theorem, we have lim(x,y)→(0,0) f(x, y) = 0. Therefore f(x, y) is con-
tinuous at (0, 0). We also know that fx(0, 0) = 0 and fy(0, 0) = 0 exist. However,

lim
(x,y)→(0,0)

f(x, y)− L(x, y)√
(x− 0)2 + (y − 0)2

= lim
(x,y)→(0,0)

xy

x2 + y2
does not exist. This example shows

that: the continuity of f(x, y) or the existence of first partial derivative does not imply
the differentiablity of f(x, y). (iv,v do not imply ii).
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Example 14. Consider f(x, y) =

 (x2 + y2) sin

(
1√

x2 + y2

)
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

. We

have fx(0, 0) = lim
x→0

x2 sin
(

1
x

)
− 0

x− 0
= 0 and fy(0, 0) = lim

y→0

y2 sin
(

1
y

)
− 0

y − 0
= 0. There-

fore L(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = 0. Then

lim
(x,y)→(0,0)

f(x, y)− L(x, y)√
(x− 0)2 + (y − 0)2

= lim
(x,y)→(0,0)

√
x2 + y2 sin

(
1√

x2 + y2

)
= 0

by squeeze theorem. However two first partial derivative

fx(x, y) =

 2x sin

(
1√

x2 + y2

)
−
x cos

(
1√
x2+y2

)
√
x2 + y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

and

fy(x, y) =

 2y sin

(
1√

x2 + y2

)
−
y cos

(
1√
x2+y2

)
√
x2 + y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

are not continuous since lim
(x,y)→(0,0)

fx(x, y) and lim
(x,y)→(0,0)

fy(x, y) diverge. This example

shows the differentiablity does not imply the continuity of first partial derivatives (ii
does not imply i).

3. Chain Rule

(a) Special Case: Let f(x, y) and x = x(t), y = y(t), we want to find the derivative of f
with respect to t. We call the linearization of f(x, y), we have

∆f(x, y) = f(a+ ∆x, b+ ∆y)− f(a, b) = f1(a, b)∆x+ f2(a, b)∆y

If we divide ∆t on both sides, we have

∆f

∆t
=
∂f

∂x

∆x

∆t
+
∂f

∂y

∆y

∆t

If we take ∆x→ 0, it is plausible that

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Differentiation of Multivariable Functions 29



Theorem 3. If z = f(x, y) with continuous first partial derivatives, and if x
and y are differentiable functions of t, then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

Proof. Let f(x(t), y(t)) = g(t), x = x(t) and y = y(t). Then
dz

dt
= lim

h→0

g(t+ h)− g(t)

h
=

lim
h→0

f(x(t+ h), y(t+ h))− f(x(t), y(t))

h
= lim

h→0

f(x(t+ h), y(t+ h))− f(x(t), y(t+ h))

h
+

f(x(t), y(t+ h))− f(x(t), y(t))

h
. By the definition and the chain rule of single variable,

the first part of the limit is fx(x, y)x′(t) and the second part of the limit is fy(x, y)y′(t).
Therefore we have

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

(b) General Case: Let z = f(x, y), x = x(t, s) and y = y(t, s). If we want to find the
∂z

∂t
and

∂z

∂s
, we could make a similar guess as the special case.

Theorem 4. Let z = f(x, y) where x = x(s, t) and y = y(s, t). Suppose that

• p = x(a, b) and q = y(a, b),

• the first partial derivatives of x and y exist at the point (a, b), and

• f is differentiable at the point (p, q).

Then z = z(s, t) = f(x(s, t), y(s, t)) has first partial derivatives with respect to
s and t at (a, b) and

zs(a, b) = fx(p, q)xs(a, b) + fy(p, q)ys(a, b)

zt(a, b) = fx(p, q)xt(a, b) + fy(p, q)yt(a, b)

That is,
∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

Proof. As the proof in single variable, we construct

E(h, k) =


0 (h, k) = (0, 0)
f(p+ h, q + k)− f(p, q)− hfx(p, q)− kfy(p, q)√

p2 + q2
(h, k) 6= (0, 0)
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which is continuous since f(x, y) is differentiable (p, q). Then we have

f(p+ h, q + k)− f(p, q) = hfx(p, q) + kfy(p, q) +
√
p2 + q2E(h, k)

Let h = x(a + σ, b) − x(a, b) and k = y(a + σ, b) − y(a + σ, b). Then we divide σ on
both sides

f(p+ h, q + k)− f(p, q)

σ
=
hfx(p, q) + kfy(p, q) +

√
p2 + q2E(h, k)

σ

Since lim
σ→0

h

σ
= lim

σ→0
=
x(a+ σ, b)− x(a, b)

σ
= xs(a, b) and similarly lim

σ→0

k

σ
= ys(a, b), if

we take the σ → 0, (h, k)→ (0, 0) and then

zs(a, b) = fx(p, q)xs(a, b) + fx(p, q)xs(a, b)

Similarly, we also have zt(a, b) = fx(p, q)xt(a, b) + fx(p, q)xt(a, b).

4. Direction Derivatives

(a) Definition
We have partial derivatives indicating the changing rate along x and y direction. Then
we want to find the changing rate along an arbitrary direction ~u = 〈u1, u2〉

x

y

z

~u = 〈u1, u2〉

Definition 9. Let ~u = 〈u1, u2〉 be a unit vector where u2
1 + u2

2 = 1. The
directional derivative of f(x, y) at (a, b) in the direction of ~u is the rate of
change of f(x, y) with respect to distance measured at (a, b) along a ray in the
direction of ~u in the xy-plane. This directional derivative is given by

D~uf(a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h

The limit is also equivalent to

D~uf(a, b) =
d

dt

∣∣∣∣
t=0

f(a+ tu1, b+ tu2)
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if the derivative exists. Then if f is differentiable, we could evaluate the derivative by
chain rule,

D~uf(a, b) = u1f1(a, b) + u2f2(a, b)

This is plausible if we consider the linearization of f : f(x, y) ≈ f(a, b) + f1(a, b)(x −
a) + f2(a, b)(y − b).

x

y

z

~u = 〈u1, u2〉

We could rearrange the equation,

f(a+ u1∆, y + u2∆)− f(a, b) ≈ f1(a, b)u1∆ + f2(a, b)u2∆

Divide ∆ on both sides,

f(a+ u1∆, y + u2∆)− f(a, b)

∆
≈ f1(a, b)u1 + f2(a, b)u2

Take the limit ∆→ 0,

D~uf(a, b) = u1f1(a, b) + u2f2(a, b)

(b) Gradient
The direction derivative could be rewritten as

D~uf(a, b) = u1f1(a, b) + u2f2(a, b) = 〈u1, u2〉 · 〈f1(a, b), f2(a, b)〉

We could see 〈f1(a, b), f2(a, b)〉 seems to be a general constant vector of function f .
Therefore we want to define it as the gradient.

Definition 10. At any point (x, y) where the first partial derivatives of the
function f(x, y) exist, we define the gradient vector ∇f(x, y) = gradf(x, y) by

∇f(x, y) = gradf(x, y) = 〈fx(x, y), fy(x, y)〉

Then we would have a theorem to evaluate the directional derivatives.

Theorem 5. If f is differentiable at (a, b) and ~u = 〈u1, u2〉 is a unit vector, then
the directional derivative of f at (a, b) in the direction of ~u is given by

D~uf(a, b) = ~u · ∇f(a, b)
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Proof. By chain rule, we have D~uf(a, b) =
d

dt

∣∣∣∣
t=0

f(a+ tu1, b+ tu2) = ~u · ∇f(a, b).

Corollary: If f(x, y) is differentiable at (a, b), then we have D~uf(a, b) = ~u·∇f(a, b) =
|∇f(a, b)||~u| cos θ = |∇f(a, b)| cos θ where θ is the angle between ∇f(a, b) and ~u.

Note: If f(x, y) is not differentiable at (a, b), the gradient is still defined as ∇f(a, b) =
〈fx(a, b), fy(a, b)〉 and the directional derivative is still defined as the limit D~uf(a, b) =

lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h
provided the limit exists. However, the theorem

D~uf(a, b) = ~u · ∇f(a, b) if not necessary to be true. Let’s loot at an example.

Example 15. Consider f(x, y) =


xy2

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)
. Since lim

(x,y)→(0,0)
x=y

f(x, y) =

lim
x→0

x3

x2 + y4
does not exist, we know f(x, y) is not continuous and therefore f(x, y)

is not differentiable at (0, 0). By definition, we still have ∇f(0, 0) = 〈0, 0〉 and

D~uf(0, 0) = lim
t→0

1

t
[f(tu1, tu2)− f(0, 0)] = lim

t→0

u1u
2
2

u2
1 + u4

2t
2

=


u2

2

u1

u1 6= 0

0 u1 = 0
. However,

D~uf(0, 0) 6= ∇f(0, 0) · ~u.

(c) Geometry Properties
We want to explore the geometry properties of directional vector and gradients. First
of all, let’s look at few examples.

Example 16. Consider the function f(x, y) = x2 +y2 with the level curve f(x, y) = 2.
The gradient of f(x, y) at (1, 1) is ∇f(1, 1) = 〈2, 2〉 and the tangent line of the level
curve x2+y2 = 2 at (1, 1) is x+y = 2. We could see the gradient vector is perpendicular
to the tangent line of the level curve at (1, 1).

x

y

x+ y = 2

∇f(1, 1) = 〈2, 2〉

√
2

x2 + y2 = 2

Example 17. Consider the function f(x, y) = x2 + y2 + z2 with the level curve
f(x, y, z) = 3. The gradient of f(x, y, z) at (1, 1, 1) is ∇f(1, 1, 1) = 〈2, 2, 2〉 and the
tangent plant of the level curve x2 + y2 + z2 = 3 is x + y + z = 3. We could see the
gradient vector is perpendicular to the tangent to the line of the level curve at (1, 1, 1).
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x

y

√
3 y

x+ y + z = 3

∇f(1, 1, 1) = 〈2, 2, 2〉

x2 + y2 + z2 = 3

Example 18. Consider the function f(x, y) = xy with f(x, y) = 1 and f(x, y) = 2.
We know the gradient vector of f(x, y) at (1, 1) is ∇f(1, 1) = 〈1, 1〉. Recall the
changing rate along direction ~u is D~uf = |∇f | cos θ where θ is the angle between
∇f(1, 1) and ~u. Then −|∇f | ≤ D~uf ≤ |∇f |. Then the fast increasing rate at (1, 1) is
|∇f(1, 1)| =

√
2 when θ = 0 and the fast decreasing rate at (1, 1) is−|∇f(1, 1)| = −

√
2

when θ = π. Notice when θ =
π

2
, D~uf(1, 1) = 0. This indicates that along the

direction perpendicular to the gradient vector, f(x, y) remains unchanged, i.e. is the
level curve. This explains why the gradient vector ∇f(1, 1) = 〈1, 1〉 is perpendicular
to the tangent line x+ y = 2 of the level curve f(x, y) = 1.

x

y

xy = 1

xy = 2

In summary, if∇f(x, y) 6= ~0 and f(x, y) is differentiable at (a, b), we have the following
geometry properties:

i. At (a, b), f(x, y) increase most rapidly with the rate |∇f(a, b)| in the direction of
∇f(a, b) and f(x, y) decrease most rapidly with the rate −|∇f(a, b)| in the direc-
tion of ∇f(a, b).
Proof. We haveD~uf(a, b) = |∇f(a, b)| cos θ. The maximum ofD~uf(a, b) is |∇f(a, b)|
with θ = 0 and the minimum of D~uf(a, b) is −|∇f(a, b)| with θ = π.

ii. ∇f(a, b) is a normal vector to the level curve of f that passes through (a, b). The
rate of change of f(x, y) at (a, b) is zero in directions tangent to the level curve of
f that passes through (a, b).
Proof. Let ~r(t) = 〈x(t), y(t)〉 be the parameterized curve of the level curve and
x(0) = a, y(0) = b. Therefore f(x(0), y(0)) = f(a, b). Take the derivative near
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t = 0 with respect to t, we have

fx(x(0), y(0))
dx

dt

∣∣∣∣
t=0

+ fx(x(0), y(0))
dy

dt

∣∣∣∣
t=0

= 0

This is also ∇f(0, 0) · d~r
dt

= 0. Therefore ∇f(a, b) is perpendicular to the tangent

vector of
d~r

dt
to the level curve at (a, b). Therefore, the changing rate along the

tangent line of the level curve at (a, b) is D~uf(a, b) = |∇f(a, b)| cos
π

2
= 0.

5. Implicit Differentiation

(a) Case 1: Given F (x, y, z) = 0 which is locally differentiable near (x0, y0, z0), there
is 1 constraint equation and then 1 dependent variable and 3 − 1 = 2 independent
variables. We hope to find the derivative of z with respect to x and y if possible. This
means that we assume we could find z = z(x, y). First, we take the derivative with
respect to x and y, 

F1(x, y, z) + F3(x, y, z)
∂z

∂x
= 0

F2(x, y, z) + F3(x, y, z)
∂z

∂y
= 0

If F3(x0, y0, z0) 6= 0, we could solve

∂z

∂x

∣∣∣∣
(x0,y0)

= −F1(x0, y0, z0)

F3(x0, y0, z0)

and
∂z

∂y

∣∣∣∣
(x0,y0)

= −F2(x0, y0, z0)

F3(x0, y0, z0)

And this indicates that we could find z = z(x, y) at (x0, y0). Also, we could make a
linear approximation of z = z(x, y) at (x0, y0),

z(x, y) ≈ L(x, y) = z0 +
∂z

∂x

∣∣∣∣
(x0,y0)

(x− x0) +
∂z

∂y

∣∣∣∣
(x0,y0)

(y − y0)

with the error term E(x, y) = z(x, y)−L(x, y). This would be a proper approximation

if lim
(x,y)→(x0,y0)

|E(x, y)|
|(x, y)− (x0, y0)|

= 0.

Notice that if F2 6= 0, we could find y = y(x, z) and the corresponding derivatives and
if F3 6= 0, we could find x = x(y, z) and the corresponding derivatives.

(b) Case 2: Given a system of equations

{
F (x, y, u, v) = 0

G(x, y, u, v) = 0
which are locally differ-

entiable on D and (x0, y0, u0, v0) ∈ D , there are 2 constraint equations and then 2
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dependent variables and 4− 2 = 2 independent variables. We hope to find the deriva-
tives of u and v with respect to x and y if possible. This means that we assume we
could find u = u(x, y) and v = v(x, y). First, we take the derivatives with respect to
x, 

F1(x, y, u, v) + F3(x, y, u, v)
∂u

∂x
+ F4(x, y, u, v)

∂v

∂x
= 0

G1(x, y, u, v) +G3(x, y, u, v)
∂u

∂x
+G4(x, y, u, v)

∂v

∂x
= 0

This could be written as (
F3 F4

G3 G4

)
︸ ︷︷ ︸

J

∂u∂x∂v
∂x

 =

(
−F1

−G1

)

With Cramer’s Rule, if |J | 6= 0, we know the solutions are

∂u

∂x
=

∣∣∣∣−F1 F4

−G1 G4

∣∣∣∣∣∣∣∣F3 F4

G3 G4

∣∣∣∣ =
G1F4 − F1G4

F3G4 −G3F4

,
∂v

∂x
=

∣∣∣∣F3 −F1

G3 −G1

∣∣∣∣∣∣∣∣F3 F4

G3 G4

∣∣∣∣ =
G3F1 − F3G1

F3G4 −G3F4

Then we take the derivatives with respect to y,
F2(x, y, u, v) + F3(x, y, u, v)

∂u

∂y
+ F4(x, y, u, v)

∂v

∂y
= 0

G2(x, y, u, v) +G3(x, y, u, v)
∂u

∂y
+G4(x, y, u, v)

∂v

∂y
= 0

This could be written as (
F3 F4

G3 G4

)
︸ ︷︷ ︸

J

∂u∂x∂v
∂x

 =

(
−F2

−G2

)

With Cramer’s Rule, if |J | = 0, we know the solutions are

∂u

∂x
=

∣∣∣∣−F2 F4

−G2 G4

∣∣∣∣∣∣∣∣F3 F4

G3 G4

∣∣∣∣ =
G2F4 − F2G4

F3G4 −G3F4

,
∂v

∂x
=

∣∣∣∣F3 −F2

G3 −G2

∣∣∣∣∣∣∣∣F3 F4

G3 G4

∣∣∣∣ =
G3F2 − F3G2

F3G4 −G3F4

Therefore, we could find out u = u(x, y) and v = v(x, y). Also, we could make a linear
approximation of u(x, y) and v(x, y) around (x0, y0),

(
u

v

)
≈
(
u0

v0

)
+


∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y


∣∣∣∣∣∣∣
(x0,y0)

(
x− x0

y − y0

)
=
−→
L (x, y)
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where the error term is

−→
E (x, y) =

(
u(x, y)

v(x, y)

)
−
−→
L (x, y)

and this is a proper approximation if lim
(x,y)→(x0,y0)

|
−→
E (x, y)|

|(x, y)− (x0, y0)|
= 0.

Notice, it is also possible find other solutions to the system of equations and the
derivatives if the corresponding determinants are non-zero. For example, we could
have {

x = x(u.v)

y = y(u, v)
(A)

and {
x = x(y.v)

u = u(y, v)
(B)

For the derivative of (A), we use

(
∂x

∂v

)
u

to indicate u is independent and held un-

changed. For the derivative of (B), we use

(
∂x

∂v

)
y

to indicate y is independent and

held unchanged. This could reduce the ambiguity.

(c) General Case

Recall the determinants with form as

∣∣∣∣F3 F4

G3 G4

∣∣∣∣ are quite common. We want to give a

general definition of them.

Definition 11. The Jacobian determinant (or simply Jacobian) of the n func-
tions, F (1)(x1, . . . , xm) = 0, . . . , F (n)(x1, . . . , xm) = 0 where m ≥ n, with respect
to n variables xm1 , . . . , xmn where m1, . . . ,mn ∈ {1, . . . ,m} is the determinant

∂(F (1), . . . , F (n))

∂(xm1 , . . . , xmn)
=

∣∣∣∣∣∣∣
F

(1)
m1 · · · F

(1)
mn

...
. . .

...

F
(n)
m1 · · · F

(n)
mn

∣∣∣∣∣∣∣
Besides, let’s explore how the number of equations and the number of variables deter-
mine the number of dependent and independent variables. Let m ≥ n and

F (1)(x1, · · · , xm) = 0

F (2)(x1, · · · , xm) = 0
...

F (n)(x1, · · · , xm) = 0
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There are n equations and m variables. Then we have n constraint equations and n
dependent variables. Then there are m− n independent variables.

With the above preparation, we could have the implicit function theorem.

Theorem 6. (Implicit Function Theorem) Consider a system of n equations in
n+m variables 

F (1)(x1, · · · , xm, y1, · · · , yn) = 0

F (2)(x1, · · · , xm, y1, · · · , yn) = 0
...

F (n)(x1, · · · , xm, y1, · · · , yn) = 0

and a point P0 = (a1, . . . , am, b1, . . . , bn) that satisfies the system. Suppose each
of the functions F (i) has continuous first partial derivatives with respect to each
of the variables xj and yk (i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , n), near P0.
Finally, suppose that

∂(F (1), . . . , F (n))

∂(y1, . . . , yn)
6= 0

Then the system can be solved for y1, . . . , yn as functions of x1, . . . , xm near P0.
That is, there exist functions

φ1(x1, . . . , xm), . . . , φn(x1, . . . , xm)

such that
φj(a1, . . . , am) = bj (j = 1, . . . , n)

and such that
F (1)(x1, · · · , φ1(x1, . . . , xm), . . . , φn(x1, . . . , xm)) = 0

F (2)(x1, · · · , φ1(x1, . . . , xm), . . . , φn(x1, . . . , xm)) = 0
...

F (n)(x1, · · · , φ1(x1, . . . , xm), . . . , φn(x1, . . . , xm)) = 0

hold for all (x1, . . . , xm) sufficiently near (a1, . . . , am). Moreover,

∂φi
∂xj

=

(
∂yi
∂xj

)
x1,...,xj−1,xj ,...,xm

= −

∂(F (1), . . . , F (n))

∂(y1, . . . , xi, . . . , yn)

∂(F (1), . . . , F (n))

∂(y1, . . . , yj, . . . , yn)

6. Taylor Theorem

(a) General Case
Let f(x1, . . . , xn) and the 1st, 2nd, 3rd, ..., kth partial derivatives are continuous on a
neighbourhood of ~a = (x0

1, . . . , x
0
n). Consider a direction unit vector ~u and the neigh-
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bour points of ~a along the direction of ~u could be written as ~x = ~a+ t~u.

~u

~a

~x = ~a+ t~u

~v = t~u

Then we have f(~x) = f(~a+ t~u) = g(t). By Taylor’s theorem of single variable,

g(t) ≈ g(0) + g′(0)t+
1

2
g′′(0)t2 + · · ·+ 1

k!
g(k)tk

To expand g(t), we have to find g(i)(t) (i ∈ {1, . . . , k}). We know g′(t) is just the
directional derivative

g′(t) =
d

dt
f(~a+ t~u) = ∇f(~a+ t~u) · ~u

Then we let ~u·∇ = u1
∂

∂x1

+· · ·+un
∂

∂xn
be a operator applied on function f(x1, . . . , xn).

Then it is not hard to exam that

g(k)(t) = (~u · ∇)kf(~a+ t~u) = (~u · ∇)kf(~x)

Therefore we find out that

g(t) ≈ f(~a) + (~u · ∇)f(~a)t+
1

2
(~u · ∇)2f(~a)t2 + · · ·+ 1

k!
(~u · ∇)kf(~a)tk

= f(~a) + (~v · ∇)f(~a) +
1

2
(~v · ∇)2f(~a) + · · ·+ 1

k!
(~v · ∇)kf(~a) = Pk(~x)

,which is the kth order of Taylor polynomial. Then the error term, by Taylor’s theorem
of single variable is

E(~x)− Pk(~x) =
g(k+1)(s)

(k + 1)!
tk+1 =

1

(k + 1)!
(~v · ∇)k+1f(~a+ s~u)

where 0 ≤ s ≤ k. There the Taylor theorem converges if and only if lim
t→0

E(~x)

tk
= 0.

This requires the error |E(~x)| ≤ |~v|k+1. In summary, we state the Taylor theorem of
multivariables.
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Theorem 7. Let f(x1, . . . , xn) be a k+1 times continuously differentiable func-
tion at ~a ∈ Rn. Then for ~x = ~a + t~u where ~u is the unit directional vector, we
have

f(x) = Pk(~x) + E(~x)

where

f(~x) = f(~a) + (~v · ∇)f(~a) +
1

2
(~v · ∇)2f(~a) + · · ·+ 1

k!
(~v · ∇)kf(~a)

and

E(~x) =
1

(k + 1)!
(~v · ∇)k+1f(~a+ s~u) (0 ≤ s ≤ t)

and lim
t→0

E(~x)

tk
= 0.

(b) Special Case: Second Order Polynomial with Two Variables
Let f(x, y) be a 3 times continuously differentiable function at ~a = 〈a, b〉 with the
unit direction vector ~u = 〈u1, u2〉. Then the second order approximation of f(x, y) =
f(a+ tu1, b+ tu2) is

f(x, y) ≈ f(a, b) + t~u · ∇f(a, b) +
1

2
(t~u · ∇)2f(a, b)

= f(a, b) + tu1f1(a, b) + tu2f2(a, b)︸ ︷︷ ︸
first order

+
1

2
t2u2

1f11(a, b) +
1

2
t2u1u2f12(a, b) +

1

2
t2u2u1f21(a, b) +

1

2
t2u2

2f(a, b)︸ ︷︷ ︸
second order

The first order term is simply∇f(a, b)·t~u. And the second order term could be written
as

1

2
(tu1, tu2)

(
f11 f12

f21 f22

)(
tu1

tu2

)
=

1

2
(t~u)THf2(t~u)

where Hf2 is a symmetric matrix called Hessian matrix. Then the approximation could
also be written as

P2(x, y) = f(a, b) +∇f(a, b) · 〈x− a, y − b〉+
1

2
〈x− a, y − b〉Hf2

(
x− a
y − b

)
If the third order partial derivatives of f are continuous and bounder for (x, y) in a
neighbourhood of (a, b) then the error

|f(x, y)− P2(x, y)| ≤ M

3!
|(x, y)− (a, b)|3

where M ∈ R depends on partial derivatives of f .
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Notice that if we have more than two variable, then the Hessian matrix of the second
order term is

Hfn =

f11 · · · f1n
...

. . .
...

fn1 · · · fnn


(c) Special Case: Reducing to One Variable

Sometimes we could reduce the multivariable function to one or a few single variable
function to apply the Taylor’s Theorem. There are two methods: substitution and
decomposition.

Substitution usually work for the linear combination of the variables. For example,
f(x, y) = e2x+3y at (0, 0) could be reduced to g(t) = et by substitution t = 2x + 3y

and expanded as g(t) = 1 + t+
1

2!
t2 +

1

3!
t3 + · · · . And the approximation is f(x, y) ≈

1 + (2x+ 3y) +
(2x+ 3y)2

2
+

(2x+ 3y)3

6
+ · · · .

Decomposition is more flexible. For example, we can decompose f(x, y) = ex sin(y) =(
1 + x+

x2

2!
+
x3

3!
+ · · ·

)(
y − y5

3!
+
y5

5!
− · · ·

)
.

7. Optimization

(a) Definition
Recall the definitions of extreme values.

Definition 12. We say f(x, y) has a local maximum at (a, b) if f(x, y) ≤ f(a, b)
for all points (x, y) in the domain of f sufficiently close to (a, b) and f(x, y) has
a local minimum at (a, b) if f(x, y) ≥ f(a, b) for all points (x, y) in the domain
of f sufficiently close to (a, b). We say f(x, y) has a global maximum at (a, b) if
f(x, y) ≤ f(a, b) for all points (x, y) in the domain of f(x, y) and f(x, y) has a
global minimum at (a, b) if f(x, y) ≥ f(a, b) for all points (x, y) in the domain
of f(x, y).

For example, we have

Local Minimum
Local Minimum/
Global Minimum

Nothing
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(b) Necessary Conditions of Extreme Values and Potential Extreme Points
As the extreme value for single variable function, it is hard to find the extreme value of
multivariables directly but we could find the potential points satisfying the necessary
condition.

Theorem 8. If f(~x) has local minimum or maximum at ~a, then we have one of
the following:

i. ~a is on the boundary of D(f),

ii. ∇f(~a) does not exist, or

iii. ∇f(~a) = 0.

Proof. Without loss of generality, let f(~x) has a local minimum at ~a. We assume
~a is not on the boundary and there exists the gradient ∇f(~a). Not on the bound-
ary imply that the neighbourhood is in the domain of the function. Let gj(xj) =
f(a1, . . . , aj−1, xj, aj+1, . . . , an) which has a local minimum at aj and the neighbour-

hood of aj is in the domain. Since g′(aj) =
∂f

∂xj
(aj) exists,

∂f

∂xj
(aj) = 0 by interior

extreme theorem. Therefore we have ∇f(~a) = 0.

Example 19. Consider the following three functions.

x

y

z

x

y

z

x

y

z

(D : x2 + y2 ≤ 1)

f(x, y) = y + 3 f(x, y) =
√
x2 + y2 f(x, y) = x2 + y2

The first function has a local maximum at (0, 1) and local minimum at (0,−1), where
are both on the boundary. The second function has a local minimum at (0, 0), where
∇f(0, 0) does not exist. And the third function has a local minimum at (0, 0) where
∇f(0, 0) = 0.

Since the technique applied to three cases in the theorem are different, we want to
define them separately.
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Definition 13. We say ~a is the critical point of f(~x) if ∇f(~a) = 0. We say ~a
is the singular point of f(~x) if ∇f(~a) does not exist. We say ~a is the boundary
point of f(~x) if ~a is on the boundary of the domain f(~x).

(c) Classification of Critical Points
Let’s first discuss how to deal with the critical points. To find out the extreme points
among critical points, we have to classify the critical points.

Assume f and first, second order partial derivatives are continuous on a neighbour of
~a. With ∇f(~a) = 0, we have

f(~x) = f(~a) +
1

2
(~x− ~a)THf(~a)(~x− ~a)︸ ︷︷ ︸

R(~x)

+O
(
(~x− ~a)2

)
We know when ~x = ~a, R(~x) and O ((~x− ~a)2) = 0.
Then let ~x 6= ~a.

i. If for all ~x ∈ Rn/~a sufficiently close to ~a, R(~x) > 0, we can define Hf(~a) as positive
definite and f(~x) > f(~a) since O ((~x− ~a)2) is negligible. We could see ~a is the local
minimum.

ii. Similarly, if for all ~x ∈ Rn/~a, R(~x) < 0, we can define Hf(~a) as negative definite and
f(~x) < f(~a) since O ((~x− ~a)2) is negligible. We could see ~a is the local maximum.

iii. If for all ~x ∈ Rn/~a sufficiently close to ~a, R(~x) > 0 or R(~x) < 0, we say Hf(~a) is
indefinite. Since some points in the neighbour of ~a is larger than f(~a) and others
are smaller, we say ~a is a saddle point.

iv. If Hf(~a) is neither positive definite, nor negative definite nor indefinite, R(~x) is
possible to be 0 when ~x 6= ~a. Then we need more information from O ((~x− ~a)2)
and this case is inconclusive.

Let’s formalize this discussion into a theorem.

Theorem 9. (Second Derivative Test) Suppose that ~a = 〈a1, . . . , an〉 is a crit-
ical point of f(~x) = f(x1, . . . , xn) and is interior to the domain of f . Also,
suppose that all the second partial derivatives of f are continuous throughout a
neighbourhood of a, so that the Hessian matrix

Hf(~x) =

f11(~x) · · · f1n(~x)
...

. . .
...

fn1(~x) · · · fnn(~x)


is also continuous in that neighbourhood. Note that the continuity of the partials
guarantees that H is a symmetric matrix.

i. If Hf(~a) is positive definite, f(~x) has a local minimum at ~a.
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ii. If Hf(~a) is negative definite, f(~x) has a local maximum at ~a.

iii. If Hf(~a) is indefinite, f(~x) has a saddle point at ~a.

iv. If Hf(~a) is neither positive nor negative definite, nor indefinite, this is in-
conclusive.

Then we need a strategy to quickly determine whether the Hessian form is positive
definite, or negative definite, or indefinite or inconclusive. Let’s first check a special
case: diagonal matrix. Let

Hf(~a) =

λ1 0
. . .

0 λn


Then R(~x) =

1

2
[λ1(x1 − a1)2 + · · ·+ (xn − an)2] and

f(~x) ≈ f(a) +
1

2
[λ1(x1 − a1)2 + · · ·+ λn(xn − an)2]

Then we know

i. If λj > 0 for all j = {1, . . . , n}, we know Hf(~a) is positive definite and f has a local
minimum at ~a.

ii. If λj < 0 for all j = {1, . . . , n}, we know Hf(~a) is positive definite and f has a local
minimum at ~a. positive definite and f has a local minimum at ~a.

iii. If some λj < 0 and other λj > 0 for all j = {1, . . . , n}, we know Hf(~a) is indefinite
and f has a saddle point at ~a.

iv. If some λj ≥ 0 and other λj ≤ 0 for all j = {1, . . . , n}, it would be inconclusive.

Then for an arbitrary Hessian matrix, we could diagonalize it. Let A = Hf(~a) which is
symmetric, then we could change coordinates to have A = SDS−1 where D is diagonal.
Also, we could use the following test. Let

M1 = |f11|, M2 =

∣∣∣∣f11 f12

f21 f22

∣∣∣∣ , . . . ,Mn =

∣∣∣∣∣∣∣
f11 · · · f1n
...

. . .
...

fn1 · · · fnn

∣∣∣∣∣∣∣
Then we have

i. If M1, . . . ,Mn are all > 0, then Hf(~a) is positive definite.

ii. If M1 < 0,M2 > 0,M3 < 0, . . . ,, then Hf(~a) is negative definite.

iii. If {Mi} is in other sequences with det(Hf(~a)) 6= 0, Hf(~a) is indefinite.

iv. If det(Hf(~a)) = 0, this would be inconclusive.
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(d) Lagrange Multipliers
Then we want to find out how to find the extreme on the boundary, which is basically
a constraint curve or surface. One way is to parameterize the curve and to plug into
the target function and then to optimize with respect to the parameters. Another way
is to apply Lagrange multipliers. Let’s start with a single example.

Example 20. We want to maximize f(x, y) = xy subject to x2 + y2 = 1. To be
more straightforward, we draw the level curve of f(x, y) and the constraint equation
x2 + y2 = 1.

y

x

x2 + y2 = 1

xy = 1

We could see the function reaches the maximum 2 when the level curve f(x, y) = 2 is
tangent to the constraint curve g(x, y) = x2 + y2 − 1 = 0. This means the gradient
of the function f(x, y) is parallel to the gradient of the constraint equation g(x, y):
∇f = λ∇g.

∇g

∇f

This actually makes sense. If ∇f is not parallel to ∇g when the level curve is
f(x, y) = M ′, we could decompose ∇f in the direction parallel to ∇g and in the
direction perpendicular to ∇g.

∇g

∇f

∇f‖

∇f⊥

Then if we go along the direction of ∇f⊥ which is tangent to the constraint curve,
f(x, y) would increase and M ′ is not the maximum.
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We want to generalize the idea in the example. We construct the Lagrange function
L(x, y, λ) = f(x, y) − λg(x, y) and the extreme value is possible to reached when

∇L = ~0 if the gradient ∇f and ∇g exist and are nonzero.

Theorem 10. (Lagrange Multipliers) Suppose that f and g have continuous
first partial derivatives near the point P0(x0, y0) on the curve C with equation
g(x, y) = 0. Suppose also that, when restricted to points on the curve C, the
function f(x, y) has a local maximum or minimum value at P0. Finally, suppose
that

i. P0 is not an endpoint of C,

ii. ∇g(P0) 6= ~0.

Then there exists a number λ0 called Lagrange multiplier such that (x0, y0, λ0)
is a critical point of the Lagrange function L(x, y, λ) = f(x, y)− λg(x, y).

Proof. First, (i) and (ii) guarantee f and g are smooth enough to have tangent lines
and gradients. We assume that ∇f is not parallel to ∇g. Then we decompose ∇f
in the direction perpendicular to ∇g and parallel to ∇g. By assumption, ∇f⊥ 6= ~0
and this is also the direction of the tangent line. Therefore, if we go along the curve,
f would increase or decrease and at this point f is not the maximum or minimum.
Therefore, ∇f is parallel to ∇g. And since ∇g 6= ~0, there exists a number λ0 such
that ∇f = λ0∇g. And ∇L 6= ~0 is just fx − λ0gx = 0, fy − λ0gy = 0 and g(x, y) = 0.
The last one is just the constraint equation and the first two are ∇f = λ0∇g.

Note: This theorem only state the necessary condition of a extreme value point such
that ∇g 6= 0 and the point is not on the curve. However, when we are seeking for the
extrema, we first assume the existence of the solution of ∇L = 0 and we want to solve
the equations 

∂L
∂x

=
∂f

∂x
− λ∂g

∂x
= 0

∂L
∂y

=
∂f

∂y
− λ∂g

∂y
= 0

∂L
∂λ

= g(x, y) = 0

where the third equation is just the constraint equation and satisfied by default. How-
ever it is not, in fact, necessary to have a solution.

Note: This theorem only discuss the extreme points which is not the the endpoint of
the curve, ∇g, ∇f exist and ∇g is non-zero. Therefore, in total, we have to check:
the points such that

i. ∇L = ~0,

ii. ∇g = 0,

iii. ∇g or ∇f does not exist,
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iv. are endpoints of the constraint curve.

Let’s check an example.

Example 21. We want to maximize f(x, y) = 2xy subject to x2 + 4y2 = 4. Let the
Lagrange equation to be

L(x, y, λ) = xy − λ(x2 + 4y2 − 4)

There is no endpoints and ∇f , ∇g exist and ∇g 6= 0. Then we only have to solve the
equations 

∂L
∂x

= 2y + 2λx = 0 (A)

∂L
∂y

= 2x+ 8λy = 0 (B)

∂L
∂λ

= x2 + 4y2 − 4 = 0 (C)

Since (C) is satisfied by default, we only have to deal with (A) and (B). Rewrite
(A) and (B) as 2λx = 2y and 8λy = 2x and divide (A) by (B). We could finally get

x2 = 4y2 and plug it into the constraint equation, which gives the solution

(
√

2,

√
2

2

)
,(

√
2,−
√

2

2

)
,

(
−
√

2,

√
2

2

)
and

(
−
√

2,−
√

2

2

)
. Since first two points have the value

2 and last two points have the value -2. we know minimum of f(x, y) subject to

x2 + 4y2 = 4 is 2 at

(
√

2,

√
2

2

)
and

(
−
√

2,−
√

2

2

)
.

Note: We could generalize this method further more. First, we could have more
variables. For example, we could optimize f(x, y, z) subject to g(x, y, z) = 0. Also,
we could have more constraint equations. For example, we could optimize f(x, y, z)
subject to g1(x, y, z) = 0 and g2(x, y, z) = 0. The Lagrange equation is

L(x, y, z, λ) = f(x, y, z)− λ1g1(x, y, z)− λ2g2(x, y, z)

And for ∇L = ~0, we have to solve

∂L
∂x

=
∂f

∂x
− λ1

∂g1

∂x
− λ2

∂g2

∂x
= 0 (A)

∂L
∂y

=
∂f

∂y
− λ1

∂g1

∂y
− λ2

∂g2

∂y
= 0 (B)

∂L
∂z

=
∂f

∂z
− λ1

∂g1

∂z
− λ2

∂g2

∂z
= 0 (C)

∂L
∂λ1

= g1(x, y, z) = 0 (D)

∂L
∂λ2

= g2(x, y, z) = 0 (E)
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Notice that (D) and (E) are just constraint equations and are satisfied by default.
The geometric meaning is that the level curve (c) is tangent to the constraint curve
determined by two constraint equations.

C : g1, g2

S : f(x, y) = c

To have that, we need ∇f = λ1∇g1 + λ2∇g2 as a linear combination of the gradients
of constraint equations.

g1 = 0 g2 = 0

∇g2

∇g1

∇f

T

However, this is based on the assumption that
−→
T exists and is non-zero, ∇f exists

and the extreme point is not an endpoint. Therefore, in general, we have to check the
points such that

i. ∇L = ~0,

ii. T = ∇g1 ×∇g2 = 0 (one of gradients is zero or two gradients are parallel),

iii. ∇f , or ∇g1 or ∇g2 does not exist, and

iv. are endpoints of the constraint curve.

Finally, we want to explore a little bit further more: what does the the Lagrange
multiplier mean? Let f(x, y) maximize to M at (x0, y0) subject to g(x, y) = c, then
the rate of M with respect to c is

∂M

∂c
= λ0

It’s a very surprising result. Let’s prove it. Since we want to vary c, then x0(c), y0(c)
and λ0(c) are all functions of c. Since the Lagrange function is defined as

L(x, y, λ) = f(x, y)− λ(g(x, y)− c)

Differentiation of Multivariable Functions 48



it is also a function of c. Then at the extreme point, we write it as

L(x0(c), y0(c), λ0(c), c) = f(x0(c), y0(c))− λ0(c)(g(x0(c), y0(c))− c)

On one aspect, g(x0(c), y0(c))− c = 0 and f(x0(c), y0(c)) = M , then

L(x0(c), y0(c), λ0(c), c) = M

On another aspect, we have let

L∗(c) = L(x0(c), y0(c), λ0(c), c)

as a single variable function. Then by chain rule, we have

dL∗

dc
=
∂L
∂y0

dy0

dc
+
∂L
∂λ0

dλ0

dc
+
∂L
∂x0

dx0

dc
+
∂L
∂c

dc

dc

Since ∇L = ~0, we have
∂L
∂x0

= 0,
∂L
∂y0

= 0,
∂L
∂λ0

= 0. Also,
dc

dc
= 1. Therefore, we have

dL∗

dc
=

�
�
�
��∂L

∂y0

dy0

dc
+

�
�

�
��∂L

∂λ0

dλ0

dc
+

�
�

�
��∂L

∂x0

dx0

dc
+
∂L
∂c �

�
�dc

dc
=
∂L
∂c

Also, we have
∂L
∂c

=
∂

∂c
(f(x0, y0)− λ0(g(x0, y0)− c)) = λ0

Therefore we have
dM

dc
=
dL∗

dc
=
∂L
∂c

= λ0

(e) Extreme Values on Compact Domains
Let’s summarize the entire discussion above. We have discussed how to find extreme
values on an open domain and how to find extreme values on a constraint curves but
we have not discuss the existence of extreme values. The following theorem discuss the
existence of extreme value on a compact, which means bounded and closed, domain.

Theorem 11. If D ⊂ Rn is compact and f is continuous on D , then f attains
global minimum and maximum on D .

Notice that boundedness guarantees that f is bounded and closedness guarantees that
the extreme values could be attained on D .

Then let’s summarize the procedure of finding extreme values on a compact domain.

i. Find ∇f .

ii. Find all points where ∇f = 0 or does not exist and check whether they are local
extreme.

iii. Find the local extremes of f on the boundary of D by Lagrange multipliers.

iv. Compare all the local extremes to find out the global extremes.
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Integration of Multivariable Functions

1. Double Integral

(a) Definition
As the area under the curve y = f(x), we are also interested what the volume under
the surface z = f(x, y).

x

y

z

z = f(x, y)

D

Then we are going to imitate the definition of integral of one variable over [a, b] to give
the definition of double integral of two variables over D ⊂ R2.

Definition 14. Let D to be closed and bounded and f(x, y) is defined and
bounded on D. Then we define the double integral in next four steps:
1◦ Partition the domain D into n subdomains ∆σ1, . . . ,∆σn such that

∆σ1 ∪ · · · ∪∆σn = ∅ and ∆σ1 ∩ · · · ∩∆σn = D

2◦ Pick up all the sample (representative) points P ∗i (x∗i , y
∗
i ) ∈ ∆σ∗i

3◦ Add up all the small volumes
n∑
i=1

f(x∗i , y
∗
i )∆σi which is called

Riemann sum

4◦ Let ∆xi to be the largest difference in x of ∆σi and ∆yi to be the largest

difference in y of ∆σi. Define λ = max
i

√
∆2
i + ∆y2

i . Then take the limit

lim
λ→0

n∑
i=1

f(x∗i , y
∗
i )∆σi.

D

P ∗i

∆σi
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Then we say f is integrable over the domain D and has double integral

I =

∫∫
D

f(x, y) dA

if the limit lim
λ→0

n∑
i=1

f(x∗i , y
∗
i )∆σi = I and does not depend on the choice of ∆σi

and P ∗i .

(b) Existence:
Similar to the integral of single variable, if f(x, y) is continuous on D, then f(x, y) is
integrable on D. Also, we could tolerate some finite discontinuity to have the function
integrable.

Theorem 12. If f(x, y) is bounded on D and f(x, y) is continuous on D except
finite numbers of curves of finite length, then f(x, y) is integrable on D.

(c) Properties
Double integrals have many very similar properties as the single-variable integral. Let
D, D1, D2 ⊂ R2 and f(x, y), g(x, y) integrable over D.

i. Zero Domain:

∫∫
D

f(x, y) dA = 0 if D = ∅.

ii. Domain Composition:

∫∫
D1+D2

f(x, y) dA =

∫∫
D1

f(x, y) dA+

∫∫
D2

f(x, y) dA

if D1 ∩D2 = ∅.

iii. Integral Over One:

∫∫
D

1 dA = A where A is the area of D.

Note: In general, the integral over one of a domain is the measure of a domain.

iv. Linear Combination: Let L,M be the constants,

∫∫
D

(Lf(x, y) +Mg(x, y)) dA =

L

∫∫
D

f(x, y) dA+M

∫∫
D

g(x, y) dA.

v. Sign-preserving: If f(x, y) ≥ 0 over D, then

∫∫
D

f(x, y) dA ≥ 0.

Corollary: If f(x, y) ≥ g(x, y) over D, then

∫∫
D

f(x, y)dA ≥
∫∫

D

g(x, y) dA.

Corollary: If |f(x, y)| is integrable overD, then

∣∣∣∣∫∫
D

f(x, y) dA

∣∣∣∣ ≤ ∫∫
D

|f(x, y)| dA.

Corollary: If m ≤ f(x, y) ≤M over D, then mA ≤
∫∫

D

f(x, y) dA ≤MA where

A is the area of domain D.
Corollary (Mean Value Theorem): If the function f(x, y) is continuous on a
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closed, bounded, connected set D in the xy-plane, then there exists a point (x0, y0)

in D such that

∫∫
D

f(x, y) dA = f(x0, y0)A where A is the area of D.

vi. Symmetry

A. Let D be symmetric along x = 0. If f(−x, y) = −f(x, y),

∫∫
D

f(x, y)dA = 0. If

f(−x, y) = f(x, y),

∫∫
D

f(x, y)dA = 2

∫∫
D1

f(x, y)dA where D1 is right half of

D.

B. Let D be symmetric along y = 0. If f(x,−y) = −f(x, y),

∫∫
D

f(x, y)dA = 0. If

f(x,−y) = f(x, y),

∫∫
D

f(x, y)dA = 2

∫∫
D1

f(x, y)dA where D1 is top half of D.

C. Let D be symmetric along y = x, then

∫∫
D

f(x, y)dA =

∫∫
D

f(y, x)dA.

(d) Integral Techniques

i. Iteration in Cartesian Coordinates

Let f(x, y) integrable on D. We want to find out the integral

∫∫
D

f(x, y) dA.

x

y

z

z = f(x, y)

D
a

b

c d

A good way is to reduce the double integral to the integral of single variable. This
means we have to reduce the domain D to lines. We could first divide the domain
into lines along y direction, integrate along these lines and then integrate along x
direction.

Then we want to define domain as

D = {(x, y)|a ≤ x ≤ b, c(x) ≤ y ≤ d(x)}

Pick up x0 ∈ [a, b], then cross section under z = f(x0, y) cut by x = x0 has the the
area

A(x0) =

∫ d(x0)

c(x0)

f(x0, y) dy
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x

y

z
z = f(x, y)

a

b
a b

x

y

· · ·

x0 c(x0) d(x0)
y

z

d(x0)

c(x0)

z = f(x0, y)

Then more generally, for any x ∈ [a, b], the area of the cross section would be

A(x) =

∫ d(x)

c(x)

f(x, y) dy

Then the double integral would be the volume

V =

∫ b

a

A(x) dx =

∫ b

a

[∫ d(x)

c(x)

f(x, y) dy

]
dx

which would be ∫∫
D

f(x, y) dA =

∫ b

a

dx

∫ d(x)

c(x)

f(x, y) dy (X)

Similarly, if we define the domain as

D = {(x, y)|c ≤ y ≤ d, a(y) ≤ x ≤ b(y)}
then the double integral would be∫∫

D

f(x, y) dA =

∫ d

c

dy

∫ d(y)

a(y)

f(x, y) dx (Y)

If f(x, y) is integrable, the result evaluated by two integral techniques would be
the same and we have alternative notation of the double integral∫∫

D

f(x, y) dA =

∫∫
D

f(x, y) dxdy =

∫∫
D

f(x, y) dydx

Example 22. Evaluate

∫∫
D

x2ex
2

dx where D = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ x}.
Then the double integral would be

I =

∫ 2

0

dx

∫ x

0

x2ex
2

dy

=

∫ 2

0

x2ex
2

(x− 0) dx =

∫ 2

0

x3ex
2

dx

=
1

2

∫ 2

0

x2ex
2

d(x2) =
1

2

∫ 4

0

xex dx

= 3e4 + 1
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Notice that if we take the domain as D = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ x}, the double
integral would be ∫ 2

0

dy

∫ 2

y

x2ex
2

dx

where

∫ 2

y

x2ex
2

dx does not have analytic result.

ii. Iteration in Polar Coordinates
Sometimes the domain or the function we want to integrate has some features of
circle, i.e. contains x2 + y2 in the equations. In this case, polar coordinates would
give us a simple representation of the domain or the function, which makes the
integration easier.

The polar coordinates is defined as (r, θ) where r is the distance between the point
P and the original point and the θ is the angle between OP and the axis in positive
direction.

P (r, θ)

O
θ

r

The transformation from polar coordinate to Cartesian coordinate is{
x = r cos θ

y = r sin θ

as a projection onto the x-axis and y-axis.

P

O

θ

r

r cos θ

r sin θ

x

y

Then the integral of f(x, y) on D would be∫∫
D′
f(r cos θ, r sin θ) dA

where D′ is the representation of domain D in polar coordinates. Then our job is
to find out what is dA. A possible guess is dA = drdθ. However we need some
correction scalar since intuitively dxdy 6= drdθ. Consider the finite change ∆r and
∆θ at (r, θ), we want to find out what is ∆A.
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∆θ ∆r
r

r∆
θ

∆A

When ∆r and ∆θ are small, ∆A could be treated as a rectangle with width r∆θ
and ∆r. Then ∆A = r∆r∆θ. Then if we take the infinitely small dr and dθ, we
have

dA = rdrdθ

Then if the domain is D = {(r, θ)|α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)}

α β

r1(θ)

θ = θ0

r2(θ)

the integral would be∫∫
D

f(x, y) dA =

∫ β

α

dθ

∫ r2(θ)

r1(θ)

f(r cos θ, r sin θ)r dr dθ

Example 23. Evaluate

∫∫
D

sinx2 cos y2 dA where D = {(x, y)|x2 + y2 ≤ 1, x ≥

0, y ≥ 0}. Since the domain is symmetric along y = x.

x

y

1

We have

I =

∫∫
D

sinx2 cos y2 dA =

∫∫
D

sin y2 cosx2 dA

Then we have

2I =

∫∫
D

(sinx2 cos y2 + sin y2 cosx2) dA
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In polar coordinate, the integral would be

2I =

∫ π
2

0

dθ

∫ 1

0

r sin r3dr =
π

4

∫ 1

0

sin r2dr2

= −π
4

cos r2
∣∣1
0

= −π
4

(cos 1− 1)

Example 24. Evaluate

∫∫
D

√
x2 + y2 dA where D = {(x, y)|(x−1)2 +y2 ≤ 1, y ≥

0}. First we want to find out the representation of (x − 1)2 + y2 = 1 in polar
coordinate.

x

y

2

With expansion x2 + y2 = 2x and substitution r2 = 2r cos θ, we have r = 2 cos θ.
Then the integral would be

I =

∫ π
2

0

dθ

∫ 2 cos θ

0

r2 dr =
8

3

∫ π
2

0

cos3 θ dθ =
16

9

iii. General Case
Then we want to generalize the idea of integral in polar coordinate. Consider the
coordinate (u, v) such that the transformation{

x = x(u, v)

y = y(u, v)

is a one-to-one relationship between (u, v) and (x, y). With the substitution, we
could have ∫∫

D

f(x, y) dA =

∫∫
S

f(x(u, v), y(u, v)) dA

where S is the the representation of D in the new coordinate (u, v). We want to
apply the linear approximation near (u, v).

u
u+ du

v
v + dv

x

y

dA
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The linearization is (
dx

dy

)
=

(
xu xv
yu yv

)(
du

dv

)
By the property of determinant, we have

dxdy

dudv
=

∣∣∣∣∣∣∣∣xu xv
yu yv

∣∣∣∣∣∣∣∣ =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣
Therefore the area in the new coordinate (u, v) is

dA =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv
Up to now we obtain a very important theorem as the change of variables formula for
double integrals.

Theorem 13. (Change of Variables Formula for Double Integrals) Let x =
x(u, v) and y = y(u, v) be a one-to-one transformation from a domain S in the
uv-plane onto a domain D in the xy-plane. Suppose that the functions x and
y, and their first partial derivatives with respect to u and v, are continuous in
S. If f(x, y) is integrable on D, and if g(u, v) = f(x(u, v), y(u, v)), then g is
integrable on S and∫∫

D

f(x, y)dA =

∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv
This theorem could be generalized to more variables. With the one-to-one transfor-
mation 

y1 = y1(x1, . . . , xn)
...

yn = yn(x1, . . . , xn)

from domain S in x1 · · ·xn-plane onto domain D in y1 · · · yn-plane, and with the same
continuity condition, we have∫
D

f(y1, . . . , yn) dA =

∫
S

f(y1(x1, . . . , xn), . . . , yn(x1, . . . , xn))

∣∣∣∣ ∂(y1, · · · , yn)

∂(x1, · · · , xn)

∣∣∣∣ dx1 · · · dxn

Example 25. Evaluate the area of the domain D = {x ≤ y ≤ 4x, 1 ≤ xy ≤ 2}. We

construct a new coordinate such that

{
u = xy

v =
y

x

. Then the domain turns out to be
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D = {(u, v)|1 ≤ u ≤ 2, 1 ≤ v ≤ 4}. And the area is

A =

∫∫
D

1 dA =

∫ 2

1

∫ 4

1

∣∣∣∣∣∣∣∣ux uy
vx vy

∣∣∣∣∣∣∣∣ dudv
=

∫ 2

1

∫ 4

1

∣∣∣∣∣∣∣∣ y x

− y
x2

1
x

∣∣∣∣∣∣∣∣ dudv =

∫ 2

1

∫ 4

1

2y

x
dudv

=

∫ 2

1

∫ 4

1

2v dudv = 3

∫ 2

1

2v dv = 3v2
∣∣2
1

= 9

2. Triple Integral

(a) Definition
Given an object on the domain R ⊂ R3 and the density function ρ = f(x, y, z). We
want to find out the mass of the object.

R

ρ = f(x, y, z)

First we divide the R into many pieces with volume dV the mass dm = ρdV =
f(x, y, z)dV . Then we add them up as the mass

M =

∫∫∫
R

f(x, y, z) dV

We want to define it as the triple integral

Definition 15. Let R to be closed and bounded and f(x, y, z) is defined and
bounded on R. Then we define the triple integral in next four steps:
1◦ Partition the domain R into n subdomains ∆V1, . . . ,∆Vn such that

∆V1 ∪ · · · ∪∆Vn = ∅ and ∆V1 ∩ · · · ∩∆Vn = R

2◦ Pick up all the sample (representative) points P ∗i (x∗i , y
∗
i , z
∗
i ) ∈ ∆V ∗i

3◦ Add up all the small volumes
n∑
i=1

f(x∗i , y
∗
i , z
∗
i )∆Vi which is called

Riemann sum
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4◦ Let ∆xi to be the largest difference in x of ∆Vi, ∆yi to be the largest

difference in y of ∆Vi, ∆zi to be the largest difference in z of ∆Vi.

Define λ = max
i

√
∆2
i + ∆y2

i + ∆z2
i . Then take the limit

lim
λ→0

n∑
i=1

f(x∗i , y
∗
i , z
∗
i )∆Vi.

Then we say f is integrable over the domain R and has triple integral

I =

∫∫∫
R

f(x, y, z) dV

if the limit lim
λ→0

n∑
i=1

f(x∗i , y
∗
i , z
∗
i )∆Vi = I and does not depend on the choice of

∆Vi and P ∗i .

Similar to the double integral, if f(x, y, z) is continuous on R then f(x, y, z) is inte-
grable on R.

(b) Properties
The the properties of the triple are very similar to the double integral and we are going
to highlight three of them.

i.

∫∫∫
R

1 dV = V where V is the volume of the domain R.

ii. Let R ⊂ R3 bounded, closed and connected and f(x, y, z) is continuous on R. Then

there exists (x0, y0, z0) such that

∫∫∫
R

f(x, y, z) dV = f(x0, y0, z0)V where V is the

volume of the domain R.

iii. Let R symmetric with respect to plane xOy and the the upper half noted as

R1. Then if f(x, y, z) = −f(x, y,−z),

∫∫∫
R

f(x, y, z) dV = 0; if f(x, y, z) =

f(x, y,−z),

∫∫∫
R

f(x, y, z) dV = 2

∫∫∫
R1

f(x, y, z) dV .

Note: This property is also true for the symmetry with respect to plane xOz and
plane yOz.

(c) Integral Techniques

i. Iteration in Cartesian Coordinates
As what we apply on the double integral, we want to reduce R into lower dimension
and then integrate them.

One way is to divide the domain R into many thin rods. We first integrate along
those rods and then add then up. We represent the domain R alternatively as
R′ = {(x, y, z)|(x, y) ∈ D, ϕ1(x, y) ≤ z ≤ ϕ2(x, y)}.
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x

y

z

D

ϕ1(x, y)

ϕ2(x, y)

Then we have the triple integral∫∫∫
R

f(x, y, z) dV =

∫∫
Dxy

dxdy

∫ ϕ2(x,y)

ϕ1(x,y)

f(x, y, z) dz (A)

If the domain D or the function f(x, y, z) has x2 + y2 term, we could use polar
coordinate on D to get the double integral. Let R = {(r, θ, z)|α ≤ θ ≤ β, r1(θ) ≤
r ≤ r2(θ), ϕ1(r cos θ, r sin θ) ≤ z ≤ ϕ2(r cos θ, r sin θ)}. Then the double integral
would be∫∫∫

R

f(x, y, z) dV =

∫ β

α

dθ

∫ r2(θ)

r1(θ)

r dr

∫ ϕ2(r cos θ,r sin θ)

ϕ1(r cos θ,r sin θ)

f(r cos θ, r sin θ, z) dz (A’)

Another way is to divide the domain into many thin slices. We first integrate along
the slices and then add them up. Therefore, we want to represent the domain as
R = {(x, y, z)|(x, y) ∈ Dz, c ≤ z ≤ d}.

x

y

z

c

d

z
Dz

Then the triple integral is∫∫∫
R

f(x, y, z) dV =

∫ d

c

dz

∫∫
Dz

f(x, y, z) dxdy (B)
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If the domain Dz or the function f(x, y, z) has x2 + y2 term, we could use polar
coordinate on Dz to get the double integral. Let R defined alternatively as R′ =
{(r, θ, z)|c ≤ z ≤ d, αz ≤ θ ≤ βz, r1z(θ) ≤ r ≤ r2z(θ)}. The the triple integral is∫∫∫

R

f(x, y, z) dz =

∫ d

c

dz

∫ βz

αz

dθ

∫ r2z(θ)

r1z(θ)

f(r cos θ, r sin θ, z)r dr (B’)

Example 26. Evaluate

∫∫∫
R

z dV where R is the region above z = x2 + y2 and

below z = 1.
Method A’. The domain is represented as {(x, y, z)|(x, y) ∈ D, x2 + y2 ≤ z ≤ 1}
where D = {(x, y)|x2 + y2 ≤ 1}. Then the integral is

I =

∫∫
D

dxdy

∫ 1

x2+y2
z dz =

1

2

∫∫
D

[1− (x2 + y2)2]dxdy

=
1

2

∫ 2π

0

dθ

∫ 1

0

(1− r4)r dr = π

∫ 1

0

(r − r5) dr =
1

3
π

Method B. We represent the domain R = {(x, y, z)|(x, y) ∈ Dz, 0 ≤ z ≤ 1} where
Dz = {(x, y)|0 ≤ x2 + y2 ≤ z}. Then the triple integral is

I =

∫ 1

0

z dz

∫∫
Dz

dxdy = π

∫ 1

0

z2 dz =
π

3

ii. Iteration in Spherical Coordinates
When the domain or the function has the x2 + y2 + z2 term, spherical coordinates
would be useful to simplify the representation and to make the integral easier.

The spherical coordinate (R,ϕ, θ) is defined as below.

x

y

z

P (R,ϕ, θ)

ϕ

θ

R

And the transformation from (R,ϕ, θ) to (x, y, z) is
x = R sinϕ cos θ

y = R sinϕ sin θ

z = R cosϕ
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With the substitution, we have∫∫∫
R

f(x, y, z) dV =

∫∫∫
R′
f(R sinϕ cos θ, R sinϕ sin θ, R cosϕ) dV

where R′ is the domain R in spherical coordinates. Our job is to find out dV .

One way is to find out the small volume element ∆V under the small changes ∆R,
∆ϕ and ∆θ.

x

y

z

∆θ

∆ϕ
∆R

P (R,ϕ, θ)

R∆ϕ

R sinϕ∆θ

The volume element could be treated as a small cuboid and therefore ∆V =
(R sinϕ∆θ)(∆R)(R∆ϕ) = R2 sinϕ∆R∆θ∆ϕ. Take the limit, we could have

dV = R2 sinϕdRdϕdθ

Alternatively, we could use the change variable formula for general case∣∣∣∣ ∂(x, y, z)

∂(R, θ, ϕ)

∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
sinϕ cos θ R cosϕ cos θ −R sinϕ cos θ

sinϕ sin θ R cosϕ sin θ R sinϕ sin θ

cosϕ −R sinϕ 0

∣∣∣∣∣∣
∣∣∣∣∣∣ = R2 sinϕ

Therefore, we have

dV =

∣∣∣∣ ∂(x, y, z)

∂(R, θ, ϕ)

∣∣∣∣ dRdϕdθ = R2 sinϕdRdϕdθ

Then the triple integral finally becomes∫∫∫
R

f(x, y, z)dV =

∫∫∫
R′
f(R sinϕ cos θ, R sinϕ sin θ, R cosϕ)R2 sinϕdRdϕdθ

where R′ is the representation of R in spherical coordinates.

Example 27. Evaluate

∫∫∫
R

√
x2 + y2 dV where R is the top half of the ball

centered at the original with radius r = 2. The R is defined as R = {(R,ϕ, θ)|0 ≤
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θ ≤ 2π, 0 ≤ ϕ ≤ π
2
, 0 ≤ r ≤ 2}. Then the triple integral is

I =

∫ 2π

0

dθ

∫ π
2

0

dϕ

∫ 2

0

R2 sin2 ϕdR

= 2π

(∫ π
2

0

sin2 ϕdϕ

)(∫ 2

0

R3 dR

)
= 2π × 1

2
× π

2
× 1

4
× 24 = 2π2

3. Application of Multiple Integrals
Multiple integrals have a wide application. We are going to highlight two of them in
physics: center of mass and moment of inertia.

The center of mass is defined as

x̄ =

∫∫
D

xρ(x, y) dA∫∫
D

ρ(x, y) dA
, ȳ =

∫∫
D

yρ(x, y) dA∫∫
D

ρ(x, y) dA

in two dimension and as

x̄ =

∫∫∫
R

xρ(x, y, z) dV∫∫∫
R

ρ(x, y, z) dV
, ȳ =

∫∫∫
R

yρ(x, y, z) dV∫∫∫
R

ρ(x, y, z) dV
, z̄ =

∫∫∫
R

zρ(x, y, z) dV∫∫∫
R

ρ(x, y, z) dV

in three dimension. Notice the denominator is just the mass.

The moment of inertia in three dimension is defined as

I` =

∫∫∫
R

d2ρ(x, y, z) dV

where ` is the rotation axis. In particular, we have

Ix =

∫∫∫
D

(y2+z2)ρ(x, y, z) dV, Iy =

∫∫∫
D

(x2+z2)ρ(x, y, z) dV, Iz =

∫∫∫
D

(x2+y2)ρ(x, y, z) dV

4. Integrals of higher multiplicity
Let f(x1, · · · , xn) be a function on D ⊂ Rn. We could still have integral of f(x1, · · · , xn)
on D and we could denote it as∫

D

f(x1, · · · , xn)dV =

∫ φn

ϕn

· · ·
∫ φ1

ϕ1

f(x1, · · · , xn) dx1 · · · dxn
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