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Review of Techniques for ODEs

On the purpose of developing some new techniques in this course, we are going to review
two related types of differential equations specifically.

1. Second Order Linear ODE with Constant Coefficient
Generally, the homogeneous second order linear ODE with constant coefficient has the
form

ay′′ + by′ + cy = 0

which could be interpreted as L[y] = 0 where

L = a
d2

dx2
+ b

d

dx
+ c

We guess the solution to be
y = erx

Plug into the
(ar2 + br + c)erx = 0

which implies
ar2 + br + c = 0

To solve it, we have three cases (∆ = b2 − 4ac):

• ∆ > 0. We have two real roots r1, r2. And the solution would be

y(x) = C1e
r1x + C2e

r2x

If r1,2 = ±r, we could have

y(x) = C1 sinh(rx) + C2 cosh(rx)

Hyperbolic function: We define sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
and

tanhx =
sinhx

coshx
.
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They have the following properties:

– cosh2 x− sinh2 x = 1

– cosh′ x = sinhx

– sinh′ x = coshx

– sinh(x± y) = sinh x cosh y ± coshx sinh y

– cosh(x± y) = cosh x cosh y ± sinhx sinh y

• ∆ = 0. We have a repeated real roots r0. Then we know y1 = er0x. To find the second
solution, we plug it into the equation, we have L

[
erx|r=r0

]
= 0. Differentiate it, we

have

0 =
∂

∂r
L [erx]

∣∣∣∣
r=r0

= L

[
∂

∂r
erx
∣∣∣∣
r=r0

]
Therefore, we have the second solution to be

y2 =
∂

∂r
erx
∣∣∣∣
r=r0

= xer0x

Therefore the solution would be

y(x) = C1e
r0x + C2xe

r0x

• ∆ < 0. We have two complex roots α± βi. Then the solution would be

y(x) = Ae(α+βi)t +Be(α−βi)t

= Aeαt(cos(βt) + i sin(βt)) +Beαt(cos(βt)− i sin(βt))

Let A = C ′ + iC ′′, B = C ′ − iC ′′. Then let C1 = 2C ′, C2 = 2C ′′. Then we have the
solution to be

y(x) = eαt(C1 sin(βt) + C2 cos(βt))

2. Cauchy-Euler Equation
Generally, the Cauchy-Euler Equation is

x2y′′ + αxy′ + βy = 0

which could be interpreted as L[y] = 0 where

L = x2
d2

dx2
+ αx

d

dx
+ β

We guess the solution to be
y = xr
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Plug into the equation, we have

(r(r − 1) + αr + β)xr = 0

which is
r2 + (α− 1)r + β = 0

To solve it, we have 3 cases (∆ = (α− 1)2 − 4β):

• ∆ > 0. We have two real roots r1, r2. Then the solution would be

y(x) = C1x
r1 + C2x

r2

• ∆ = 0. We have a repeated root r0. Then the first solution would be y(x) = xr0 .
To find the second solution, we plug it into the equation, we have L

[
erx|r=r0

]
= 0.

Differentiate it, we have

0 =
∂

∂r
L [erx]

∣∣∣∣
r=r0

= L

[
∂

∂r
erx
∣∣∣∣
r=r0

]
Therefore, we have the second solution to be

y2 =
∂

∂r
xr
∣∣∣∣
r=r0

= ln |x|xr0

Therefore the solution would be

y(x) = C1x
r0 + C2 ln |x|xr0

• ∆ < 0. We have two complex roots λ± iµ. Then the solution would be

y(x) = Axλ+iµ +Bxλ−iµ

= Axλ(cos(µ ln |x|) + i sin(µ ln |x|)) +Bxλ(cos(µ ln |x|)− i sin(µ ln |x|))
= (A+B)xλ cos(µ ln |x|) + (A−B)i sin(µ ln |x|)

With A+B = C1 and (A−B)i = C2, we have

y(x) = C1x
λ cos(µ ln |x|) + C2x

λ sin(µ ln |x|)
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Series Solution to ODE’s

1. Ordinary point and Singular Point
Consider the following linear second order differential equation with variable coefficients

P (x)y′′ +Q(x)y′ +R(x)y = 0 (*)

If P (x) has a solution x0 such that P (x0) = 0, in the neighborhood of x0, we have to
take the risk that there is no series solution around x0. This could be observed via the

equivalent form y′′ +
Q(x)

P (x)
y′ +

R(x)

P (x)
y = 0 where

Q(x)

P (x)
and

R(x)

P (x)
are possible to be not

analytic (can not expanded around x0).

Based on this, we make the following definition. If P (x0) = 0, we call x0 to be sin-
gular point ; If P (x0) 6= 0, we call x0 to be ordinary point.

However, it is still possible that we can find a series solution around x0. Inspired the
idea of Cauchy-Euler equation, we divide the equation by P (x) and multiplies (x− x0)2.
We could get

(x− x0)2y′′ + (x− x0)
(
Q(x)

P (x)
(x− x0)

)
y′ +

(
R(x)

P (x)
(x− x0)2

)
y = 0

Let p(x) =
Q(x)

P (x)
(x− x0) and q(x) =

R(x)

P (x)
(x− x0)2. Then the equation becomes to be

(x− x0)2y′′ + (x− x0)p(x)y′ + q(x)y = 0 (**)

If p(x) and q(x) are analytic at x = x0, we call x0 regular singular point which is possible
to have a series solution around x = x0; if p(x) or q(x) are not analytic at x = x0, we call
x0 irregular singular point.

2. Series Solution near Ordinary Points
First of all, let’s look at an example of ordinary points. We have to find the recurrence
relationship to find the series an and radius of convergence.

Example 1. Find the series solution of (x− 1)y′′ + y′ = 0 around x = 0.

Solution. Assume y =
∞∑
n=0

anx
n, implying y′ =

∞∑
n=1

nanx
n−1 and y′′ =

∞∑
n=2

nan(n− 1)xn−2.

Plug in to the equation and simplify it, we have

∞∑
n=2

nan(n− 1)xn−1 −
∞∑
n=2

nan(n− 1)xn−2 +
∞∑
n=1

nanx
n−1 = 0
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Then we shift the index and simplify to get

a1 − 2a2 +
∞∑
n=2

(n2an − (n2 + n)an+1)x
n−1 = 0

By linear independence, we have a1 − 2a2 = 0 and nan − (n + 1)an+1 = 0 for n ≥ 1.

Therefore we know an =
1

n
(n ≥ 1) and a0 could be arbitrary. The series solution is

y(x) = a0 + a1

∞∑
n=0

xn

n

With ratio test

lim
n→∞

∣∣∣∣∣ x
n+1

n+1
xn

n

∣∣∣∣∣ = |x| lim
n→∞

∣∣∣∣n+ 1

n

∣∣∣∣ = |x| < 1

we know the radius of convergence is ρ = 1. Then we test the endpoints. If x = 1, the

series is a0 + a1

∞∑
n=0

1

n
which is a harmonic series and diverges. If x = −1, the series is

a0 + a1

∞∑
n=0

(−1)n

n
which is an alternative harmonic series and converges.

It is not hard to find that in this example ρ = 1 is also the distance between the ordinary
expansion point x = 0 and the singular point x = 1. Actually the more general statement
is that if the expansion point for the series x0 is ordinary then the radius of convergence is
ρ ≥ |xsp−x0| where xsp is the nearest singular point - restricted by the radii of convergence

of
Q(x)

P (x)
and

R(x)

P (x)
which are obviously bounded by P (x0) = 0

3. Series Solution near Regular Singular Points
Consider the equation (∗∗), we expand p(x) and q(x) around a regular singular point.

p(x) = p0 + p1(x− x0) + p2(x− x0)2 + · · ·

q(x) = q0 + q1(x− x0) + q2(x− x0)2 + · · ·
It is obvious that lim

x→x0
p(x) = p0 and lim

x→x0
q(x) = q0. Since we are trying to find the series

solution near x0, the equation (**) could be approximated as a Cauchy-Euler equation

(x− x0)2y′′ + (x− x0)p0y′ + q0y = 0

with the solutions in the form y(x, r) = (x− x0)r. Therefore, the complete form could be
written as

y = (x− x0)r
∞∑
n=0

an(x− x0)n =
∞∑
n=0

an(x− x0)n+r

which is known as a Frobenius Series. However, if r is repeated or gaped by an integer,

we can only find one solution directly, we have to use
d

dr
y(x, r)

∣∣∣∣
r=r0

to find the second
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solution.

Let’s look at an example.

Example 2. Find the series solution of 2x2y′′ − xy′ + (1− x)y = 0 around x0 = 0.

Solution. Although P (0) = 0, we could find p(x) =
Q(x)

P (x)
(x − 0) = −1

2
and q(x) =

R(x)

P (x)
(x − 0)2 =

1− x
2

are analytic then lim
x→x0

p(x) = −1

2
and lim

x→x0
q(x) =

1

2
. Then the

corresponding Cauchy-Euler equation is x2y′′ − x

2
+

1

2
y = 0 whose indicial equation is

r2 − 3

2
r +

1

2
= 0.

Assuming y =
∞∑
n=0

anx
n+r with y =

∞∑
n=0

(n + r)anx
n+r−1 and y =

∞∑
n=0

(n + r)(n + r −

1)anx
n+r−2. We plug them in,

2
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r −

∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=0

anx
n+r −

∞∑
n=0

anx
n+r+1 = 0

Shift the index, we have

a0[2r(r − 1)− r + 1]xr +
∞∑
n=1

[2an(n+ r)(n+ r − 1)− an(n+ r) + an − an−1]xn+r = 0

We have 2r(r− 1)− r+ 1 = 0 which is identical to the indicial equation with the solution

r = 1,
1

2
. We also have an((n+r)(2(n+r)−3)+1) = an−1 (n ≥ 0) and a0 is arbitrary. Then

we would apply the fact 1× 3× · · ·× (2n− 1) =
1× 2× 3× · · · × (2n)

2× 4× 6× · · · × (2n)
=

(2n)!

2nn!
. If r = 1,

the recurrence equation becomes an =
an−1

(n+ 1)(2n− 1) + 1
=

an−1
2n2 + n

=
an−1

n(2n+ 1)
.

Then an =
an

n!× (1× 3× · · · × (2n+ 1))
=

2na0
(2n+ 1)!

. If r =
1

2
, the recurrence equa-

tion becomes an =
an−1

(2n− 1)n
. Then an =

a0
n!× (1× 3× · · · × (2n− 1))

=
2n−1a0

n(2n− 1)!
.

Therefore the solution is

y(x) = C1y1(x) + C2y2(x) = C1x
1
2

∞∑
n=0

2n−1a0
n(2n− 1)!

+ C2x
∞∑
n=0

2na0
(2n+ 1)!

With ratio test

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = |x| lim
n→∞

((n+ r)(2(n+ r)− 3) + 1)

((n+ r + 1)(2(n+ r)− 1) + 1)
= 0 < 1

we know the raius of convergence is ρ =∞
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Let’s look at another more complicated example.

Example 3. (Frobenius Series: Bessel’s Equation)
Consider the Bessel’s equation

x2y′′ + xy′ + (x2 − ν2)y = 0 (*)

around x = 0. Since it is already in the required form, we know P (x0) = x20 = 0, p(x) = 1
and q(x) = x2− v2. Since p(x) and q(x) are analytic, we know x0 = 0 is a regular singular
point. Take the limit, we have

p0 = lim
x→0

p(x) = 1, q0 = lim
x→0

q(x) = −ν2

Then indicial equation is

r(r − 1) + r − ν2 = r2 − ν2 = 0

with the solution r = ±ν. Then we would try to let y =
∞∑
n=1

anx
n+r and plug in (*), we

have
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=0

anx
n+r+2 − ν2

∞∑
n=0

anx
n+r = 0

We want to shift the index to be consistent
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=2

an−2x
n+r − ν2

∞∑
n=0

anx
n+r = 0

Simplify the equation, we have

∞∑
n=2

(
an((n+ r)2 − ν2) + an−2

)
xn+r + a0(r

2 − ν2)xr + a1((r + 1)2 − ν2)xr+1 = 0

By linear independence, we have
r2 − ν2 = 0 if a0 6= 0

a1((r + 1)2 − ν2) = 0

an((n+ r)2 − ν2) + an−2 = 0

We have to discuss the root cases based whether two roots are the same or gaped by

integers. Then µ could be classified as ν ∈ Z, ν = 0, ν =
m

2
and ν /∈ Z ∩ ν 6= m

2
∩ ν 6= 0.

• Bessel Equation of Order Zero The equation is reduced to

x2y′′ + xy′ + x2y = 0

and the roots to the indicial equation is r1,2 = 0. Then we know a0 could be arbitrary
and a1 = 0. And the recursion relation is

an = −an−2
n2
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so we know

a2k =
(−1)k

(2k)2(2k − 2)2 · · · 22
a0 =

(−1)ka0
22k(k!)2

and
a2k+1 = 0

Then our first solution is

y1(x) =
∑
k=1

(−1)kx2k

22k(k!)2
= J0(x)

With the derivative in r of

y(x, r) = a0x
r

(
1− x2

(2 + r)2
+ · · ·+ (−1)kx2k

(2 + r)2 · · · (2k + r)2
+ · · ·

)
we find the second the solution would be

∂y

∂r

∣∣∣∣
r=r1

= a0 lnxy1(x) + a0x
r

∞∑
k=1

x2k
∂

∂r

(
1

(2 + r)2 · · · (2k + r)2

)

Let fk(r) =
1

(2 + r)2 · · · (2k + r)2
. Since

ln fk(r) = −2 (ln(2 + r) + · · ·+ ln(2k + r))

we have
f ′k(0)

fk(0)
=

d

dr
ln fk(0) = −

(
1 +

1

2
+ · · ·+ 1

k

)
= Hk

Then we have

y2(x) = J0(x) lnx+
∞∑
k=1

(−1)k+1Hk

22k(k!)2
x2k

In convention, it is defined as

Y0(x) =
2

π
(y2(x) + (γ − log 2)J0(x))

where γ is the Euler constant. Then the complete solution is

y(x) = c1J0(x) + c2Y0(x)

• Bessel Equation of Order Multiple-Half For simplicity we let ν =
1

2
. The

equation is reduced to

x2y′′ + xy′ +

(
x2 − 1

4

)
y = 0

and the roots to the indicial equation is r1,2 = ±1

2
. For r =

1

2
we know a0 could be

arbitrary and a1 = 0. And the recursion relation is

an = − an−2(
n+ 1

2

)2 − 1
4

= − an−2
(n+ 1)n
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so we know

a2k =
(−1)k

(2k + 1)2k · · · 1
a0 =

(−1)ka0
(2k + 1)!

and
a2k+1 = 0

Then the solution is

y1(x) = x
1
2

∞∑
k=0

(−1)kx2k

(2k + 1)!
= x−

1
2

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x−

1
2 sinx

If r = −1

2
, we know a0 and a1 are arbitrary. And the the recursion equation is

an = − an−2(
n− 1

2

)2 − 1
4

= − an−2
n(n− 1)

Then we know

a2k =
(−1)ka0

2k(2k − 1) · · · 1
=

(−1)ka0
(2k)!

and

a2k+1 =
(−1)ka1

(2k + 1)2k · · · 1
=

(−1)ka1
(2k + 1)!

Then the second solution is

y2(x) = a0x
− 1

2

∞∑
k=0

(−1)kx2k

(2k)!
+ a1x

− 1
2

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= a0x

− 1
2 cosx+ a1x

− 1
2 sinx

We can see y1(x) is included in y2(x). In this part we find that we don’t have to use
the derivative by r. This is because the gap between two terms are 2 but the gap
between two roots is one. With visualization, it is

x
1
2

x−
1
2

+1
2

−1
2

safe safe

• Bessel Equation of Order Integer For simplicity, we choose ν = 1. The equation
is reduced to

x2y′′ + xy′ + (x2 − 1)y = 0

and the roots to the indicial equation is r1,2 = ±1. Then we know a0 could be arbitrary
and a1 = 0. And the recursion relation is

an = − an−2
n(n+ 2)
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Then we know

a2k =
(−1)ka0

(2k + 2)(2k) · · · 1(2k)(2k − 2) · · · 1
=

(−1)na0
22k(k + 1)!k!

Then, with letting a0 =
1

2
, the first solution is

y1(x) =
x

2

∞∑
k=0

(−1)na0x
2k

22k(k + 1)!k!
= J1(x)

To find the second solution, we play the same trick, getting

y2(x) = aJ1(x) lnx+ x−1

(
1 +

∞∑
n=1

cnx
n

)
Then we plug y2(x) back to the equation,

−c1 + c0x+
∞∑
n=2

((n2 − 1)cn+1 + cn−1)x
n = −a

(
x+

∞∑
n=1

(−1)n(2n+ 1)x2n+1

x2n(n+ 1)!n!

)

where c0 = 1. Then we choose c2 =
1

22
and we find

c2n =
(−1)n+1(Hn +Hn−1)

22nn!(n− 1)!

Therefore the second solution is

y2(x) = −J1(x) lnx+
1

x

(
1−

∞∑
n=1

(−1)n(Hn +Hn−1)x
2n

22nn!(n− 1)!

)
In convention we we define

Y1(x) =
2

π
(−y2(x) + (γ − ln 2)J1(x))

And the complete solution is

y = c1J1(x) + c2Y1(x)

• Bessel Equation of Other Orders In general the equation is

x2y′′ + xy′ + (x2 − ν2)y = 0

and the roots to the indicial equation is r1,2 = ±ν. If r = ν we know a0 could be
arbitrary and a1 = 0. And the recursion relation is

an = − an−2
n(n+ 2ν)
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Then we know

a2k =
(−1)ka0

k!22k(1 + ν) · · · (n+ ν)

and
a2k+1 = 0

Then the first solution is

y1(x) = xν
∞∑
k=0

(−1)ka0x
2k

k!22k(1 + ν) · · · (n+ ν)

If r = −ν, then know a0 could be arbitrary and a1 = 0. And the recursion relation is

an = − an−2
n(n− 2ν)

Then we know

a2k =
(−1)ka0

k!22k(1− ν) · · · (n− ν)

and
a2k+1 = 0

Then the second solution is

y2(x) = x−ν
∞∑
k=0

(−1)ka0x
2k

k!22k(1− ν) · · · (n− ν)

The complete solution is
y(x) = c1y1(x) + c2y2(x)

Summary: In summary, if we have two roots r1 ≥ r2 and the first solution is

y1(x) =
∞∑
n=1

an(x− x0)n+r1

then the second solution is

• CASE 1: If r1 − r2 is neither 0 or positive integer,

y2(x) =
∞∑
n=1

bn(x− x0)n+r2

where b0 = 1.

• CASE 2: If r1 − r2 = 0,

y2(x) = y1(x) ln(x− x0) +
∞∑
n=1

bn(x− x0)n+r2

for some b1, b2, . . . .
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• CASE 3: If r1 − r2 is a positive integer,

y2(x) = ay1(x) ln(x− x0) +
∞∑
n=0

bn(x− x0)n+r2

where b0 = 1.
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Introduction to Partial Differential Equation

1. Definition and Classification
Besides ordinary differential equation, we could have partial differential equation Involving
multivariable functions u(x, t),u(x, y) that are determined by prescribing a relationship
between the function value and its partial derivatives. For examples, with u(x, y) as a
function, we have first order linear PDE,

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y)

first order non-linear PDE,

a(x, y, u)ux + b(x, y, u)uy + c(x, y, u)u = d(x, y, u)

and second order linear PDE

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G

where A,B,C,D,E, F,G are all constants.

This course is mainly focused on the second order linear PDE. Therefore we are going
to do some classification before starting. The classification is inspired from the analogy
of the quadratic surface Ax2 + Bxy + Cy2 + Dx + Ey = K which could be classified by
∆ = B2 − 4AC.

∆ Type Quadratic PDE Nature

∆ = 0 Parabolic X2 = T ut = uxx Heat/Diffusion

∆ < 0 Elliptic X2 + Y 2 = K uxx + uyy = f(x, y) Poisson if f 6= 0
Laplace if f = 0

∆ > 0 Hyperbolic T 2 = c2X2 utt = c2uxx wave

All linear second order PDE’s can be transferred into one of these types.

2. Models and Examples
We will consider the situations of transportation obeying conservation laws .
First let’s look at a one dimensional case. Consider some matter flowing in one dimension.
Let u(x, t) to be the density of the matter and q(x, t) to be the flux of the matter (we
define flow from left to right is positive).

x x+ ∆x

q(x, t) q(x+ ∆x, t)

u(x, t)

Intro to PDEs 17



It could be approximated that the amount change of matter between x and x+ ∆x equals
to [u(x, t+ ∆t)− u(x, t)]∆ and also equals to [q(x, t)− q(x+ ∆x)]∆t. Therefore,

[u(x, t+ ∆t)− u(x, t)]∆x = [q(x, t)− q(x+ ∆x)]∆t

Take the limit ∆x→ 0 and ∆t→ 0, we have
∂u

∂t
= −∂q

∂x
. Rearrange it, we have

∂u

∂t
+
∂q

∂x
= 0

To describe the model better, we have to find the relationship between u and q. Let’s look
at some examples.

Example 4. Convection and the first order Wave Equation
If we let q = cu, c > 0, we could get

∂u

∂t
+ c

∂u

∂x
= 0

We could guess a solution
u(x, t) = eikx+δt

Plug into the equation, (δ + cik)eikx+δt, we have the dispersion equation

δ = −ick

More generally, the solution is a right moving wave

u(x, t) = f(x− ct)

by plugging in ut + cux = −cf ′ + cf ′ = 0. This wave could be observed in two reference
frames: stationary observer x and moving observer x′ = x− ct with speed c (moving with
the wave). Therefore, we have

f(x′) = f(x− ct)
The linear relation could also have a negative coefficient, q = −cu, c > 0, which gives

∂u

∂t
− c∂u

∂x
= 0

a left moving wave. If we combine these two operators

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
u = 0,

we could get the second order wave equation

∂2u

∂t2
+ c

∂2u

∂x2
= 0

Example 5. Heat Conduction and Diffusion
Consider the diffusion of molecules, by Fick’s Law

q = −α2∂u

∂x
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we would have
∂u

∂t
= α2∂

2u

∂x2

Consider the heat conduction, by Fourier’s Law

q = −k∂T
∂x

and the relationship between energy (heat) and temperature

u = ρCT

we would also have
∂u

∂t
= α2∂

2u

∂x2

where α2 =
k

ρC
.

We could make a guess here u = eikx+δt. Plug into the equation, δeikx+δt = −k2α2eikx+δt,
we get the dispersion equation

δ = −k2α2

The heat conduction/diffusion equation could also be in higher dimension

∂u

∂t
= 4u

where 4 = ∇2.

Then let’s look at the two dimensional case. Since including t would give three variables,
we consider the steady state of flow. Let u(x, y) be the x component of the velocity and
v(x, y) to the y component of the velocity. Let ρ be the density of the material.

x x+ ∆x

y

y + ∆y
u(x, y) u(x+ ∆x, y)

v(x, y)

v(x, y + ∆y)

Since it is steady, ρ should does not change. Therefore the mass change should be zero,

ρ[v(x, y + ∆y)− v(x, y)]∆x+ ρ[u(x+ ∆x, y)− u(x, y)]∆y = 0

Take the limit ∆x→ 0 and ∆y → 0, we have

∂u

∂x
+
∂v

∂y
= 0
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Example 6. Laplace Equation
Consider the flow in the porous media, we have h(x, y) to be the hydraulic head, then by
Darcy’s law

u = −k∂h
∂x
, v = −k∂h

∂y

where k is hydraulic conductivity. Therefore, we have

∂2h

∂x2
+
∂2h

∂y2
= 0

With the idea as the previous example, we could generalize the spacial differentiation,

4h = 0

There is one thing to notice, Fick’s Law, Fourier’s Law and Darcy’s law are physically the
same law.

Besides the transportation, let’s consider the wave equation.

Example 7. Wave Equation
Let u(x, t) be the wave equation, σ(x, t) be the stress in the rod and ρ be the density of
the rod.

x x+ ∆x

σ(x, t) σ(x+ ∆x, t)

u(x, t) u(x+ ∆x, t)

By Newton Second Law F = ma, we have

[σ(x+ ∆x, t)− σ(x, t)]∆x︸ ︷︷ ︸
force

= ρ∆x︸︷︷︸
mass

∂2u

∂t2︸︷︷︸
acceleration

Take the limit ∆x→ 0, we have
∂σ

∂x
= ρ

∂2u

∂t2

By Hook’s Law and Young’s Modulus

σ = E
∂u

∂x
, E > 0

we have the equation
∂2u

∂x2
= c2

∂2u

∂t2
, c =

√
ρ

E

With the idea as the two previous examples, we could generalize the spacial differentiation,

4u = c2
∂2u

∂t2
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3. Initial Conditions (For Time)

(a) First Order in Time
u(x, 0) = f(x)

(b) Second Order in Time
u(x, 0) = f(x), ut(x, 0) = g(x)

Example 8. Initial Conditions of Wave Equation
Consider a one dimensional wave equation

∂2u

∂t2
=
∂2u

∂x2

Based on the second order derivative of time, we expect to have two initial conditions.
Therefore we have

u(x, 0) = f(x), ut(x, 0) = g(x)

4. Boundary Conditions (For Space)
We have 0 < x < L.

(a) Dirichlet
u(0, t) = f(t), u(L, t) = g(t)

(b) Neumann
ux(0, t) = f(t), ux(L, t) = g(t)

(c) Mixed
u(0, t) = f(t), ux(L, t) = g(t)

(d) Periodic
u(0, t) = u(L, t)

Example 9. Mixed Boundary Condition of Heat Equation
Consider the heat conduction

∂u

∂t
=
∂2u

∂x2

in a rod with one end to be ice with constant temperature 0◦C and one end to be isolated
with no heat flow.

isolated

0◦C

ice

Based on the second derivative of space, we expect to have two boundary conditions,
therefore we have

ux(0, t) = u(L, t) = 0
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Example 10. Periodic Boundary Condition of Heat Equation
Consider the heat conduction in the circular rod.

u(−L, t) = u(L, t)

ux(−L, t) = ux(L, t)

a
θ

We know in the curvilinear coordinate (polar coordinate), the Laplace operation

4 =
∂2

∂r2
+

1

r

∂

∂r
+

1

a2
∂2

∂θ2

Then the heat equation would be

∂u

∂t
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

a2
∂2u

∂θ2

However we assume there is only angular heat transform without radial heat transform

r ≡ a, so we have
∂u

∂r
=
∂2u

∂r2
= 0. Then we have

∂u

∂t
=

1

a2
∂2u

∂θ2

Let x = aθ to be the arc length, we have

∂u

∂t
=
∂2u

∂x2

Based on the second derivative of space, we expect to have two boundary conditions,
therefore we have

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t)
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Introduction to Numerical Method of PDE

1. Finite Difference and Approximation of Derivatives
Consider the finite difference ∆x away from x on f(x).

x x+ ∆xx−∆x
x

y

y = f(x)

We could have some approximation by Taylor expansion,

f(x+ ∆x) = f(x) + f ′(x)∆x+
f ′′(x)

2
∆x2 +

f (3)(x)

6
∆x3 +O(∆x4) (*)

f(x−∆x) = f(x)− f ′(x)∆x+
f ′′(x)

2
∆x2 − f (3)(x)

6
∆x3 +O(∆x4) (**)

We could estimate the first order derivative in three different ways.

• Forward difference: Rearrange (*) we could pull out f ′(x),

f ′(x) =
f(x+ ∆x)− f(x)

∆x
− f ′′(x)

2
∆x− f (3)(x)

6
∆x2 +O(∆x3)

=
f(x+ ∆x)− f(x)

∆x
+O(∆x)

with the first order accuracy.

• Backward difference: Rearrange (**) we could pull out f ′(x),

f ′(x) =
f(x)− f(x−∆x)

∆x
− f ′′(x)

2
∆x+

f (3)(x)

6
∆x2 +O(∆x3)

=
f(x)− f(x−∆x)

∆x
+O(∆x)

with the first order accuracy.

• Centered difference: With (∗)− (∗∗) and rearrangement, we have

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
− f (3)(x)

6
∆x2 +O(∆x3)

=
f(x+ ∆x)− f(x−∆x)

2∆x
+O(∆x2)

with the second order accuracy.
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We can find that the centered difference is the most accurate,

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x

Therefore we would estimate the second derivative with centered difference. We have
(∗) + (∗∗) and rearrange it,

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
+O(∆x2)

with the second order accuracy.

2. Heat Equation
We know the partial differential equation describing heat transformation or diffusion is

∂u

∂t
= α2∂

2u

∂x2
, 0 < x < L

Discretize it with forward difference because the physical phenomenon is going forward,

u(x, t+ ∆t)− u(x, t)

∆t
= α2u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2

The error is first order in time and second order in space.
To simplify, we use the index representation

ukn = u(n∆x, k∆t)

where 0 ≤ n ≤ L

∆x
= N and 0 ≤ k ≤ T

∆t
= K (0 < t < T is the time we want to solve).

Then the discretized equation could be rearranged as

uk+1
n = ukn +

α2∆t

∆x2
(ukn+1 − 2ukn + ukn−1) (A)

which is the recursion relation.

uk+1
n

ukn ukn+1ukn−1

To make this method to be stable, we need the coefficient,
α2∆t

∆x2
≤ 1

2
.

Then what we have to do is apply the initial condition and boundary condition. The
initial condition is usually u(x, 0) = f(x). With discretization, the initial condition is

u0n = f(n∆x)

There are two types of boundary conditions. If it is Dirichlet, then we could have

uk+1
0 = uk0 = A, uk+1

N = ukN = B
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If it is Neumann
∂

∂x
u(0, t) = C

then we could have, with discretization,

u(∆x, t)− u(−∆x, t)

2∆x
= C

which is uk−1 = uk1 − 2∆xC in index form. Plug it into (A), we have

uk+1
1 = uk1 +

α2∆t

∆x2
(2uk1 − 2uk+1

0 − 2∆xC)

Similarly at x = L we have ukN+1 = ukN−1 + 2∆xC and plugging into (A) gives

uk+1
N = ukN +

α2∆t

∆x2
(2ukN−1 − 2uk+1

N + 2∆xC)

In summary, the relationship could be written in the matrix-vector product form. If the
boundary condition is Dirichlet, we have −→v k+1 = A−→v k

uk+1
0

uk+1
1
...

uk+1
N−1
uk+1
N

 =


1 0 0 · · · 0

r −2r r · · · 0
. . . . . .

r −2r r

0 0 1




uk0
uk1
...

ukN−1
ukN


where r =

α2∆t

∆x2
. If the boundary condition is Neumann, we have −→v k+1 = A−→v k +

−→
b

uk+1
0

uk+1
1
...

uk+1
N−1
uk+1
N

 =


−2r 2r 0 · · · 0

r −2r r · · · 0
. . . . . .

r −2r r

0 2r −2r




uk0
uk1
...

ukN−1
ukN

+


−2∆xCr

0
...

0

2∆xCr


To solve the equation, we need to iterate k from 0 to K while applying the recursion
equation on initial condition repeatedly.

3. Wave Equation
We know the partial differential equation describing wave is

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L

With discretization by centered difference, we have

u(x, t+ ∆t)− 2u(x, t) + u(x, t−∆t)

∆t2
= c2

u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
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The error is second order in time and second order in space.
With index representation, we have

uk+1
n − 2ukn + uk−1n

∆t2
= c2

ukn+1 − 2ukn + ukn−1
∆x2

Solve for uk+1
n , we get

uk+1
n =

c2∆t2

∆x2
(ukn+1 − 2ukn + ukn−1) + 2ukn − uk−1n (B1)

which is a recursion relation (k ≥ 1).

uk+1
n

ukn
ukn+1ukn−1

ukn−1

To make this method to be stable, we need the square root of the coefficient,
c∆t

∆x
≤ 1.

Then what we have to is apply the initial condition and boundary condition.
The initial condition is usually u(x, 0) = f(x) and ut(x, 0) = g(x). With discretization,
we have

u0n = f(n∆x)

and
u(x,∆t)− u(x,−∆t)

2∆t
= g(x)

which implies
u1n − u−1n = 2∆tg(n∆x)

Plugging into (B1) implies

u1n =
1

2

c2∆t2

∆x2
(u1n − 2u0n + u0n−1) + u0n + ∆tg(n∆x) (B2)

which gives the recursion relation for k = 0.
The boundary conditions usually have two types. If the boundary condition is Dirichlet
u(0, t) = u(L, t) = 0, we have

ukN = uk0 = 0

If the boundary condition is Neumann ux(0, t) = ux(L, t) = 0, with discretization by
forward/backward discretization

u(∆x, t)− u(−∆x, t)

2∆x
=
u(L+ ∆x, t)− u(L−∆x, t)

2∆x
= 0

which implies
uk1 = uk−1, u

k
N+1 = ukN−1
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Plugging the Neumann boundary condition into (B1) and (B2) would gives

uk+1
0 =

c2∆t2

∆x2
(2uk1 − 2uk0) + 2uk0 − uk−10

uk+1
N =

c2∆t2

∆x2
(2ukN−1 − 2ukN) + 2ukN − uk−1N

where k ≥ 1, and

u10 =
1

2

c2∆t2

∆x2
(2u11 − 2u00) + u00 + ∆tg(0)

u1N =
1

2

c2∆t2

∆x2
(2u1N−1 − 2u00) + u0N + ∆tg(L)

where k = 0. In summary, if the boundary condition is Dirichlet, we could write the
recursion in matrix-vector product as follows. For k ≥ 1,

uk+1
0

uk+1
1
...

uk+1
N−1
uk+1
N

 =


1 0 0 · · · 0

r2 2(1− r2) r2 · · · 0
. . . . . .

r2 2(1− r2) r2

0 0 1




uk0
uk1
...

ukN−1
ukN



+


0

−1
. . .

−1

0




uk−10

uk−11
...

uk−1N−1
uk−1N


for k = 0,

u10
u11
...

u1N−1
u1N

 =


1 0 0 · · · 0

1
2
r2 (1− r2) 1

2
r2 · · · 0

. . . . . .
1
2
r2 (1− r2) 1

2
r2

0 0 1




u00
u01
...

u0N−1
u0N

+


∆tg(0)

∆tg(∆x)
...

∆tg((N − 1)∆x)

∆tg(N∆x)


To solve the equation, we need to iterate k from 0 to K while applying the recursion
equation on initial condition repeatedly.

4. Laplace and Poisson Equation
Since Laplace equation could be treated as a special case of Poisson equation, we are going
to use Poisson equation to do the derivation.

∂2u

∂x2
+
∂2u

∂y2
= S(x, y), 0 < x < X, 0 < y < Y
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Discretize it with centered difference,

u(x+ ∆x, y)− 2u(x, y) + u(x−∆x, y)

∆x2
+
u(x, y + ∆y)− 2u(x, y) + u(x, y −∆y)

∆y2
= S(x, y)

As in Heat equation and wave equation, we could use the index representation

un,m = u(n∆x,m∆y), Sn,m = S(n∆x,m∆y)

where 0 ≤ n ≤ X

∆x
= N and 0 ≤ m ≤ Y

∆y
= M . Then the equation could be written as

un+1,m − 2uu,m + un−1,m
∆x2

+
un,m+1 − 2un,m + un,m−1

∆y2
= Sn,m

Let ∆x = ∆y, we could pull out un,m,

un,m =
1

4
(un+1,m + un−1,m + un,m+1 + un,m−1 − Sn,m∆x2), 0 < n < N, 0 < m < M

as recursion equation.

un,m+1

un,m
un+1,m

un−1,m

un,m−1

Note this equation shows that the solution has the property that the value at each point
(xn, ym) is the “average” of the values at its four neighbouring points. However, this
relationship shows that two neighbor points are dependent on each other, which could
not give the solution. We are going to use Jacobi Method based on the property of
Laplace/Poisson equation that it is steady. First we have to make a guess of all the un,m
as u0n,m. Then we have to do the iteration

uk+1
n,m =

1

4
(ukn+1,m + ukn−1,m + ukn,m+1 + ukn,m−1 − Sn,m∆x2) (C)

until the change between ukn,m and uk+1
n,m is small enough. The tolerance could be calculated

as

` =

√√√√ 1

MN

N∑
n=0

M∑
m=0

(uk+1
n,m − ukn,m)2

The initial guess requires boundary condition and it also works for the iteration (Since
there is no time involving, there is no initial conditions). The boundary conditions usually
are

u(0, y) = 0, u(X, y) = 0, u(x, Y ) = 0, u(x, 0) = f(x)
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which could be discretized as

u(0,m) = u(N,m) = u(n,M) = 0, u(n, 0) = f(n∆x)

Neumann boundary conditions can be incorporated by calculating values for u−1,m (for
instance), as for the heat equation.
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Fourier Series

1. Motivation
Consider a heat equation

∂u

∂t
= α2∂

2u

∂x2
, 0 < x < L

with Dirichlet boundary condition

u(0, t) = u(L, t) = 0

and initial condition
u(x, 0) = f(x)

We know, from previous section, that a possible solution is

u(x, t) = eikx−α
2k2t

which in the real form is

u(x, t) = e−α
2k2t(A cos(kx) +B sin(kx))

Apply the boundary condition

A = A cos(kL) +B sin(kL) = 0

which implies A = 0, B ∈ R and kn =
πn

L
, n ∈ Z. Therefore the solution could be in the

form of

un(x, t) = Bne
−α

2n2π2

L2 t sin
(nπx
L

)
And the general solution could be the linear combination (superposition)

u(x, t) =
∞∑
n=0

Bne
−α

2n2π2

L2 t sin
(nπx
L

)
To find out the coefficients, we need to apply the initial condition

u(x, 0) =
∞∑
n=0

Bn sin
(nπx
L

)
= f(x)

Then we are facing an problem which is to represent an arbitrary function in terms of
infinite sine/cosine functions.

x

y

O L
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2. Family of Cosine Functions
We define the collection of sine/cosine functions

ϕ = {1, sin
(πx
L

)
, cos

(πx
L

)
, sin

(
2πx

L

)
, cos

(
2πx

L

)
, . . . }

= {1, sin
(nπx
L

)
, cos

(nπx
L

)
}, n ∈ N+

as the family of cosine functions. To study how to decompose/expand an arbitrary func-
tion f(x) to the base functions in the family of cosine functions, we need to explore two
properties of the family.

• Any functions in the family is periodic with the period T = 2L.
Proof. It is trivial that the constant function f(x) = 1 is periodic with any periods.
Besides, we have

sin

(
nπ(x+ 2L)

L

)
= sin

(nπx
L

+ 2nπ
)

= sin
(nπx
L

)
and

cos

(
nπ(x+ 2L)

L

)
= cos

(nπx
L

+ 2nπ
)

= cos
(nπx
L

)
which shows sin

(nπx
L

)
and cos

(nπx
L

)
are periodic with a period T = 2L.

Note. This property shows that the function f(x) should also be periodic with a pe-
riod T = 2L.

• The family is orthogonal.
Proof. Although we don’t know what kind of vector space it is here, but we will figure
it out as long as we prove the completeness and convergence of linear combination of
the base functions in the family. We just need to define the inner product of the family
first.

〈f, g〉 :=

∫ L

−L
f(x)g(x) dx

To prove the the orthogonality, we need to prove the inner product of two base func-
tions equals to zero but the inner product of a base function itself is non-zero. We
have the combination with 1∫ L

−L
sin
(nπx
L

)
dx = − L

nπ
cos
(nπx
L

)∣∣∣L
−L

= 0 (a)

∫ L

−L
cos
(nπx
L

)
dx =

L

nπ
sin
(nπx
L

)∣∣∣L
−L

= 0 (b)
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and the combination with sine and cosine where n 6= m∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx =

∫ L

−L

1

2

[
cos

(
(n−m)πx

L

)
− cos

(
(n+m)πx

L

)]
dx

= 0 by (b)
(c)∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx =

∫ L

−L

1

2

[
cos

(
(n−m)πx

L

)
+ cos

(
(n+m)πx

L

)]
dx

= 0 by (b)
(d)∫ L

−L
sin
(nπx
L

)
cos
(mπx

L

)
dx =

∫ L

−L

1

2

[
sin

(
(n−m)πx

L

)
+ sin

(
(n+m)πx

L

)]
dx

= 0 by (a)
(e)

and those combination with a sine/cosine itself where n = m

∫ L

−L
cos
(nπx
L

)2
=

∫ L

−L

1 + cos

(
2nπx

L

)
2

dx = L by (b)
(f)

∫ L

−L
sin
(nπx
L

)2
=

∫ L

−L

1− cos

(
2nπx

L

)
2

dx = L by (b)
(f)

and the inner product of a constant function itself∫ L

−L
12 dx = 2L (h)

In summary, we have the family is orthogonal with∫ L

−L
12dx = 2L (*)

and ∫ L

−L
sin
(nπx
L

)2
=

∫ L

−L
cos
(nπx
L

)2
= L (**)

Note. This property gives us a hint to use the analogy of projection.

3. Fourier Series

(a) Definition
Assume a periodic function f(x) is able to be expanded to the form

F (x) =
a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
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The coefficient on a0 comes from the comparison between (*) and (**). Then we want
to project f(x) = F (x) on base functions,∫ L

−L
1 · f(x) dx =

∫ L

−L
1 · F (x) =

a0
2

∫ L

−L
12 dx = a0L

by (*) and∫ L

−L
cos
(nπx
L

)
f(x) dx =

∫ L

−L
cos
(nπx
L

)
F (x) dx = an

∫ L

−L
cos
(nπx
L

)2
dx = anL

by (**) and∫ L

−L
sin
(nπx
L

)
f(x) dx =

∫ L

−L
sin
(nπx
L

)
F (x) dx = bn

∫ L

−L
sin
(nπx
L

)2
dx = bnL

by (**). Since 1 = cos

(
0× πx
L

)
, we could combine a0 and an terms. Therefore we

could have the definition.

Definition 1. Let f(x) to be a periodic function with period T = 2L, the series

F (x) =
a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
is the Fourier Series of function f(x) if

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

and

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

Since f(x) is periodic with T = 2L, the Fourier series will be the same if f(x) is
shifted by 2L. Besides, there is one thing to notice: we DON’T know whether F (x)
converges to f(x) yet. We have to check the completeness of the base functions and
the convergence of F (x).

(b) Completeness
In this section we are going to prove that the set of base functions is complete for a
periodic continuous function f(x).

Theorem 1. (Completeness Theorem) A continuous periodic function f(x) equals its
Fourier series.
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(c) Convergence
Based on the completeness of basis, we could analyze the convergence of F (x) of f(x)
with different types of continuity.

Theorem 2. (Dirichlet Condition) If f(x) is periodic on a period T = 2L and

• is absolutely integrable over a period;

• is of bounded variation in any given bounded interval;

• has a finite number of discontinuities in any given bounded interval, and the dis-
continuities cannot be infinite;

then the Fourier Series F (x) of f(x) converges to the value

F (x0) =
f(x+0 ) + f(x−0 )

2

For convenience, we could simplify the condition of f(x).

Theorem 3. (Pointwise Convergence) If f(x) and f ′(x) are piecewise continuous, then
the Fourier Series F (x) of f(x) converges to the value

F (x0) =
f(x+0 ) + f(x−0 )

2

(d) Extension Function
If we are given an non-periodic function f(x) on the domain [0, L], we have to find a
path to extend f(x) to be periodic on R with a period T = 2π so that we can expand
f(x) to a Fourier Series. There are basically three ways to extend it.

? ?

y

xL

• Half Range Even Extension: If we know the expanded Fourier series is a cosine
series

C(x) =
a0
2

+
∞∑
n=1

an cos
(nπx
L

)
where

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx
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we would be sure that f(x) is an even function. Then we extend f(x) to [−L, 0]
first by f(−x) = f(x). Then we extend the domain [−L,L] to the full range of R
with the periodic property f(x + 2L) = f(x). Notice the convergence should be
checked based on the continuity of the extended functions.

y

xL−L

... ...

2L−2L

• Half Range Odd Extension: If we know the expanded Fourier series is sine series

S(x) =
∞∑
n=0

bn sin
(nπx
L

)
where

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

we would be sure that f(x) is an odd function. Then we extend f(x) to [−L, 0]
first by f(−x) = −f(x). Then we extend the domain [−L,L] to the full range of
R with the periodic property f(x+ 2L) = f(x). Notice the convergence should be
checked based on the continuity of the extended functions.

y

xL−L

... ...

2L−2L

• Full Range Extension: If there is no enough information given, we could use [0, L]
as the whole period with f(x+ L) = f(x). Then the series becomes

F (x) =
a0
2

+
∞∑
n=1

(
an cos

(
2nπx

L

)
+ bn sin

(
2nπx

L

))
where

an =
2

L

∫ L

0

f(x) cos

(
2nπx

L

)
dx
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and

bn =
2

L

∫ L

0

f(x) sin

(
2nπx

L

)
dx

Notice the convergence should be checked based on the continuity of the extended
functions.

y

xL−L

... ...

2L−2L

(e) Approximation and Error Analysis
Consider the Fourier Series F (x) of function f(x)

F (x) =
a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
= S∞(x)

We want to analyze the approximation of f(x) with the Fourier Series. Denote

SN(x) =
a0
2

+
N∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
Correspondingly, we define the error as analogy of the normalized square of distance
in the vector distance, which would be least-square error

ε2[f, SN ] =
1

L
〈f − SN , f − SN〉

Then we have

ε2[f, SN ] =
1

L

∫ L

−L
[f(x)− SN(x)]2dx

=
1

L

∫ L

−L
f(x)2dx+

1

L

∫ L

−L
S2
N(x)dx− 2

L

∫ L

−L
f(x)SN(x)dx

=
1

L

∫ L

−L
f(x)2dx+

1

L

(
a20
2
L+

N∑
n=1

(a2nL+ b2nL)

)
− 2

L

(
a20
2
L+

N∑
n=1

(a2nL+ b2nL)

)

=
1

L
〈f, f〉 −

(
a20
2

+
N∑
n=1

(a2n + b2n)

)
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With the square, we know ε2[f, SN ] ≥ 0. Then we know

a20
2

+
N∑
n=1

(a2n + b2n) ≤ 1

L

∫ L

−L
f(x)2dx

If the integral
1

L

∫ L

−L
f(x)2dx < ∞ is finite, the series could be bounded. Then we

denote f ∈ L2[−L,L] define the bound to be the energy of 2L-periodic function f(x),

E[f ] =
1

L

∫ L

−L
f(x)2dx. Take the limit, we have Bessel’s Inequality.

Theorem 4. (Bessel’s Inequality) If f ∈ L2[−L,L], then with the Fourier series of
f(x),

a20
2

+
∞∑
n=1

(a2n + b2n) ≤ 1

L

∫ L

−L
f(x)2dx

in particular the series
a20
2

+
N∑
n=1

(a2n + b2n) is convergent.

If this series converges to the energy of the function, we have our least-square error
ε2[f, S∞] = 0. Then it is possible that our Fourier series converges to the original
function. This is demonstrated by the Parseval’s Theorem.

Theorem 5. (Parseval’s Theorem) Let f(x) ∈ L2[−L,L] then the Fourier coefficients
an and bn satisfy Parseval’s Formula

a20
2

+
∞∑
n=1

(a2n + b2n) =
1

L

∫ L

−L
f(x)2dx

if and only if

lim
N→∞

∫ L

−L
[f(x)− SN(x)]2 dx = 0

In the case we know the least square error is

ε2[f(x), SN(x)] =
∞∑

n=N+1

(
a2n + b2n

)
Here we are going to look at a few examples.

Example 11. (Proof of Parseval’s Identity for odd functions)

For odd continuous periodic functions, we know f(x) =
∞∑
n=1

bn sin
(nπx
L

)
. Then we

want to prove
1

L

∫ L

−L
f(x)2 dx =

∞∑
n=1

b2n
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We have to expand the integral

1

L

∫ L

−L

(
∞∑
n=1

bn sin
(nπx
L

))( ∞∑
n=1

bn sin
(nπx
L

))
dx

=
1

L

∫ L

−L

∞∑
n=1

b2n sin
(nπx
L

)2
dx

=
1

L
× L

∞∑
n=1

b2n =
∞∑
n=1

b2n

which proves the identity.

Example 12. (Gibbs Phenomenon)
The truncated Fourier series near a jump discontinuity overshoots the jump by about
9% of the size of the jump. We are going to demonstrate this on a square wave

f(x) =

{
1, if x ∈ (nπ, (n+ 1)π], n is even

−1, if x ∈ (nπ, (n+ 1)π], n is odd

We know the Fourier series of f(x) is

F (x) =
4

π

∞∑
n=1

sin((2n− 1)x)

2n− 1

Then the approximation of f(x) with N terms would be

SN(x) =
4

π

N∑
n=1

sin((2n− 1)x)

2n− 1

Then to see the overshoots, we want to find the highest point SN(x) could go.

S ′N(x0) = 0

SN(x)

y

x
x0
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To do this, we need to find the derivative of SN(x). We have

S ′N(x) =
4

π

N∑
n=1

cos((2n− 1)x)

We are going to play some trick to simplify S ′N(x). Multiply sin(x) and divide it on
S ′N(x), we have

S ′N(x) =
4

π sin(x)
(cos(x) sin(x) + cos(3x) sin(x) + · · ·+ cos((2N − 1)x) sin(x)))

=
4

π sin(x)

(
���

�sin(2x)− sin(0) +���
�sin(4x)−����sin(2x) + · · ·+ sin((2N)x)−(((((

(((sin((2N − 2)x)

2

)
=

2

π

sin(2Nx)

sin(x)

Let S ′N(x0) = 0, we have x =
kπ

2N
where k ∈ Z. We want x0 to be the first maximal

point, so x0 =
π

2N
. Then we plug x0 back to SN(x), we have

SN

( π

2N

)
=

4

π

sin
( π

2N

)
+

sin
(
3π
2N

)
3

+ · · ·+
sin
(

(2N−1)π
2N

)
2N − 1


We could try few terms to see what is going on.

• N = 1, we know S1(
π

2
) = 1.273 and then the percentage of overshoot is

η =
1.273− 1

2
= 13.6%

• N = 21, we know S21(
π

42
) = 1.178 and then the percentage of overshoot is

η =
1.178− 1

2
= 9%

It seems that taking more terms giving more accurate answer. Then we are going to
analytically calculate the approximation. We have

SN

( π

2N

)
=

2

π

π

N

(
sin(π/2N)

π/2N
+

sin(3π/2N)

3π/2N
+ · · ·+ sin((2N − 1)π/2N)

(2N − 1)π/2N

)
which could be treated as the Riemann sum of the integral

π

2

∫ π

0

sin(x)

x
dx, ∆x =

π

N

Therefore

lim
N→∞

SN

( π

2N

)
=
π

2

∫ π

0

sin(x)

x
dx
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Then we could use the integral of the power series
π

2

∫ π

0

sin(x)

x
dx to estimate SN(x)

if we have enough N terms. Therefore

SN(x) ≈ 2

(
1− π2

3 · 3!
+

π4

5 · 5!
− π6

7 · 7!
+

π8

9 · 9!
− · · ·

)
≈ 1.18

And the percentage of overshoot is

η =
1.18− 1

2
= 9%

Here we attached a graph calculated by demos with N = 18

On the other hand, we could also use the Dirichlet condition and Parseval’s identity
to calculate some series.

Example 13. (p-series)
Consider the continuous function f(x) = x, x ∈ [0, 2], which, with odd extension,
could be expanded as

f(x) =
4

π

∞∑
n=1

(−1)n+1

n
sin
(nπx

2

)
The energy is

E[f ] =
2

2

∫ 2

0

x2 dx =
x3

3

∣∣∣∣2
0

=
8

3

and we have
∞∑
n=1

b2n =
42

π2

∞∑
n=1

1

n2
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By Parseval’s identity, we have

8

3
=

16

π2

∞∑
n=1

1

n2

Therefore we know
∞∑
n=1

1

n2
=
π2

6

Consider the continuous function f(x) = x2, x ∈ (−π, π) which could be expanded as

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx)

With
2

π

∫ π

0

x2 dx =
π4

9
+ 16

∞∑
n=1

1

n4

we know
∞∑
n=1

1

n4
=
π2

90
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Method of PDEs: Separation of Variables

1. Heat Equation

(a) Standard Heat Conduction Equation - Heat Conduction in a Rod
Consider the heat conduction in a rod (0 < x < L),

u

x

f(x)

L

u(0, t)

ux(0, t)

u(L, t)

ux(L, t)

with the initial condition u(x, 0) = f(x) and some boundary conditions of u(0, t),
u(L, t), ux(0, t) and ux(L, t). If the conduction only happens in the rod and with the
end, we know the differential equation governing the conduction is

∂u

∂t
= α2∂

2u

∂x2
, 0 < x < L

To solve this equation, we are going to use the technique called separation of variables.
First we make a Fourier’s guess that the solution

u(x, t) = X(x)T (t)

is separable. Then we have

ut(x, t) = X(x)T ′(t), ux(x, t) = X ′(x)T (t), uxx(x, t) = X ′′(x)T (t)

Plug them back to the equation, we have

X(x)T ′(t) = α2X ′′(x)T (t)

Rearrange the equation, we have

X ′′(x)

X(x)︸ ︷︷ ︸
No t terms!

=
T ′(t)

α2T (t)︸ ︷︷ ︸
No x terms!

= constant︸ ︷︷ ︸
No x and t terms!

= λ

Then we have get two separate differential equations

T ′ − λα2T = 0 (A)

and
X ′′ − λX = 0 (B)
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The first equation (A) could be solved regardless of the value of λ,

T (t) = eλα
2t

But the second equation should be solved based of the value of λ. To restrict the
number of value and solve for X(x), we need to apply the boundary condition.

i. Dirichlet Boundary Condition
If two ends are placed with ice with 0◦C,

u(0, t) = 0 u(L, t) = 0
ice ice

0◦C 0◦C

then we have the Dirichlet boundary condition

u(0, t) = u(L, t) = 0

Separate the boundary condition, we have

X(0)T (t) = X(L)T (t) = 0

Since T (t) 6= 0, we could cancel the T (t) to get

X(0) = X(L) = 0

Based on the boundary condition, we could discuss the choice of λ to get a non-
trivial solution of X(x).

If λ > 0, we let λ = +µ2, µ > 0. Then the differential equation is X ′′ − µ2X = 0
with the characteristic equation r2 − µ2 = 0 implying r = ±µ. Then we have the
solution to be

X(x) = Aeµx +Be−µx

Plug into the boundary condition, we have

A+B = AeµL +Be−µL = 0

Since eµL, e−µL 6= 0, we have A = B = 0 which gives X(x) = 0, a trivial solution.

If λ = 0, then the differential equation is X ′′ = 0 and the solution is X(x) = Ax+B.
Plug into the boundary condition, we have

B = AL+B = 0

which implies A = B = 0 and X(x) = 0, a trivial solution.

If λ < 0, let λ = −µ2, µ > 0. Then the differential equation is X ′′ + µ2X = 0
with the characteristic equation r2 + µ2 = 0 implying r = ±iµ. Then we have the
solution to be

X(x) = A cos(µx) +B sin(µx)
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Plug into the boundary condition, we have

A = A cos(µL) +B sin(µL) = 0

It shows that A = 0. We don’t want B = 0 which would give another trivial
solution, so we have µL = nπ. Then we have

Xn(x) = sin
(nπx
L

)
, λn = −µ2

n = −
(nπ
L

)2
, n ∈ Z+ (i)

Here n 6= 0 is to guarantee that X(x) in non-trivial and n > 0 is to make sure Xn

is not repeated as sin function is odd.

Then we have

un(x, t) = e−(nπαL )
2
t sin

(nπx
L

)
and with the principle of superposition, the complete solution is

u(x, t) =
∞∑
n=1

Bne
−(nπαL )

2
t sin

(nπx
L

)
Then to find the coefficient Bn, we need to apply the initial condition,

f(x) = u(x, 0) =
∞∑
n=1

Bn sin
(nπx
L

)
= S(x)

This requires us to expand f(x) as an Fourier sine series. First we have to (odd)
extant the f(x) to the domain −L < x < L with f(x) = −f(−x) and then we
extent it to the entire domain R. Then with

Bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

we could find all the coefficients. Then the solution is

u(x, t) =
∞∑
n=1

(
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

)
e−(nπαL )

2
t sin

(nπx
L

)
ii. Neumann Boundary Condition

If two ends are isolated,

ux(0, t) = 0 ux(L, t) = 0

isolated isolated

then we have the Neumann boundary condition

ux(0, t) = ux(L, t) = 0
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Separate the boundary condition, we have

X ′(0)T (t) = X ′(L)T (t) = 0

Since T (t) 6= 0, we could cancel the T (t) to get

X ′(0) = X ′(L) = 0

Based on the boundary condition, we could discuss the choice of λ to get a non-
trivial solution of X(x).

If λ > 0, we let λ = +µ2, µ > 0. Then the differential equation is X ′′ − µ2X = 0
with the characteristic equation r2 − µ2 = 0 implying r = ±µ. Then we have the
solution to be

X(x) = Aeµx +Be−µx

Plug into the boundary condition, we have

Aµ+Bµ = AµeµL −Bµe−µL = 0

Since eµL, e−µL 6= 0, we have A = B = 0 which gives X(x) = 0, a trivial solution.

If λ = 0, then the differential equation is X ′′ = 0 and the solution is X(x) = Ax+B.
Plug into the boundary condition, we have

A = A = 0

which implies A = 0, B ∈ R and X(x) = 1 with λ = 0.

If λ < 0, let λ = −µ2, µ > 0. Then the differential equation is X ′′ + µ2X = 0
with the characteristic equation r2 + µ2 = 0 implying r = ±iµ. Then we have the
solution to be

X(x) = A cos(µx) +B sin(µx)

Plug into the boundary condition, we have

µB = −µA sin(µL) + µB cos(µL) = 0

It shows that B = 0. We don’t want A = 0 which would give another trivial
solution, so we have µL = nπ. Then we have

Xn(x) = cos
(nπx
L

)
, λn = −µ2

n = −
(nπ
L

)2
, n ∈ Z+

Here n 6= 0 is to guarantee λ < 0 and n > 0 is to make sure Xn is not repeated as
cos function is even.

Combine the situation of λ < 0 and λ = 0, we have

Xn(x) = cos
(nπx
L

)
, λn = −µ2

n = −
(nπ
L

)2
, n ∈ Z+

0 (ii)
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Then we have

un(x, t) = e−(nπαL )
2
t cos

(nπx
L

)
and with the principle of superposition, the complete solution is

u(x, t) =
∞∑
n=0

Ane
−(nπαL )

2
t cos

(nπx
L

)
Then to find the coefficient An, we need to apply the initial condition,

f(x) = u(x, 0) =
∞∑
n=0

An cos
(nπx
L

)
= C(x)

This requires us to expand f(x) as an Fourier cosine series. First we have to (even)
extant the f(x) to the domain −L < x < L with f(x) = f(−x) and then we extent
it to the entire domain R. Then with

An =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

we could find all the coefficients. Then the solution is

u(x, t) =
∞∑
n=0

(
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

)
e−(nπαL )

2
t cos

(nπx
L

)
iii. Periodic Boundary Condition

If the bar is a circle

u(−L, t) = u(L, t)

ux(−L, t) = ux(L, t)

then we have the Periodic boundary condition

u(0, t) = u(L, t), ux(0, t) = ux(L, t)

Separate the boundary condition, we have

X(0)T (t) = X(L)T (t), X ′(0)T (t) = X ′(L)T (t)

Since T (t) 6= 0, we could cancel the T (t) to get

X(0) = X(L), X ′(0) = X ′(L)

Based on the boundary condition, we could discuss the choice of λ to get a non-
trivial solution of X(x).
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If λ > 0, we let λ = +µ2, µ > 0. Then the differential equation is X ′′ − µ2X = 0
with the characteristic equation r2 − µ2 = 0 implying r = ±µ. Then we have the
solution to be

X(x) = Aeµx +Be−µx

Plug into the boundary condition, we have

A+B = AeµL +Be−µL, Aµ−Bµ = AµeµL −Bµe−µL

Since eµL, e−µL 6= 0, we have A = B = 0 which gives X(x) = 0, a trivial solution.

If λ = 0, then the differential equation is X ′′ = 0 and the solution is X(x) = Ax+B.
Plug into the boundary condition, we have

B = AL+B, A = A

which implies A = 0, B ∈ R and X0(x) = 1 with λ0 = 0.

If λ < 0, let λ = −µ2, µ > 0. Then the differential equation is X ′′ + µ2X = 0
with the characteristic equation r2 + µ2 = 0 implying r = ±iµ. Then we have the
solution to be

X(x) = A cos(µx) +B sin(µx)

Plug into the boundary condition, we have

A cos(µL)−B sin(µL) = A cos(µL) +B sin(µL)

µA sin(µL) + µB cos(µL) = −µA sin(µL) + µB cos(µL)

We don’t want A = 0, B = 0 which would give another trivial solution, so we have
µL = nπ. Then we have

Xn(x) =
{

cos
(nπx
L

)
, sin

(nπx
L

)}
, λn = −µ2

n = −
(nπ
L

)2
, n ∈ Z+

Here n 6= 0 is to guarantee λ < 0 and n > 0 is to make sure Xn is not repeated as
cos function is even.

Combine the situation of λ < 0 and λ = 0, we have

Xn(x) =
{

1, cos
(nπx
L

)
, sin

(nπx
L

)}
, λn = −µ2

n = −
(nπ
L

)2
, n ∈ Z+

0 (iii)

Then we have

un(x, t) ∈
{

1, e−(nπαL )
2
t cos

(nπx
L

)
, e−(nπαL )

2
t sin

(nπx
L

)}
and with the principle of superposition, the complete solution is

u(x, t) = A0 +
∞∑
n=1

(
Ane

−(nπαL )
2
t cos

(nπx
L

)
+Bne

−(nπαL )
2
t sin

(nπx
L

))
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Then to find the coefficient An, we need to apply the initial condition,

f(x) = u(x, 0) = A0 +
∞∑
n=1

(
An cos

(nπx
L

)
+Bn sin

(nπx
L

))
= F (x)

This requires us to expand f(x) as a Fourier series. We extent it to the entire
domain R. Then with

A0 =
1

2L

∫ L

−L
f(x) dx

and

An =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

and

Bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

we could find all the coefficients. Then the solution is

u(x, t) =
1

2L

∫ L

−L
f(x) dx

+
∞∑
n=1

(
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

)
e−(nπαL )

2
t cos

(nπx
L

)
+
∞∑
n=1

(
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

)
e−(nπαL )

2
t sin

(nπx
L

)
iv. Mixed Boundary Condition

If we have the left end to be ice and the right end to be isolated,

u(0, t) = 0 ux(L, t) = 0

isolated

0◦C

ice

then we have the mixed boundary condition

u(0, t) = ux(L, t) = 0

Separate the boundary condition, we have

X(0)T (t) = X ′(L)T (t) = 0

Since T (t) 6= 0, we could cancel the T (t) to get

X(0) = X ′(L) = 0

Based on the boundary condition, we could discuss the choice of λ to get a non-
trivial solution of X(x).
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If λ > 0, we let λ = +µ2, µ > 0. Then the differential equation is X ′′ − µ2X = 0
with the characteristic equation r2 − µ2 = 0 implying r = ±µ. Then we have the
solution to be

X(x) = Aeµx +Be−µx

Plug into the boundary condition, we have

A+B = AµeµL −Bµe−µL = 0

Since eµL, e−µL 6= 0, we have A = B = 0 which gives X(x) = 0, a trivial solution.

If λ = 0, then the differential equation is X ′′ = 0 and the solution is X(x) = Ax+B.
Plug into the boundary condition, we have

B = A = 0

which implies A = B = 0 and X(x) = 0, a trivial solution.

If λ < 0, let λ = −µ2, µ > 0. Then the differential equation is X ′′ + µ2X = 0
with the characteristic equation r2 + µ2 = 0 implying r = ±iµ. Then we have the
solution to be

X(x) = A cos(µx) +B sin(µx)

Plug into the boundary condition, we have

A = −Aµ sin(µL) +Bµ cos(µL) = 0

It shows that A = 0. We don’t want B = 0 which would give another trivial

solution, so we have µL =

(
n+

1

2

)
π. Then we have

Xn(x) = sin

(
(2n+ 1)πx

2L

)
, λn = −µ2

n = −
(

(2n+ 1)π

2L

)2

, n ∈ Z+
0 (iv)

Here n ≥ 0 is to make sure Xn is not repeated as sin function is odd.

Then we have

un(x, t) = e−( (2n+1)πα
2L )

2
t sin

(
(2n+ 1)πx

2L

)
and with the principle of superposition, the complete solution is

u(x, t) =
∞∑
n=1

Bne
−( (2n+1)πα

2L )
2
t sin

(
(2n+ 1)πx

2L

)
Then to find the coefficient Bn, we need to apply the initial condition,

f(x) = u(x, 0) =
∞∑
n=0

Bn sin

(
(2n+ 1)πx

2L

)
= S(x)
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This requires us to expand f(x) as an Fourier sine series. First we have to (odd)
extant the f(x) to the domain −L < x < L with f(x) = −f(−x) and then we
extent it to the entire domain R. Then with

Bn =
1

L

∫ L

−L
f(x) sin

(
(2n+ 1)πx

2L

)
dx

we could find all the coefficients. Then the solution is

u(x, t) =
∞∑
n=0

(
1

L

∫ L

−L
f(x) sin

(
(2n+ 1)πx

2L

)
dx

)
e−( (2n+1)πα

2L )
2
t sin

(
(2n+ 1)πx

2L

)
If we have the left end to isolated and right end to be ice,

ux(0, t) = 0 u(L, t) = 0

isolated

0◦C

ice

as the opposite boundary condition

ux(0, t) = u(L, t) = 0

We could use the property of symmetry,

Xopposite(x) = X(L− x) = sin

(
(2n+ 1)π

2
− (2n+ 1)πx

2L

)
= ± cos

(
(2n+ 1)πx

2L

)
which implies

Xn(x) = cos

(
(2n+ 1)πx

2L

)
, λn = −µ2

n = −
(

(2n+ 1)π

2L

)2

, n ∈ Z+
0 (v)

and the solution is

u(x, t) =
∞∑
n=0

(
1

L

∫ L

−L
f(x) cos

(
(2n+ 1)πx

2L

)
dx

)
e−( (2n+1)πα

2L )
2
t cos

(
(2n+ 1)πx

2L

)
with the even extension of f(x).

(b) Inhomogeneous Heat Equation
Generally, inhomogeneous could refer to the boundary condition which is not zero and
could refer to the equation with a source or sink as an extra term. And the boundary
condition and the extra term could be time-dependent or time-independent.

For example,
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u

x

u(x, 0) = g(x)

L

u(0, t) = φ1(t) ux(L, t) = φ2(t)

ut = α2uxx + f(x, t), 0 < x < L, t > 0

The general idea is similar to the inhomogeneous ODEs - we could first find a steady
state (or particular) w(x) = u(x,∞), then after subtracting the particular solution, we
could find the transient (homogeneous) solution v(x, t). The general solution would
be the sum of particular solution u(x, t) = w(x) + v(x, t).

Let’s look at some special cases.

i. Time-independent Boundary Condition
If the boundary condition is time-independent, then they should be constant (at
least on side is non-zero). They could be Dirichlet, Neumann or mixed and some-
times we need the equation to have an extra term to be solvable.

Example 14. (Dirichlet Boundary Condition)
Consider the heat equation

∂u

∂t
= α2∂

2u

∂x2
, 0 < x < L, t > 0

with the inhomogeneous Dirichlet boundary condition

u(0, t) = u1, u(L, t) = u2

and the initial condition
u(x, 0) = f(x)

First we want to find the steady state solution. We denote w(x) = u(x,∞) which
does not change with time. Since it is steady, we know

∂2w

∂x2
=

1

α2

∂w

∂t
= 0

which implies
w(x) = Ax+B
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Plug in the boundary condition w(0) = u(0,∞) = u1, w(L) = u(L,∞) = u2, we

have A =
u2 − u1
L

and B = u1. Therefore, the steady state solution is

w(x) =
u1 − u1
L

x+ u1

Then we need to find the transient solution which transfer the initial condition to
the steady state.

u

x
u(x, 0) = f(x)

L

u(0, t) = u1

u(L, t) = u2w(x) = u(x,∞)

v(x, t)

With v(x, t) = u(x, t) − w(x) where u(x, t) is the complete solution, we have the
heat equation to be

∂v

∂t
=

∂

∂t
(u(x, t)− w(x))

=
∂u

∂t
= α2∂

2u

∂x2
= α2 ∂

2

∂x2
(v(x, t) + w(x))

= α2 ∂
2v

∂x2

as a standard heat equation

∂v

∂t
= α2 ∂

2v

∂x2
, 0 < x < L, t > 0

and the boundary condition to be

v(0, t) = u(0, t)− w(0) = u1 − u1 = 0

v(L, t) = u(L, t)− w(L) = u2 − u2 = 0

and the initial condition to be

v(x, 0) = u(x, 0)− w(x) = f(x)− w(x)

This turns out to be a homogeneous heat equation with Dirichlet boundary condi-
tion u(0, t) = u(L, t) = 0 and initial condition u(x, 0) = f(x)−w(x). The solution
is

v(x, t) =
∞∑
n=1

(
1

L

∫ L

−L
(f(x)− w(x)) sin

(nπx
L

)
dx

)
︸ ︷︷ ︸

bn

e−
n2π2α2

L2 t sin
(nπx
L

)
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Then the complete solution is

u(x, t) =
∞∑
n=1

bne
−n

2π2α2

L2 t sin
(nπx
L

)
︸ ︷︷ ︸

transient, decays to zero

+
u1 − u1
L

x+ u1︸ ︷︷ ︸
steady state solution

However, when we have the Neumann boundary condition, it is not always pos-
sible to find a steady state solution if the flow on two sides is not balanced
(ux(0, t) 6= ux(L, t)). The idea is still to find a particular solution first.

Example 15. (Neumann Boundary condition)
Consider the heat equation

∂u

∂t
= α2∂

2u

∂x2
, 0 < x < L, t > 0

with the inhomogeneous Neumann boundary condition

ux(0, t) = q1, ux(L, t) = q2

and the initial condition
u(x, 0) = f(x)

Based on the solution would not be steady, we guess a particular solution with the
form

w(x, t) = Ax2 +Bx+ C︸ ︷︷ ︸
∂2w
∂x2

= 1
α2

∂w
∂t
6=0

+ Dt︸︷︷︸
∂w
∂t
6=0

Plug into the equation we have
D = 2α2A

Plug into the boundary condition

wx(0, t) = B = q1

wx(L, t) = 2AL+B = q2

These solve B = q1, A =
q2 − q1

2L
and D =

2α2(q2 − q1)
2L

; and C could be an

arbitrary constant. Therefore the particular solution is

w(x, t) =
q2 − q1

2L
x2 + q1x+

2α2(q2 − q1)
2L

t+ C

Then we want to find the rest part of the solution v(x, t) = u(x, t)− w(x, t). Plug
it into the equation and boundary condition we have the equation to be

∂v

∂t
=

∂

∂t
(u(x, t)− w(x, t))

=
∂u

∂t
− ∂w

∂t
= α2∂

2u

∂x2
− α2∂

2w

∂x2

= α2 ∂
2v

∂x2
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as a standard heat equation

∂v

∂t
= α2 ∂

2v

∂x2
, 0 < x < L, t > 0

and the boundary condition to be

vx(0, t) = ux(0, t)− wx(0, t) = q1 − q1 = 0

vx(L, t) = vx(L, t)− w(x, t) = q2 − q2 = 0

and the initial condition to be

v(x, 0) = u(x, 0)− w(x, 0) = f(x)− w(x, 0)

This turns out to be a homogeneous heat equation with Neumann boundary con-
dition vx(0, t) = vx(L, t) = 0 and initial condition u(x, 0) = f(x) − w(x, 0). The
solution is

v(x, t) =
a0
2

+
∞∑
n=1

ane
−n

2π2α2

L2 t cos
(nπx
L

)
where

an =
1

L

∫ L

−L
(f(x)− w(x, t)) cos

(nπx
L

)
dx

Then the complete solution is

u(x, t) =
a0
2

+
∞∑
n=1

ane
−n

2π2α2

L2 t cos
(nπx
L

)
︸ ︷︷ ︸

particular solution

+
q2 − q1

2L
x2 + q1x+

2α2(q2 − q1)
2L

t+ C︸ ︷︷ ︸
homogeneous solution

We have to check whether C is actually arbitrary. Sum up the constant with
variation ∆C,

a′0
2

+ C + ∆C =
1

2L

∫ L

−L
(f(x)− w(x, t)−∆C) dx+ C + ∆C

=
1

2L

∫ L

−L
(f(x)− w(x, t)) dx− 1

2L

∫ L

−L
∆C dx+ C + ∆C

=
a0
2
−∆C + C + ∆C

=
a0
2

+ C

This means the choice of C does not matter with the constant term in the complete
solution, which demonstrates that the C could be arbitrary. Then we could just
pick C = 0.

When the boundary condition is mixed, it is possible to find the steady solution if
one end flow is indicated as 0 (ux(0, t) = 0 or ux(L, t) = 0). However the keypoint
is always to find the particular solution.
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Example 16. (Mixed Boundary Condition)
Consider the heat equation

∂u

∂t
= α2∂

2u

∂x2
, 0 < x < L, t > 0

with the inhomogeneous Mixed boundary condition

u(0, t) = u0, ux(L, t) = 0

and the initial condition
u(x, 0) = f(x)

First we want to find the steady state solution since the right flow is zero. We
denote w(x) = u(x,∞) which does not change with time. Since it is steady, we
know

∂2w

∂x2
=

1

α2

∂w

∂t
= 0

which implies
w(x) = Ax+B

Plug in the boundary condition w(0) = u(0,∞) = u0, wx(L) = ux(L,∞) = 0, we
have A = 0 and B = u0. Therefore, the steady state solution is

w(x) = u0

Then we need to find the transient solution which transfer the initial condition to
the steady state.
With v(x, t) = u(x, t) − w(x) where u(x, t) is the complete solution, we have the
heat equation to be

∂v

∂t
=

∂

∂t
(u(x, t)− w(x))

=
∂u

∂t
= α2∂

2u

∂x2
= α2 ∂

2

∂x2
(v(x, t) + w(x))

= α2 ∂
2v

∂x2

as a standard heat equation

∂v

∂t
= α2 ∂

2v

∂x2
, 0 < x < L, t > 0

and the boundary condition to be

v(0, t) = u(0, t)− w(0) = u0 − u0 = 0

vx(L, t) = ux(L, t)− wx(0) = 0

and the initial condition to be

v(x, 0) = u(x, 0)− w(x) = f(x)− w(x) = f(x)− u0
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This turns out to be a homogeneous heat equation with Dirichlet boundary condi-
tion v(0, t) = vx(L, t) = 0 and initial condition u(x, 0) = f(x) − u0. The solution
is

v(x, t) =
∞∑
n=0

bne
− (2n+1)2π2α2

4L2 t sin

(
(2n+ 1)πx

2L

)
where

bn =
1

L

∫ L

−L
(f(x)− u0) sin

(
(2n+ 1)nπx

2L

)
dx

And the complete solution is

u(x, t) =
∞∑
n=0

bne
− (2n+1)2π2α2

4L2 t sin

(
(2n+ 1)πx

2L

)
︸ ︷︷ ︸

transient solution, decays to zero

+ u0︸︷︷︸
steady state solution

It is possible that we have a direct natural heat loss depending on the temperature
a point. Then the equation itself would still be homogeneous but the boundary
condition could be inhomogeneous.

Example 17. (Mixed Boundary condition with Heat Loss)
Consider the heat equation

∂u

∂t
= α2∂

2u

∂x2
− β2u, 0 < x < L, t > 0

with the inhomogeneous mixed boundary condition

u(0, t) = u0, ux(L, t) = q0

and the initial condition
u(x, 0) = f(x)

First we want to find the steady state solution w(x) = u(x,∞). With
∂w

∂t
= 0, we

have

α2∂
2w

∂x2
− β2w = 0

whose characteristic equation is

α2r2 − β2 = 0

with the solution r = ±β
α

. Therefore the solution is

w(x) = A sinh

(
β

α
x

)
+B cosh

(
β

α
x

)
Plug in the boundary condition, we have

u(0, t) = w(0) = B = u0
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and

ux(L, t) = w′(L) =
βA

α
cosh

(
β

α
L

)
+
βB

α
sinh

(
β

α
L

)
= q1

We can solve to have

B = u0, A =
q1α

β cosh
(
β
α
L
) − u0 sinh

(
β
α
L
)

cosh
(
β
α
L
)

Therefore the steady state solution is

w(x) =

(
q1α

β cosh
(
β
α
L
) − u0 sinh

(
β
α
L
)

cosh
(
β
α
L
) ) sinh

(
β

α
x

)
+ u0 cosh

(
β

α
x

)
Then we want to find the homogeneous solution v(x, t) = u(x, t)−w(x). We could
simplify the equation

∂

∂t
(v(x, t) + w(x)) = α2 ∂

2

∂x2
(v(x, t) + w(x))− β2 (v(x, t) + w(x))

to be
∂v

∂t
= α2 ∂

2v

∂x2
− β2v

And the boundary conditions become

v(0, t) = u(0, t)− w(0) = u0 − u0 = 0

and
vx(L, t) = ux(L, t)− wx(L) = q1 − q1 = 0

And the initial condition becomes

v(x, 0) = u(x, 0)− w(x) = f(x)− w(x)

We want to use the method of separation of variables, assuming v(x, t) = X(x)T (t).
We plug it into the equation

X(x)T ′(t) = α2X ′′(x)T (t)− β2X(x)T (t)

which could be simplified as

1

α2

T ′

T
=
X ′′

X
− β2

α2
= constant

We let
1

α2

T ′

T
+
β2

α2
=
X ′′

X
= λ

We know from the previous section, λ = −µ2 < 0. Therefore we have two separate
equation

T ′ + (α2µ2 + β2)T = 0
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and
X ′′ + µ2X = 0, X(0) = 0, X ′(L) = 0

Then, from the previous section, we know the solution should be

Tn(t) = e
−
(
α2( (2n+1)π

2n )
2
+β2

)
t

and

Xn(x) = sin

(
(2n+ 1)πx

2L

)
Then we know the solution should be

v(x, t) =
∞∑
n=0

bne
−
(
α2( (2n+1)π

2n )
2
+β2

)
t
sin

(
(2n+ 1)πx

2L

)
where

bn =
1

L

∫ L

−L
(f(x)− w(x)) sin

(
(2n+ 1)πx

2L

)
dx

We could pull out the eβ
2t, representing the heat loss,

v(x, t) = eβ
2t

∞∑
n=0

bne
−
(
α2( (2n+1)π

2n )
2)
t
sin

(
(2n+ 1)πx

2L

)
Therefore the complete solution should be

u(x, t) =

(
q1α

β cosh
(
β
α
L
) − u0 sinh

(
β
α
L
)

cosh
(
β
α
L
) ) sinh

(
β

α
x

)
+ u0 cosh

(
β

α
x

)
︸ ︷︷ ︸

steady state solution

+ eβ
2t

∞∑
n=0

bne
−
(
α2( (2n+1)π

2n )
2)
t
sin

(
(2n+ 1)πx

2L

)
︸ ︷︷ ︸

transient solution

In summary the key idea is always to find the particular solution and homogeneous
solution.

u(x, t) = w(x) + v(x, t)

ii. Heat Conduction with Distributed Sources/Sinks
In this section we will encounter the heat equation with extra inhomogeneous terms,
which is caused by the distributed sources or sinks. This extra term could be time-
independent or time-dependent. In general, we could write the heat equation as

∂u

∂t
= α2∂

2u

∂x2
+ s(x, t)
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If the extra term is time-independent, the method to find the particular solution
and homogeneous solution will still work.

Example 18. (Time-independent Distributed Source)
Consider the heat equation

∂u

∂t
= α2∂

2u

∂x2
+ x, 0 < x < L, t > 0

with the inhomogeneous mixed boundary condition

u(0, t) = u1, u(L, t) = u2

and the initial condition
u(x, 0) = f(x)

First we want to find the steady state solution w(x) = u(x,∞). With
∂w

∂t
= 0, we

have

α2∂
2w

∂x2
+ x = 0

which implies

w′(x) = − x2

2α2
+ A

and then

w(x) = − x3

6α2
+ Ax+B

Plug in the boundary condition, we have

u(0, t) = w(0) = B = u1

and

u(L, t) = w(L) = − L3

6α2
+ AL+B = u2

Then we have

A =
u2 − u1
L

+
L2

6α2
, B = u1

And the steady state solution is

w(x) = − x3

6α2
+

(
u2 − u1
L

+
L2

6α2

)
x+ u1

Then we want to find the transient solution v(x, t) = u(x, t) − w(x). We could
simplify the solution

∂

∂t
(v(x, t) + w(x)) = α2 ∂

2

∂x2
(v(x, t) + w(x)) + x

Seperation of Variables 59



to be
∂v

∂t
= α2 ∂

2v

∂x2

And the boundary condition becomes

v(0, t) = u(0, t)− w(0) = u1 − u1 = 0

and
v(L, t) = u(L, t)− w(L) = u2 − u2 = 0

And the initial condition becomes

v(x, 0) = u(x, 0)− w(x) = f(x)− w(x)

Therefore the solution is

v(x, t) =
∞∑
n=1

bne
−n

2α2π2

L2 t sin
(nπx
L

)
where

bn =
1

L

∫ L

−L
(f(x)− w(x)) sin

(nπx
L

)
Then the complete solution is

u(x, t) = − x3

6α2
+

(
u2 − u1
L

+
L2

6α2

)
x+ u1︸ ︷︷ ︸

steady state solution

+
∞∑
n=1

bne
−n

2α2π2

L2 t sin
(nπx
L

)
︸ ︷︷ ︸

transient solution

If the source or sink is time-dependent, we have to use the method of eigenfunction
expansion.

Example 19. (Time-dependent Distributed Source)
Consider the heat equation

∂u

∂t
= α2∂

2u

∂x2
+ xt, 0 < x < L, t > 0

with Dirichlet inhomogeneous boundary condition

u(0, t) = u1, u(L, t) = u2

and the initial condition
u(x, 0) = f(x)

Since there is a t term in the equation, it is actually impossible to find a steady state
solution. However, we could find a particular solution to the homogeneous equation
with inhomogeneous boundary condition w(x) which is steady. Then we could find
a particular (but also “general”) solution to the inhomogeneous equation with
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homogeneous boundary condition v(x, t). Based on the principal of superposition,
we could find a complete solution u(x, t) = w(x) + v(x, t).

To find the “steady state” solution, with
∂w

∂t
= 0 and deleting the xt term, we

have
∂2w

∂x2
= 0

which implies
w(x) = Ax+B

Plug in the boundary condition,

B = w(0) = u(0, t) = u1

and
AL+B = w(L) = u(L, t) = u2

we have

A =
u2 − u1
L

, B = u1

Then the particular solution is

w(x) =
u2 − u1
L

x+ u1

Then we want to find the solution to the inhomogeneous equation with homoge-
neous boundary condition v(x, t) = u(x, t) − w(x). Then we could simplify the
equation

∂w

∂t
+
∂v

∂t
=
∂2w

∂x2
+
∂2v

∂x2
+ xt

to be
∂v

∂t
=
∂2v

∂x2
+ xt

And the boundary condition is

v(0, t) = u(0, t)− w(0) = u1 − u1 = 0

and
v(L, t) = u(L, t)− w(L) = u2 − u2 = 0

And the initial condition is

v(x, 0) = u(x, 0)− w(x) = f(x)− w(x)

Inspired by the idea of Fourier series, we could expand s(x, t) = xt to the basis
of sine or cosine function and solve the equation on every node. Let’s expand
s(x, t) = xt by Fourier series. Since it is Dirichlet boundary condition, we know the

eigenfunction of X(x) should be Xn(x) = sin
(nπx
L

)
, Tn(t) = e−

α2n2π2

L2 t. Therefore,

we want to expand s(x, t) in terms of

s(x, t) =
∞∑
n=1

ŝn(t) sin
(nπx
L

)
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where

ŝn(t) =
1

L

∫ L

−L
s(x, t) sin

(nπx
L

)
dx

At the same time, we want to expand v(x, t) in terms of

v(x, t) =
∞∑
n=1

v̂n(t) sin
(nπx
L

)
Our target is to solve v̂n(t). Then we have to find the solution on every node. Plug
back to the equation:

∂

∂t

(
v̂n(t) sin

(nπx
L

))
= α2 ∂

2

∂x2

(
v̂n(t) sin

(nπx
L

))
+ ŝn(t) sin

(nπx
L

)
Simplify the equation, we get(

v̂′n(t) +
n2π2α2

L2
v̂n(t)− ŝn(t)

)
sin
(nπx
L

)
= 0

Then we have to solve the inhomogeneous linear first order ordinary differential
equation

v̂′n(t) +
n2π2α2

L2
v̂n(t) = ŝn(t)

with the solution v̂n(t). The integral factor is

r(t) = e
n2π2α2

L2 t

Then the solution should be

v̂n(t) =
1

r(t)

(∫
e
n2π2α2

L2 tŝn(t) dt+ cn

)
=

∫ t

0

e−
n2π2α2

L2 (t−τ)ŝn(τ)d τ + cne
−n2π2α2

L2 t

To find the constant cn, we need to plug in the initial condition,

f(x)− w(x) = v(x, 0) =
∞∑
n=1

cn sin
(nπx
L

)
This is a Fourier series, where

cn =
1

L

∫ L

−L
(f(x)− w(x)) sin

(nπx
L

)
dx

Then our complete solution would be

u(x, t) =
u2 − u1
L

x+ u1︸ ︷︷ ︸
inhomogeneous boundary condition

+
∞∑
n=1

(∫ t

0

e−
n2π2α2

L2 (t−τ)ŝn(τ)d τ

)
sin
(nπx
L

)
︸ ︷︷ ︸

inhomogeneous equation

+
∞∑
n=1

cne
−n2π2α2

L2 t sin
(nπx
L

)
︸ ︷︷ ︸

homogeneous solution
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Back to our example, plug in s(x, t) = xt, we have

ŝn(t) =

(
2L

nπ

)
(−1)n+1t

and then∫ t

0

e−
n2π2α2

L2 (t−τ)ŝn(τ)d τ =

(
2L

nπ

)
(−1)n

 n2π2α2

L2 t− 1 + e−
n2π2α2

L2 t

n4π4α4

L4


and

cn =
1

L

∫ L

−L
(f(x)− w(x)) sin

(nπx
L

)
dx

iii. Time-dependent Boundary Condition
To be more general, let’s look at the cases where the boundary conditions are time-
dependent. The basic idea is still to find the simplest particular solution to satisfy
(cancel out) the boundary condition.

Example 20. (Dirichlet Time-dependent Boundary Condition)
Consider the heat equation

∂u

∂t
= α2∂

2u

∂x2

with boundary condition

u(0, t) = φ1(t), u(0, t) = φ2(t)

and initial condition
u(x, 0) = f(x)

Inspired by the guess in time-independent case, we let the particular solution to be

w(x, t) = A(t)x+B(t)

Plug in the boundary condition

w(0, t) = B(t) = φ1(t)

w(L, t) = A(t)L+B(t) = φ2(t)

from which we could solve A(t) =
φ2(t)− φ1(t)

L
and B(t) = φ1(t). Therefore the

particular solution is

w(x, t) =
φ2(t)− φ1(t)

L
x+ φ1(t)

Then we want to find the homogeneous solution v(x, t) = u(x, t)−w(x, t). We plug
it into the PDE, to get

∂w

∂t
+
∂v

∂t
= α2∂

2w

∂x2
+ α2 ∂

2v

∂x2
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With
∂2w

∂x2
= 0 and

∂w

∂t
=
φ′2(t)− φ′1(t)

L
x+ φ′1(t), we could rearrange the equation

to be
∂v

∂t
= α2∂

2w

∂x2
−
{
φ′2(t)− φ′1(t)

L
x+ φ′1(t)

}
with boundary condition

v(0, t) = u(0, t)− w(0, t) = φ1(t)− φ1(t) = 0

v(L, t) = u(L, t)− w(L, t) = φ2(t)− φ2(t) = 0

and initial condition

v(x, 0) = u(x, 0)− w(x, 0) = f(x, 0)− φ2(0)− φ1(0)

L
x− φ1(0)

Then we could use the eigenfunction expansion with sine functions basis to solve
it.

Similarly, we could make the following guesses with the following boundary condi-
tions.

Type Boundary Conditions Guess

Neumann ux(0, t) = φ1(t), ux(L, t) = φ2(t) w(x, t) =
φ2(t)− φ1(t)

2L
x2 + φ1(t)x

Mixed I ux(0, t) = φ1(t), u(L, t) = φ2(t) w(x, t) = φ2(t)x+ φ1(t)

Mixed II ux(0, t) = φ1(t), u(L, t) = φ2(t) w(x, t) = φ1(t)x+ (φ2(t)− φ1(t)L)

And with the same method we could have the equation of the homogeneous solution
v(x, t) = u(x, t)− w(x, t).

2. Wave Equation
In general, a wave equation is

∂2u

∂t2
= c2

∂2u

∂x2

with two boundary conditions and two initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x)

For example, consider a string vibrating

u(0, t) =?

ux(0, t) =?

u(L, t) =?

ux(L, t) =?

u(x, 0) = f(x), ut(x, 0) = g(x)
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(a) Galilean Transformation and D’Alembert’s Solution
Recall in the introduction of the PDE, we guess a solution

u(x, t) = eikx+σt

with the dispersion relation
σ2 = −c2k2

Then the solution is
u(x, t) = eik(x±ct)

To generalize the solution, we let u1(x, t) = L(x + ct) and u2(x, t) = R(x− ct). Plug
them in the equation

c · c · L′′ = c2L′′

(−c) · (−c) ·R′′ = c2R′′

which both are solutions. Consider them in Galilean Transformation, L(x + ct) rep-
resent the solution of a coordinate system moving left with speed c (x′ = x + ct) and
R(x − ct) represent the solution of a coordinate system moving right with speed c
(x′′ = x− ct).

O
x

O′
x′ = x+ ct

O′′
x′′ = x− ct

ct

−ct

c

c

Since the wave equation is linear, and L and R are arbitrary, we know the solution
could be the superposition

u(x, t) = R(x− ct) + L(x+ ct)

To find out R and L, we are going to apply the initial condition with no boundary
condition. In other solution works on (−∞,∞). We have

u(x, 0) = R(x) + L(x) = f(x) (*)

and
ut(x, 0) = −cR′(x) + cL′(x) = g(x)

which implies

−cR(x) + cL(x) =

∫ x

0

g(s) ds+ A (**)

With (∗) and (∗∗), we have

R(x) =
1

2
f(x)− 1

2c

(∫ x

0

g(s) ds+ A

)
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and

L(x) =
1

2
f(x) +

1

2c

(∫ x

0

g(s) ds+ A

)
Therefore, the solution is

u(x, t) = L(x+ ct) +R(x− ct)

=
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

(∫ x+ct

0

g(s) ds+ A−
∫ x−ct

0

g(s) ds− A
)

=
1

2
(f(x+ ct) + f(x− ct))︸ ︷︷ ︸

left and right wave from initial displacement

+
1

2c

(∫ x+ct

x−ct
g(s) ds

)
︸ ︷︷ ︸

determined by initial velocity

This is solution is D’Alembert’s solution in the domain (−∞,∞) - no boundary.

(b) Space-time Interpretation of D’Alembert’s Solution
To observe how the initial condition determine the solution, we simplify it that g(x) =
0. Therefore the D’Alembert’s solution becomes

u(x, t) =
1

2
(f(x+ ct) + f(x− ct))

For example we have a impulse u(x, 0) = f(x) = e−0.1·x
2

at t = 0 and c = 1. Then the
solution at t = 3 would be

u(x, 3) =
1

2

(
e−0.1·(x−3)

2

+ e−0.1·(x+3)2
)

As shown in the graph below,
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the wave splits into two waves travelling to right and left with speed and the solution
is the superposition of waves. We could see the center of the impulse travels along
x = ct and x = −ct. Therefore we call the region between x = ct and x = −ct (t ≥ 0)
the region of influence by (0, 0). In the other way, we could look at point (0, 3) where
u(0, 3) = 1

2
(f(−3) + f(3)) depending on the two points (−ct, 0) and (ct, 0). Therefore

we call the region between x = 3−ct and x = 3+ct (t ≥ 0) the domain of dependence.

This would also work for the case g(x) 6= 0. Then we give the general definition.

Definition 2. (Region of influence and Domain of dependence)

• For a point (x0, 0) as an initial condition point, the lines x+ct = x0 and x−ct = x0
bound the region of influence of the function values at the initial point (x0, 0).

• For a point (x1, t1) in the future of the space-time diagram, the lines x = x1−ct1 and
x = x1 + ct1 that pass through the point (x1, t1) bound the domain of dependence
of (x1, t1).

x0

x

t

x = x0 + ctx = x0 − ct (x1, t1)

(x1 − ct1, 0) (x1 + ct1, 0)

x = x1 − ct x = x1 + ct

Region of influence

Domain of dependence

Example 21.

(c) Solution by Separation of Variables
Recall the wave equation is

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0

with two boundary conditions and two initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x)

We want to apply the separation of variables

u(x, y) = X(x) · T (t)

Example 22. (Wave Equation with Dirichlet Condition)
Consider the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0
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with two boundary conditions

u(0, t) = u(L, t) = 0

and two initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x)

Plug in u(x, t) = X(x)T (t), we have

X ′′

X
=

T ′′

c2T
= −µ2

Based on the boundary condition, we know the solution of X.

Xn(x) = sin
(nπx
L

)
, λn = −µ2

n = −
(nπ
L

)2
Corresponding we can find out the solution of T .

Tn(t) = An cos (cµnt) +Bn sin (cµnt) = An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)
Then the complete solution is

u(x, t) =
∞∑
n=1

(
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

))
sin
(nπx
L

)
To find out An and Bn we need to plug in the initial condition. We have

u(x, 0) =
∞∑
n=1

An sin
(nπx
L

)
= f(x)

and

ut(x, 0) =
∞∑
n=1

Bn
nπc

L
sin
(nπx
L

)
= g(x)

With Fourier transformation, we have

An =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

and

Bn =
2

nπc

∫ L

0

g(x) sin
(nπx
L

)
dx

In this example, we could treat each Xn(x), Tn(t) as a mode, with the wavelength to
be

λn =
2L

n
and

Tn =
2L

nc
, fn =

1

Tn
=
nc

2L
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X(x)

x

n = 1
n = 2
n = 3

(d) Comparison between D’Alembert’s Solution and the Solution by Separation
of Variables
With trigonometry identity, we have the solution by separation of variables to be

u(x, t) =
∞∑
n=1

1

2

(
An sin

(
nπ(x+ ct)

L

)
+ An sin

(
nπ(x− ct)

L

)
Bn cos

(
nπ(x− ct)

L

)
−Bn cos

(
nπ(x+ ct)

L

))
=

1

2

(
∞∑
n=1

An sin

(
nπ(x+ ct)

L

)
+
∞∑
n=1

An sin

(
nπ(x− ct)

L

)
∞∑
n=1

Bn cos

(
nπ(x− ct)

L

)
−
∞∑
n=1

Bn cos

(
nπ(x+ ct)

L

))

=
1

2
(fo(x+ ct) + fo(x− ct)) +

1

2c

(∫ x+ct

x−ct
go(s) ds

)
where fo(x), go(x) are the odd periodic extension of f(x) and g(x). In conclusion, if
we know a Dirichlet boundary condition, we have the D’Alembert’s Solution in which
the initial displacement function is given by the odd periodic extension fo of the initial
displacement of the string, and the initial velocity function is given by the odd periodic
extension go of the initial velocity of the string.

f(x), g(x)
Separation of Variables

fo(x), go(x)
D’Alembert’s Solution
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3. Laplace’s Equation

(a) Rectangular Domain
A Laplace’s equation is

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b

with four boundary conditions

u(x, 0) = f1(x), u(x, b) = f2(x)

u(0, y) = g1(y), u(a, y) = g2(y)

y

xa

b

u(x, 0) = f1(x)

u(x, b) = f2(x)

u(0, y) = g1(y) u(a, y) = g2(y)

The basic idea is to separate the boundary condition

= + + +

f1

f2

g1 g2 0

0

0

f1

0

0

0

f2 0

0 0

0

g1 g2

0 0

A B C D

Example 23. (Dirichlet Boundary Condition A)
Consider the Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b

with four boundary conditions

u(x, 0) = f1(x), u(x, b) = 0

u(0, y) = 0, u(a, y) = 0

We want to use the separation of variable u(x, y) = X(x)Y (y) implying

−Y
′′

Y
=
X ′′

X
= λ︸ ︷︷ ︸

homo BC

= −µ2
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Then for X(x), with X(0) = X(a) = 0, we know the solution is

Xn(x) = sin
(nπx

a

)
, λn = −

(nπ
a

)2
Then for Y (y), we have the equation

Y ′′ −
(nπ
a

)2
Y = 0

with the solution
Yn(y) = An cosh

(nπy
a

)
+Bn sinh

(nπy
a

)
Therefore the complete solution is

u(x, y) =
∞∑
n=1

(
An cosh

(nπy
a

)
+Bn sinh

(nπy
a

))
sin
(nπx

a

)
Then we want to apply the boundary condition,

u(x, 0) =
∞∑
n=1

An sinh
(nπx

a

)
= f1(x)

Then with Fourier series expansion, we have

An =
2

a

∫ a

0

f1(x) sin
(nπx

a

)
dx

With another boundary condition

u(x, b) =
∞∑
n=1

(
An cosh

(
nπb

a

)
+Bn sinh

(
nπb

a

))
sin
(nπx

a

)
= 0

which implies

Bn = − An

tanh
(
nπb
a

)
Then the solution is

u(x, t) =
∞∑
n=1

An

sinh
(
nπb
a

) (sinh

(
nπb

a

)
cosh

(nπy
a

)
− cosh

(
nπb

a

)
sinh

(nπy
a

))
sin
(nπx

a

)
=
∞∑
n=1

An

sinh
(
nπb
a

) sinh

(
nπ(b− y)

a

)
sin
(nπx

a

)

Example 24. (Dirichlet Boundary Condition B)
Consider the Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b
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with four boundary conditions

u(x, 0) = 0, u(x, b) = 0

u(0, y) = g1(y), u(a, y) = 0

We want to use the separation of variable u(x, y) = X(x)Y (y) implying

−X
′′

X
=
Y ′′

Y
= λ︸ ︷︷ ︸

homo BC

= −µ2

Then for Y (y), with Y (0) = Y (b) = 0, we know the solution is

Yn(y) = sin
(nπy

b

)
, λn = −

(nπ
b

)2
Then for X(x), we have the equation

X ′′ −
(nπ
b

)2
X = 0

with the solution

Xn(x) = An cosh
(nπx

b

)
+Bn sinh

(nπx
b

)
Therefore the complete solution is

u(x, y) =
∞∑
n=1

(
An cosh

(nπx
b

)
+Bn sinh

(nπx
b

))
sin
(nπy

b

)
Then we want to apply the boundary condition,

u(0, y) =
∞∑
n=1

An sinh
(nπy

b

)
= g1(y)

Then with Fourier series expansion, we have

An =
2

b

∫ b

0

g1(y) sin
(nπy

b

)
dy

With another boundary condition

u(a, y) =
∞∑
n=1

(
An cosh

(nπa
b

)
+Bn sinh

(nπa
b

))
sin
(nπy

b

)
= 0

which implies

Bn = − An

tanh
(
nπa
b

)
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Then the solution is

u(x, t) =
∞∑
n=1

An

sinh
(
nπa
b

) (sinh
(nπa

b

)
cosh

(nπx
b

)
− cosh

(nπa
b

)
sinh

(nπx
b

))
sin
(nπy

b

)
=
∞∑
n=1

An

sinh
(
nπb
a

) sinh

(
nπ(a− x)

b

)
sin
(nπy

b

)
Note: Comparing these two examples, we can find the geometric symmetry between
them.

f1

g1

x

y
x

b− y
x ↔ b− y
y ↔ x

a ↔ b

If the boundary condition becomes to be Neumann, the case is still very similar.

Example 25. (Neumann Boundary Condition)
Consider the Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b

with four boundary conditions

uy(x, 0) = 0, uy(x, b) = 0

ux(0, y) = g1(y), ux(a, y) = 0

We want to use the separation of variable u(x, y) = X(x)Y (y) implying

−X
′′

X
=
Y ′′

Y
= λ︸ ︷︷ ︸

homo BC

= −µ2

Then for Y (y), with Y ′(0) = Y ′(b) = 0, we know the solution is

Yn(y) =
{

1, cos
(nπy

b

)}
, λ = −

(nπ
b

)2
Then for X(x), we have the equation to be

X ′′ −
(nπ
b

)2
X = 0

with the solution

Xn(x) = An cosh
(nπx

b

)
+Bn sinh

(nπx
b

)
, n > 0
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and
Xn(x) = Cx+D, n = 0

With the boundary condition X ′(a) = 0, we know

Bn = −An tanh
(nπa

b

)
and

C = 0

Then we know the solution of X(x) could be simplified to be

Xn(x) =
An

cosh
(
nπa
b

) (cosh
(nπa

b

)
cosh

(nπx
b

)
− sinh

(nπa
b

)
sinh

(nπx
b

))
=

An

cosh
(
nπa
b

) cosh

(
nπ(x− a)

b

)
Then the complete solution is

u(x, y) = D +
∞∑
n=1

An

cosh
(
nπa
b

) cosh

(
nπ(x− a)

b

)
cos
(nπy

b

)
Then we could apply the last boundary condition

ux(0, y) =
∞∑
n=1

−An
(nπ
b

)
tanh

(nπa
b

)
cos
(nπy

b

)
= g1(y)

With Fourier series expansion, we have

An = − 2

nπ tanh
(
nπa
b

) ∫ b

0

g1(y) cos
(nπy

b

)
dy

To be consistent, the constant term

A0 = − 2

nπ tanh
(
nπa
b

) ∫ b

0

g1(y) dy = 0 (*)

which is also ∫ b

0

g1(y) dy = 0

We could interpret (*) physically. Recall a Laplace equation could be the steady state
solution function of a 2D heat equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2

If there is no net flow ∫ b

0

g1(y) dy = 0
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Then it is possible to have a steady state solution. But look back to the solution
above, we still don’t know the constant D. Then u(x, y) is said to be known up to an
arbitrary constant.
To find out the constant, we should still think about it physically. Since there is no
net flow, the total amount of heat would be unchanged, then the constant could be
the average of heat at any moment, where we use the heat distribution at t = 0,

D =
1

Area

∫
u0(x, y) dxdy =

1

ab

∫
u0(x, y) dxdy

Sometimes we would find that the boundary is open, then it becomes a bit similar to
the heat equation problem.

Example 26. (Semi-infinite strip problem)
Consider the Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < a, 0 < y < b

with four boundary conditions

uy(x, 0) = f(x), uy(x,∞) =
B − A
a

x+ A

ux(0, y) = A, ux(a, y) = B

First we need to find the w(x) as a special solution to the equation. With wxx = 0,

we know w(x) = kx + m. Plug in the boundary condition, solving k =
B − A
a

and

m = A. Then we have

w(x) =
B − A
a

x+ A

Then we want to find out v(x, y) = u(x, y) +w(x). Check the boundary condition, we
have

v(x, 0) = u(x, 0)− w(x) = f(x)− w(x)

and

v(x,∞) = u(x,∞)− w(x) =
B − A
a

x+ A−
(
B − A
a

x+ A

)
= 0

and
v(0, y) = u(0, y)− w(0) = A− A = 0

and
v(a, y) = u(a, y)− w(a) = B −B = 0

With separation of variables, v(x, y) = X(x)Y (y), we have

−Y
′′

Y
=
X ′′

X
= λ︸ ︷︷ ︸ = −µ2
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With X(0) = X(a) = 0, we know

Xn(x) = sin
(nπx

a

)
, λn = −

(nπ
a

)2
Then for Y (y), we know

Y ′′ −
(nπ
a

)2
Y = 0

with the solution
Yn(y) = Cne

nπ
a
y +Dne

−nπ
a
y

Plug in the boundary condition, we have

Y (∞) = Cn ×∞ = 0

Then we need Cn = 0. Therefore the complete solution is

v(x, y) =
∞∑
n=1

Dne
−nπ

a
y sin

(nπx
a

)
Plug in the last boundary condition

u(x, 0) =
∞∑
n=1

Dn sin
(nπx

a

)
= f(x)− w(x)

With Fourier series expansion, we know

Dn =
2

a

∫ a

0

(f(x)− w(x)) dx

Then the solution is

u(x, y) = w(x) + v(x, y) =
B − A
a

x+ A+
∞∑
n=1

Dne
−nπ

a
y sin

(nπx
a

)

(b) Circular domains
The key point of Laplace equation is

4u = 0

which could be written in different coordinates. In this section we are going to discuss
the Laplace equation in polar coordinate which would be very powerful for the circular
domain situation. According to the knowledge in curvilinear coordinates

4u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

Therefore the Laplace equation is

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0
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Then we use the separation of variables, u(r, θ) = R(r)Θ(θ). We have

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0

which could be simplified to be

−r
2R′′ + rR′

R
=

Θ′′

Θ
= λ = −µ2

Then we have two type of boundary value problems:

Θ′′ − λΘ = 0

and
r2R′′ + rR′ + λR = 0

We have been very familiar with the BVP for Θ(θ). For the BVP for R(r), if µ = 0,
the indicial equation is

γ(γ − 1) + γ = 0

with the solution
γ1,2 = 0

and we know
R(r) = A+B ln r

If µ 6= 0, the indicial equation is

γ(γ − 1) + γ − µ2 = 0

with the solution
γ1,2 = ±µ

and we know
R(r) = Arµ +Br−µ

Then the general solution is

u(r, θ) =A0 + α0 ln r +
∞∑
n=1

Anr
√
−λn + αnr

−
√
−λn cos

√
−λnθ +

∞∑
n=1

Bnr
√
−λn

+ βnr
−
√
−λn sin

√
−λnθ
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Boundary Value Problems and Sturm-Louiville Theory

1. Motivation
From last section, we could see boundary value problem is everywhere. In summary, for
X ′′(x) + λX(x) = 0, 0 < x < L, we have

• Dirichlet: X(0) = 0 = X(L). Then

Xn(x) = sin
(nπx
L

)
, λn = −

(nπx
L

)2
, n ∈ Z+

• Neumann: X ′(0) = 0 = X ′(L). Then

Xn(x) = cos
(nπx
L

)
, λn = −

(nπx
L

)2
, n ∈ Z+

0

• Mixed I: X ′(0) = 0 = X(L). Then

Xn(x) = cos

(
(2n+ 1)πx

2L

)
, λn = −

(
(2n+ 1)πx

2L

)2

, n ∈ Z+
0

• Mixed II: X(0) = 0 = X ′(L). Then

Xn(x) = sin

(
(2n+ 1)πx

2L

)
, λn = −

(
(2n+ 1)πx

2L

)2

, n ∈ Z+
0

• Periodic: X(−L) = X(L), X ′(−L) = X ′(L). Then

Xn(x) =
{

1, cos
(nπx
L

)
, sin

(nπx
L

)}
, λn = −µ2

n = −
(nπ
L

)2
, n ∈ Z+

0

From many aspects, BVP is very different from IVP. But just as IVP, BVP has a wide
application in practice.

Example 27. (Buckling of an Elastic Column)
An investigation of the buckling of a uniform elastic column of length L by an axial load
P leads to the differential equation

y(4) + λy′′ = 0, 0 < x < L

P
x = 0 x = L

x

y
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The parameter λ is equal to P/EI, where E is Young’s modulus and I is the moment
of inertia of the cross section about an axis through the centroid perpendicular to the
xy-plane. The boundary conditions at x = 0 and x = L depend on how the ends of the
column are supported. Typical boundary conditions are

y = y′ = 0, clamped end

y = y′′ = 0, simply supported (hinged) end

For example, it could be

y(0) = y′(0) = 0, y(L) = y′(L) = 0

2. Sturm-Louiville Eigenvalue Problems
To study more general boundary value problem, we define a certain class of boundary
value problem as a generalization (interface).

Definition 3. (Sturm-Louiville Eigenvalue Problem) Sturm-Louiville eigenvalue problem
consists a differential equation

(p(x)y′)′ − q(x)y + λr(x)y = 0, 0 < x < ` (1)

where p(x), p′(x), q(x), r(x) are continuous on [0, `] and p(x) ≥ 0, r(x) ≥ 0 on [0, `], and
the boundary condition

α1y(0) + α2y
′(0) = 0, β1y(L) + β2y

′(L) = 0 (2)

.

There are few points we could notice:

(a) Plugging in different value of α1, α2, β1, β2, we could obtain Dirichlet, Neumann,
Mixed boundary condition. However, periodic boundary condition is not in the scope
of Sturm-Louiville eigenvalue problem because the boundary condition is not separable.

(b) If p(x) > 0, r(x) > 0, ` < ∞, then the S-L problem is regular. Otherwise, (to say,
∃x ∈ [0, `], p(x) > or r(x) > 0 or ` =∞), the S-L problem is singular.

(c) A second order linear differential equation (eigenvalue problem form)

−P (x)y′′ −Q(x)y′ +R(x)y = λy

could be reduced to a S-L form with a factor µ(x). With the factor we have

−P (x)µ(x)y′′ −Q(x)µ(x)y′ +R(x)µ(x)y = λµ(x)y

By expanding the S-L equation, we have

−p(x)y′′ − p′(x)y′ + q(x)y = λr(x)y

Then we have Pµ = p and Qµ = p′ with q = Rµ and r = µ. Therefore we know

P ′µ+ Pµ′ = Qµ

BVP and S-L Theory 79



in the form of
dµ

dx
=
Q− P ′

P
µ

Therefore we know the factor is

µ(x) = e
∫ Q−P ′

P
dx = e

∫ Q
P
dxe

∫
−P
′
P
dx =

e
∫ Q
P
dx

P

3. Properties of Sturm-Louiville Eigenvalue Problems

(a) Eigenvalues

i. There infinite eigenvalues of S-L problem and all eigenvalues are real.

ii. If
α1

α2

< 0,
β1
β2

> 0 and q(x) > 0, then all eigenvalues are positive.

(b) Eigenfunctions

i. For each eigenvalues λi there exists a real unique eigenfunction φi(x) up to a mul-
tiplicative constant and φi(x) has exactly i− 1 roots on (0, `).

ii. The eigenfunctions are orthogonal and can be normalized∫ `

0

r(x)φn(x)φm(x) dx = δmn =

{
1 m = n

0 m 6= n

(c) Eigenfunction Expansion
If f(x) is piecewise smooth then f(x) could be expanded as

∞∑
n=1

cnφn(x) =
f(x+) + f(x−)

2

where

cn =

∫ `

0

r(x)f(x)φn(x) dx∫ `

0

r(x)φ2
n(x) dx

and φi(x) are not necessary to be normalized. To investigate it, we could have∫ `

0

r(x)f(x)φm(x) dx =

∫ `

0

r(x)
∞∑
n=1

cnφn(x)φm(x) dx

=
∞∑
n=1

∫ `

0

r(x)cnφm(x)φn(x) dx

= cm

∫ `

0

r(x)φ2
m(x) dx
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Let’s look at an example with nonhomogeneous boundary condition.

Example 28. (Robin Boundary Condition)
Consider the ODE

X ′′ + λX = 0

where λ = µ2 and with the Robin boundary condition

X ′(0) = h1X(0), X ′(`) = −h2X(`)

where h1, h2 > 0. With indicial equation, we find out that

X(x) = A cos(µx) +B sin(µx)

Plug it back to the equation, we have

Bµ = h1A

and
−Aµ sin(µ`) +Bµ cos(µ`) = −h2A cos(µell)− h2B sin(µell)

Then we could solve
h1
µ

=
µ sin(µ`)− h2 cos(µ`)

µ cos(µ`) + h2 sin(µ`)

which can be simplified as

tan(µ`) =
µ(h2 + h1)

µ2 − h2h1
And we know

Xn(x) =
µn
h1

cosµnx+ sinµnx

Then if

• h1, h2 6= 0: µn ≈
nπ

`

• h1 6= 0 and h2 = 0: tan(µn`) =
1

µn

• h1 →∞ and h2 6= 0: Xn(x) = sin(µx), µn ≈
2n+ 1

2

π

`

Let’s look at another example related to Cauchy-Euler equation.

Example 29. (Cauchy-Euler Equation Eigenvalue Problem)
Consider the equation

−(x−2y′)′ = λx−4y, 1 < x < 2, λ >
9

4

with boundary condition
y(1) = y(2) = 0
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We expand the equation, get
x2y′′ − 2xy′ + λy = 0

We guess y = xr to get the indicial equation r(r − 1)− 2r + λ = 0 with the solution

r =
3

2
+ i

√
λ− 9

4

Then the solution should be

yn(x) = x
3
2

(
An cos

(√
λ− 9

4
lnx

)
+Bn

(√
λ− 9

4
lnx

))
Plug in the boundary condition, we have

yn(1) = An = 0

and

yn(2) = 2
√

2Bn sin

(√
λ− 9

4
ln 2

)
= 0

For the non-trivial solution, we need√
λ− 9

4
ln 2 = nπ

which gives the eigenvalue

λn =
( nπ

ln 2

)2
+

9

4

Therefore the eigenfunction is

yn(x) = x
3
2 sin

(√
λn −

9

4
lnx

)

With r(x) = x−4, we can expand a function f(x) as

f(x) =
∞∑
n=1

cnyn(x)

where

cn =

∫ 2

1

x−4f(x)x
3
2 sin

(√
λn −

9

4
lnx

)
dx

∫ 2

1

x−1 sin2

(√
λn −

9

4
lnx

)
dx
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