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Review of Techniques for ODEs

On the purpose of developing some new techniques in this course, we are going to review
two related types of differential equations specifically.

1. Second Order Linear ODE with Constant Coefficient
Generally, the homogeneous second order linear ODE with constant coefficient has the
form
ay’" +by +cy=0

which could be interpreted as L]y] = 0 where

d? d
L=a—+b—
a I + dr +c
We guess the solution to be
y — eT‘.’ﬂ

Plug into the
(ar® +br +c)e™ =0

which implies
ar’ +br+¢=0

To solve it, we have three cases (A = b — 4ac):

e A > (0. We have two real roots r1, 5. And the solution would be
y(x) = Cre"* + Coe™”
If r1 2 = £r, we could have

y(x) = Cy sinh(rz) + Cy cosh(rz)

ef —e® et +e "

Hyperbolic function: We define sinhx = — coshx = — and
h
tanhx = S
cosh z
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They have the following properties:
— cosh®z —sinh?z =1
— cosh’ x = sinh z
— sinh’x = cosh z
— sinh(z + y) = sinh x cosh y & cosh x sinh y
— cosh(z + y) = cosh z cosh y &+ sinh z sinh y

e A = 0. We have a repeated real roots rg. Then we know y; = €%, To find the second
solution, we plug it into the equation, we have L [em\ = 0. Differentiate it, we

have
0
! rr
_ [ or €
r=ro

7":7’0]

7‘7‘0]

d rT

Therefore, we have the second solution to be

0

rT

= —e¢
Y2 or

r=rQ

Therefore the solution would be
y(x) = C1e" + Cyze™®
e A < 0. We have two complex roots o + 7. Then the solution would be

y(z) = AelotPt  Bela=hit
= Ae!(cos(B) + isin(Bt)) + Be™(cos(Bt) — isin(Gt)

Let A=C"+iC", B=C"—1iC". Then let C; = 2C", Cy = 2C". Then we have the
solution to be

y(z) = e*(C sin(Bt) + Cy cos(Bt))
2. Cauchy-Euler Equation
Generally, the Cauchy-Euler Equation is
562y”+oz:cy'+ﬁy -0

which could be interpreted as L]y] = 0 where

, &
L=z @ -+ Oél’d— + 5
We guess the solution to be
y=a"

Review for ODEs 6



Plug into the equation, we have
(rr—=1)+ar+p)z" =0
which is
P+ (a—-1)r+p5=0
To solve it, we have 3 cases (A = (a — 1) — 4):
e A > 0. We have two real roots r1, 5. Then the solution would be

y(x) = Cra"™ + Cyz'™

e A = 0. We have a repeated root 1. Then the first solution would be y(z) = z'.
To find the second solution, we plug it into the equation, we have L [em| ] = 0.
Differentiate it, we have

r:m]

r=rQ

d re

d rT
. =L [56

Therefore, we have the second solution to be

= In |z|2"™

r=rg

Yo = 7%

Therefore the solution would be
y(z) = C1a™ + CyIn |x|z"™
e A < 0. We have two complex roots A £ ¢u. Then the solution would be

y(x) = Ax*# 4 B
= AxMcos(pln |z|) + isin(pln |z])) + Ba*(cos(pln |z|) — isin(pln |z|))
= (A+ B)z* cos(pIn |z]) + (A — B)isin(u1n |z])

With A+ B = and (A — B)i = Cy, we have

y(x) = C1z* cos(p1n |z|) + Cox’ sin(pn |z|)

Review for ODEs 7



Series Solution to ODE’s

1. Ordinary point and Singular Point
Consider the following linear second order differential equation with variable coefficients

P(z)y" + Q(z)y + R(z)y =0 (*)

If P(z) has a solution z( such that P(xy) = 0, in the neighborhood of xy, we have to
take the risk that there is no series solution around zy. This could be observed via the

: p, Q) Rx) Q(z) R(x)
equivalent form y" + P(x)y + P(x)y = 0 where Px) and P2)

analytic (can not expanded around z).

are possible to be not

Based on this, we make the following definition. If P(zy) = 0, we call 2y to be sin-
gular point; If P(xq) # 0, we call xy to be ordinary point.

However, it is still possible that we can find a series solution around xg. Inspired the

idea of Cauchy-Euler equation, we divide the equation by P(x) and multiplies (z — z¢)?.
We could get

(o= + (o= a0) (o o =) ) o/ + (o= ) y =0

Let p(z) = ?’Eg (x — x0) and ¢(z) = igg (z — 70)®. Then the equation becomes to be
(2 = 20)*y" + (x — 20)p(x)y + q(x)y =0 (**)

If p(z) and g(z) are analytic at © = xq, we call xy reqular singular point which is possible
to have a series solution around = = x¢; if p(z) or ¢(z) are not analytic at © = ¢, we call
xo 1rreqular singular point.

2. Series Solution near Ordinary Points
First of all, let’s look at an example of ordinary points. We have to find the recurrence
relationship to find the series a,, and radius of convergence.

Example 1. Find the Series solution of (z l)y +y =0 around z = 0.

Solution. Assume y = Z apx", implying ¢’ = Z na,z" ' and y” = Z nay(n — 1)z" 2
n=0 n=1 n=2
Plug in to the equation and simplify it, we have

Znann—l Znann—l ”2+Znan =

Series Solution to ODEs 8



Then we shift the index and simplify to get

a; — 2ay + Z(nzan — (n* 4+ n)ap )"t =0

n=2
By linear independence, we have a; — 2a; = 0 and na, — (n + 1)a,41 = 0 for n > 1.

Therefore we know a,, = — (n > 1) and ag could be arbitrary. The series solution is
n

o0 l’n
y(x) :a0+alzg
n=0

With ratio test

xn+1
n+1

xn

n—+1

lim

= |z| lim
n—0o0

n—oo

’—]w\<1

we know the radius of convergence is p = 1. Then we test the endpoints. If x = 1, the

series is ag + a1 E — which is a harmonic series and diverges. If x = —1, the series is
n
n=0
(D"
ap + ay E which is an alternative harmonic series and converges.
n=0

It is not hard to find that in this example p = 1 is also the distance between the ordinary
expansion point x = 0 and the singular point x = 1. Actually the more general statement
is that if the expansion point for the series z is ordinary then the radius of convergence is
p > |xsp— 0| where zg, is the nearest singular point - restricted by the radii of convergence
of 2@ 4 B(@)

P(x) P(z)

which are obviously bounded by P(zg) =0

. Series Solution near Regular Singular Points
Consider the equation (*x), we expand p(z) and ¢(x) around a regular singular point.

p(x) =po + pi(z — w0) + palr — 29)* + -+
Q(x) =4qo + Q1(£U — I(]) —+ QQ(CC _ $0)2 4
It is obvious that lim p(z) = po and lim ¢(z) = go. Since we are trying to find the series
T—T0 T—T0

solution near z, the equation (**) could be approximated as a Cauchy-Euler equation

(x = 20)*y" + (x — x0)poy’ + qoy = 0
with the solutions in the form y(x,r) = (z — zo)". Therefore, the complete form could be

written as
oo o

y=(x—mz)" Z an(x — )" = Z an(x — 20)"™ 1"

which is known as a Frobenius Series. However, if r is repeated or gaped by an integer,

d
we can only find one solution directly, we have to use d—y(x,r) to find the second
r

r=ro

Series Solution to ODEs 9



solution.

Let’s look at an example.

Example 2. Find the series solution of 222y” — zy/ + (1 — 2)y = 0 around x¢ = 0.

1
Solution. Although P(0) = 0, we could find p(z) = g<x) (x —0) = —5 and ¢(z) =
T
R 1— 1 1
Pg; (x —0) = 5 T are analytic then xlirglop(x) = —3 and xlgl;g q(z) = 7 Then the
corresponding Cauchy-Euler equation is z2y” — g + 3 = 0 whose indicial equation is
3 1
2 _ = _ =
T + 5 O.C>O . .
Assuming y = Zanx”” with y = Z(n + r)az" T and y = Z(n +7r)n+r—

1)a,z" "2 We plug them in,

2 Z(n -+ r)(n +7r — 1)an$n+r . Z(n + T)anxn—l-r + Zanxn—i-r . Zanxn—i-r—i-l -0
n=0 n=0 n=0 n=0

Shift the index, we have

ao[2r(r—1) —r+ 12" + Z 2a,(n+7r)(n+r—1)—a,(n+7)+a, —a,_1]2"7" =0
n=1
We have 2r(r — 1) —r+1 = 0 which is identical to the indicial equation with the solution
1
r=1, 7 We also have a,,((n+7r)(2(n+r)—3)+1) = a,—1 (n > 0) and ay is arbitrary. Then
Ix2x3x---x(2n) (2n)!

we would apply the fact 1 x3 x---x (2n—1) = I A6 x (2n) = Sy Ifr=1,

the recurrence equation becomes a, = o1 — Ot n-1
K "+ )@n—-1+1  2m2+n  n@ntl)

n 2"
Then a, = ¢ = LU —, the recurrence equa-
n!x (Ix3x---x(2n+1)) (2n+1)! 2
. 2n—1

tion becomes a,, = L. Then a, = do = do .
(2n —1)n n!x(1x3x---x(2n—-1)) n2n-1)!

Therefore the solution is

P > M4
a) = Cun () + Ooppfa) = Crad Y20+ Oy oty
n=0 ’ n=0 ’

With ratio test

~ o] lim (n+7r)2n+7r)—3)+1)

n—oo (n+1r+1)2Mn+r)—1)+1) =0<1

n—0o0

we know the raius of convergence is p = oo

Series Solution to ODEs 10



Let’s look at another more complicated example.

Example 3. (Frobenius Series: Bessel’s Equation)
Consider the Bessel’s equation

2y’ +ay + (2" =)y =0 (*)

around x = (. Since it is already in the required form, we know P(zo) = 22 =0, p(z) =1
and ¢(z) = 2% —v?. Since p(x) and ¢(z) are analytic, we know zy = 0 is a regular singular
point. Take the limit, we have

po = lim p(z) =1, go = lim g(z) = —v?
z—0 z—0
Then indicial equation is

rir—1)4+r—1vi=r"—12=0

with the solution 7 = £v. Then we would try to let y = Z a,z"" and plug in (*), we
n=1

have
Z(n +7)(n+r—1a,z™" + Z(n +1r)a,z" " + Z A Z a,z" " =0
n=0 n=0 n=0 n=0

We want to shift the index to be consistent
Z(n +r)(n+r—1)az"" + Z(n +r)a,z™t + Z o™ — 1/ Z a,z" " =0
n=0 n=0 n=2 n=0

Simplify the equation, we have

(an((n + T)2 _ y2) + an—Q) mn-i-?“ —+ aO(T‘2 o 1/2)l‘r + al((r + 1)2 . VQ):L'T—H —0

n=2

By linear independence, we have

r? —v?=0 if ag # 0

ai((r+1)2=1v2) =0

an((n+7r)?—v) +a, =0
We have to discuss the root cases based whether two roots are the same or gaped by
integers. Then p could be classified as v € Z, v =0, v = % and v ¢ ZNv # % Nv #0.

e Bessel Equation of Order Zero The equation is reduced to

nyl/ +xy’ _’_ny =0

and the roots to the indicial equation is r; o = 0. Then we know ag could be arbitrary
and a; = 0. And the recursion relation is

Series Solution to ODEs 11



so we know i i
N o A e Y
T 2k)2(2k —2)2 220 T 2%k (kI)2

and
a1 = 0
Then our first solution is

With the derivative in r of

w1 (=1)*a*"
y(z,r) = apx (1 (2+7‘)2+ +(2+7")2--- 2k‘+7")2+ )

we find the second the solution would be
dy
or

B , ok 0
= ap Inxy(7) + apw ;x or ((2+r)2"'(2k+7")2)

1
2+7)2---(2k+ 1)

Infr(r)==-2n2+7)+ -+ In(2k +r))

r=r1

Let fk(T) =

5- Since

we have )
fi(0)  d

B = S A0 =~ (1454t 1) =1

Then we have i

> (_1) +1Hk
ya(z) = Jo(z) Inz + Z W$2k
k=1

In convention, it is defined as
2
Yolw) = = (3a(a) + (7 — log2)Jo(x)

where 7 is the Euler constant. Then the complete solution is

y(r) = crdo(x) + c2Yo(w)

1
Bessel Equation of Order Multiple-Half For simplicity we let v = 5

equation is reduced to

1
%y + xy + (:1:2 - Z) y=0

The

1
and the roots to the indicial equation is r; o = +~. For r = 5 we know ag could be

2
arbitrary and a; = 0. And the recursion relation is

Ap—2 Ap—2

Ap = ————5 —— = —

(1 e

Series Solution to ODEs
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so we know

DR (D
T Qk+1)2k---1° T (2k+ 1)
and
a1 =0
Then the solution is
i o0 (_1)I~cx2k o 0 (_1)kx2k+1 oy
yl(.ﬂi):x22—':x QZ—'::U 28Inx
—~ (2k + 1)! prt (2k + 1)!
If r = —=, we know ag and a; are arbitrary. And the the recursion equation is
Ap—2 Ap—2
@ = — - _
" 1\2 1 —
(n=3)"-5 nn=1)
Then we know
(=1D*aq (=1D*aq
Aok =

U2k —1)---1  (2k)!
and
(—Dfar  _ (=D'a

DT ok T )2k 1 (2k+ 1)

Then the second solution is

1 ()R _
yo(x) = apr™2 E -~ t
— (2k)!

e (—1)k$2k+1

m = aox_% coszx + alx_% sinx

N[

k=0

We can see y;(z) is included in ya(x). In this part we find that we don’t have to use
the derivative by r. This is because the gap between two terms are 2 but the gap
between two roots is one. With visualization, it is

: 5 : ; _1
< oo o o o >7T°

N =

Bessel Equation of Order Integer For simplicity, we choose v = 1. The equation
is reduced to
2.1 / 2
Yy 4y + (= 1Dy =0
and the roots to the indicial equation is r; o = £1. Then we know a, could be arbitrary
and a; = 0. And the recursion relation is

Ap—2

= )

Series Solution to ODEs 13



Then we know

(—1)"aq __ (=D"a
2k +2)(2k) - 1(2k) 2k —2) -1 2 (k+ DA

A2k =

1
Then, with letting ag = 3 the first solution is

T = (—1)"agx?
yi(z) = 52 PHh+ ) Ji(z)

To find the second solution, we play the same trick, getting

yo(z) = aJi(z) Inx + 27! (1 + Z cnx")
n=1

Then we plug yo(z) back to the equation,

n(2n + 1)z !
—01+00$+Z Depyr + cpor)z” :—a<$+z 2 (n + 1)In!

1
where ¢g = 1. Then we choose ¢c; = 72 and we find

(=1)"*"(H, + H,—1)
22npl(n — 1)!

Con =

Therefore the second solution is
1 = (—=1)"(H, + Hy_y)z?>"
= — | —(1-—
y2(x) Ji(x)Inz + . ( E i

In convention we we define

And the complete solution is
y=c1Ji(z) + Y1 (x)

Bessel Equation of Other Orders In general the equation is

22 4 xy + (2 =)y =0

and the roots to the indicial equation is 719 = £v. If r = v we know a( could be
arbitrary and a; = 0. And the recursion relation is

Ap—2

fin = n(n+2v)

Series Solution to ODEs 14



Then we know
(—1D)*aq

2k = E122(1+v) - (n+v)

and
a1 =0

Then the first solution is

o o (_1)ka0x2k
px) = % k1221 +v)---(n+v)
If r = —v, then know a( could be arbitrary and a; = 0. And the recursion relation is
4. = e
" n(n — 2v)
Then we know
(=1)*ag
Aok =
E226(1 —v)---(n—v)
and
A2k+1 = 0
Then the second solution is
L e (—1)ka0x2k
ZOREEDY K225 (1— ) (n — )
k=0

The complete solution is
y(z) = ayi(x) + c2ya(2)

Summary: In summary, if we have two roots r; > r9 and the first solution is

() =) an(r — )"

n=1
then the second solution is

e CASE 1: If r; — 75 is neither 0 or positive integer,

ya(x) =Y bl —m)" "
n=1

where by = 1.
e CASE 2: If N —To = 0,

yQ(SC) = y1<$) IH(I — :U(]) + Z bn(x _ xo)n+r2

for some by, by, .. ..

Series Solution to ODEs 15



e CASE 3: If r; — ry is a positive integer,
yo(z) = ayy () In(x — x0) + Z bo(x — )"t
n=0

where by = 1.

Series Solution to ODEs
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Introduction to Partial Differential Equation

1. Definition and Classification
Besides ordinary differential equation, we could have partial differential equation Involving
multivariable functions u(z,t),u(x,y) that are determined by prescribing a relationship
between the function value and its partial derivatives. For examples, with u(z,y) as a
function, we have first order linear PDE,

a(x, y)ua + (2, y)uy + c(z, y)u = d(z, y)
first order non-linear PDE,
a(z,y, u)u, + b(z,y, w)u, + c(z, y, u)u = d(x, y, u)
and second order linear PDE
Augy + Bugy + Cuyy + Duy + Buy + Fu=G
where A, B,C, D, E, F,G are all constants.

This course is mainly focused on the second order linear PDE. Therefore we are going
to do some classification before starting. The classification is inspired from the analogy
of the quadratic surface Az? + Bay + Cy? + Dx + Ey = K which could be classified by
A = B? - 4AC.
A Type Quadratic PDE Nature

A =0 | Parabolic X?2=T Up = Ugy Heat /Diffusion
A <0| Eliptic |X*+Y?=K | uy +uy = f(x,y) | Poisson if f # 0
Laplace if f =0
A > 0 | Hyperbolic | T? = 2X? U = C Uy wave

All linear second order PDE’s can be transferred into one of these types.

2. Models and Examples
We will consider the situations of transportation obeying conservation laws.
First let’s look at a one dimensional case. Consider some matter flowing in one dimension.
Let u(x,t) to be the density of the matter and ¢(z,t) to be the flux of the matter (we
define flow from left to right is positive).

u(x, 1)
gl ) | a@+ Az, 1)
|
: .
| |
| |

x T+ Ax

Intro to PDEs 17



It could be approximated that the amount change of matter between x and x + Ax equals
to [u(z,t + At) — u(z,t)]A and also equals to [g(x,t) — q(x + Ax)]At. Therefore,

[u(z,t + At) — u(z, t)]Az = [g(z, t) — q(x + Az)]|At

0 0
Take the limit Az — 0 and At — 0, we have 8_:: = —a—q. Rearrange it, we have
x
ou  0q
R Wk Y
ot + ox

To describe the model better, we have to find the relationship between v and ¢. Let’s look
at some examples.

Example 4. Convection and the first order Wave Equation
If we let ¢ = cu, ¢ > 0, we could get

ou ou
e + c% =0
We could guess a solution
u(z, t) = ettt
Plug into the equation, (& + cik)e®** 9 we have the dispersion equation
0 = —ick

More generally, the solution is a right moving wave

u(z,t) = f(x — ct)

by plugging in u; + cu, = —cf’ + ¢f’ = 0. This wave could be observed in two reference
frames: stationary observer x and moving observer 2’ = x — ¢t with speed ¢ (moving with
the wave). Therefore, we have

f@) = flz—ct)

The linear relation could also have a negative coefficient, ¢ = —cu, ¢ > 0, which gives

a left moving wave. If we combine these two operators 24—02 Q—Cﬁ u =10
Ving wave. W Wo op ot or)\ot “or )" T

we could get the second order wave equation
0%u N 0%u
— C—
ot? 0x?

Example 5. Heat Conduction and Diffusion

Consider the diffusion of molecules, by Fick’s Law

g=—a?t
ox

=0

Intro to PDEs 18



we would have

ou , 0%u
—_— = —
ot 0x?
Consider the heat conduction, by Fourier’s Law
oT
—
1 ox
and the relationship between energy (heat) and temperature
u = pCT
we would also have
ou , 0%
— = —
ot 0x?
k
where o = —.
pC'

We could make a guess here u = e**™% Plug into the equation, de™** % = —k2a2ehe+ot,

we get the dispersion equation

§ = —k%a?
The heat conduction/diffusion equation could also be in higher dimension
ou
Z A
or ~ "

where A = V2.

Then let’s look at the two dimensional case. Since including ¢ would give three variables,
we consider the steady state of flow. Let u(x,y) be the z component of the velocity and
v(x,y) to the y component of the velocity. Let p be the density of the material.

v(z,y + Ay)

+ Ayl - - -
Y Y u(z,y) u(z + Az, y)

] |====
S
_|_
B>
S

Since it is steady, p should does not change. Therefore the mass change should be zero,
plo(z,y + Ay) — vz, y)|Az + plu(z + Az, y) — u(z,y)] Ay = 0
Take the limit Ax — 0 and Ay — 0, we have

ou o0 _,
or Oy

Intro to PDEs 19



Example 6. Laplace Equation
Consider the flow in the porous media, we have h(z,y) to be the hydraulic head, then by
Darcy’s law

U= —k@, v = —k:%
ox oy
where k is hydraulic conductivity. Therefore, we have
0?h  0%h
—_—t — = 0
ox?  Oy?
With the idea as the previous example, we could generalize the spacial differentiation,
Ah =0

There is one thing to notice, Fick’s Law, Fourier’s Law and Darcy’s law are physically the
same law.

Besides the transportation, let’s consider the wave equation.

Example 7. Wave Equation
Let u(z,t) be the wave equation, o(x,t) be the stress in the rod and p be the density of
the rod.

u(z,t) u(z + Az, t)
o(z,t) : o(x + Ax,t) :
— —>
.' .
| |
| I
x T+ Aw

By Newton Second Law F' = ma, we have

52
lo(z + Az, t) — o(z,t)|Ax = pAx a—tg
- —~—
force mass acceleration
Take the limit Az — 0, we have
do  Ju
or ~ op
By Hook’s Law and Young’s Modulus
0
o=E= E>0
Ox
we have the equation
Pu 0% p
— =C—=,c=/—=
Ox? ot? E
With the idea as the two previous examples, we could generalize the spacial differentiation,
92
Ay =222

ot?

Intro to PDEs 20



. Initial Conditions (For Time)
(a) First Order in Time
u(z,0) = f(z)
(b) Second Order in Time
u(z,0) = f(x), w(z,0) = g(z)

Example 8. Initial Conditions of Wave Equation
Consider a one dimensional wave equation
Pu  u
otz Ox?

Based on the second order derivative of time, we expect to have two initial conditions.

Therefore we have

u(x, 0) = f(ZE), Ut<x70) = g(ZL')

. Boundary Conditions (For Space)
We have 0 < z < L.
(a) Dirichlet

u(0,t) = f(t), u(L,t) = g(t)
(b) Neumann

ug(0,1) = f(t), ua(L,t) = g(t)
(c¢) Mixed

u(0,8) = f(t), ua(L, 1) = g(t)
(d) Periodic

u(0,t) = u(L,t)

Example 9. Mixed Boundary Condition of Heat Equation
Consider the heat conduction

ou  J%u

ot Ox2

in a rod with one end to be ice with constant temperature 0°C and one end to be isolated

with no heat flow.
E o= 0
0°C
isolated

Based on the second derivative of space, we expect to have two boundary conditions,

therefore we have
uz(0,t) =u(L,t) =0

Intro to PDEs
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Example 10. Periodic Boundary Condition of Heat Equation
Consider the heat conduction in the circular rod.

We know in the curvilinear coordinate (polar coordinate), the Laplace operation

o 19 15
or2  ror a?00?

Then the heat equation would be
ou 0*u 10u 1 0%

o o ror 2o

However we assume there is only angular heat transform without radial heat transform

0 0?
r = a, so we have 8_1; = a—rg = 0. Then we have
ou_ 15
ot a2 062
Let x = af to be the arc length, we have
o _
ot 0x?

Based on the second derivative of space, we expect to have two boundary conditions,
therefore we have
u(—L,t) =u(L,t), upg(—L,t) = u, (L, t)
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Introduction to Numerical Method of PDE

1. Finite Difference and Approximation of Derivatives
Consider the finite difference Az away from x on f(z).

Y

i

:E—IAxx T+ Azx

We could have some approximation by Taylor expansion,

aes (3) T

flx+ Ax) = f(z) + f(z)Ax + fT()AxQ + fT()Ax?’ + O(Ax*) (*)
" (3) T

flz—Az) = f(z) — f'(z)Az + fT()AxQ — fT()Ax?’ + O(Ax*) (**)

We could estimate the first order derivative in three different ways.
e Forward difference: Rearrange (*) we could pull out f'(x),

oy e+ A) = f(z)  f'(x) () « 5
fl(x) = Ao - Ax — 5 Az® + O(Az”)
~ flz+Ar) — f(z)
= . + O(Ax)

with the first order accuracy.
e Backward difference: Rearrange (**) we could pull out f'(x),

r)— f(z — Ax "z @) (z
f’(m):f() i(x A)—f;)AiL‘—f—fé )A$2+O(AZE3)
WERTEIC I

with the first order accuracy.
e Centered difference: With (%) — (%) and rearrangement, we have

fla+Ar) — flz - Az)  fO(x)

f(x) = AL G Az? + O(Az?)
Ax) — — A
_ f(l‘ + x)QAxf<x IL‘) 4 O(AmQ)

with the second order accuracy.
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We can find that the centered difference is the most accurate,

) = flz+ Ax)ngf(x — Ax)

Therefore we would estimate the second derivative with centered difference. We have
(%) + (**) and rearrange it,
flz+ Az) —2f(z) + f(z — Ax)

(@) = N +0(as?)

with the second order accuracy.

. Heat Equation
We know the partial differential equation describing heat transformation or diffusion is

ou  ,0%
—=a"—,0<2x<L
ot Ox?
Discretize it with forward difference because the physical phenomenon is going forward,

u(x,t + At) — u(z,t) azu(w + Az, t) — 2u(x,t) + u(x — Az, t)

At Ax?

The error is first order in time and second order in space.
To simplify, we use the index representation

ub = u(nAz, kAt)

L T
whereO§n§—:Nand()gk'gE:K(0<t<TisthetimewewanttoSolve).

x
Then the discretized equation could be rearranged as

2
k+1 ko, AL k k
unJr = U, + A2 (un+1 - 2un + un—l) (A)
which is the recursion relation.
UI;L—H
u’:L—l ui u]fwrl
. ) a?At 1
To make this method to be stable, we need the coefficient, —— < 3
s

Then what we have to do is apply the initial condition and boundary condition. The
initial condition is usually u(z,0) = f(z). With discretization, the initial condition is

W = f(nAz)
There are two types of boundary conditions. If it is Dirichlet, then we could have

K+l _ ok _ k1l _ ok _
uy T =uy =Auy =uy =D
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If it is Neumann

9,

then we could have, with discretization,

u(Ax,t) — u(—Azx,t)
2Az

which is u*, = u} — 2AzC in index form. Plug it into (A), we have

=C

2
kel ok a At

uy™ = uf A—xz(Qu’f — 2uftt — 2AxC)

Similarly at z = L we have u%_; = uf_; + 2A2C and plugging into (A4) gives

2
k+1 _ .k a”Al

Uy = uy W@u?\]*l — 2uk + 2A20)

In summary, the relationship could be written in the matrix-vector product form. If the

boundary condition is Dirichlet, we have 7k+1 = A?k

ukt! 1 0 0 0 ul
ub ! ro—2r r 0 ub
k+1 k
Un_4 roo=2r r UNn_;
k+1 k
Un 0 0 1 Uy
2
a’At e -
where r = > 1f the boundary condition is Neumann, we have 7;€+1 =AU+ b
x
ug —2r 2r 0 0 uk
u]fH ro =2r r .- 0 u’f
: = +
k+1 k
Un r =2r r UNn_q
k+1 k
Uy 0 2r —2r Uy

—2AzCr
0

2AxCr

To solve the equation, we need to iterate k from 0 to K while applying the recursion

equation on initial condition repeatedly.

. Wave Equation
We know the partial differential equation describing wave is

Pu 0%
—— = -,
ot? Ox?
With discretization by centered difference, we have

u(z,t + At) — 2u(z,t) + u(x, t — At)

O<z< L

cu(z + Ax,t) — 2u(z,t) + u(x — Az, t)

At? Ax?

Numerical Method to PDEs
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The error is second order in time and second order in space.
With index representation, we have

k

k+1 k k—1 E ook
u, ' — 2u, +u, Uy 2uy + Uy

At? a Ax?

k+1

Solve for u,

, we get

2 A 42
k+1 _ € At
" Ax?

which is a recursion relation (k > 1).

(quH — 2uﬁ + ufl,l) + 2uf§ — uffl (B1)

At
To make this method to be stable, we need the square root of the coefficient, Z— <1
x
Then what we have to is apply the initial condition and boundary condition.
The initial condition is usually u(z,0) = f(z) and w,(z,0) = g(x). With discretization,
we have
W = f(nAe)
and
u(z, At) — u(x, —At)
2At

= g()

which implies
ul —ut = 2Atg(nAx)

Plugging into (B1) implies

1 At
T2 Ag?
which gives the recursion relation for k = 0.

The boundary conditions usually have two types. If the boundary condition is Dirichlet
u(0,t) = u(L,t) = 0, we have

(tn, = 2y + 1ty _y) + u, + Atg(nAz) (B2)

u

uk =uf =0
If the boundary condition is Neumann u,(0,t) = u,(L,t) = 0, with discretization by
forward /backward discretization
w(Az,t) —u(—Ax,t)  u(L+ Az, t) —u(L — Az, t)

2Ax 2Ax

which implies
k_  k ko _ .k
Up =U_q, Uy = UN_g

Numerical Method to PDEs 26



Plugging the Neumann boundary condition into (B1) and (B2) would gives

o1 AL

(2uf — 2uf) 4 2uf — ub™?

O Ag?
AL B
R = AL (2uk, | —2uk) + 2uk, — uht
where k£ > 1, and
1 2AL?
1 2AL?

uy = (2uy_y — 2up) + uly + Atg(L)

2 Az?
where £ = 0. In summary, if the boundary condition is Dirichlet, we could write the
recursion in matrix-vector product as follows. For k > 1,

u18+1 1 0 0o --- 0 u’é
Ulf“ r2 2(1 _ 7“2) r2 ... 0 u’f
k1 2 2(1—7r%) 12 3
uktl r (1—=7r%) r UN_1
UI;V+1 0 0 1 u?v
0 up !
-1 ulffl
+ :
0 Upn
for k=0,
ul %7"2 (1—12) %7"2 e 0 ul Atg(Az)
: = : + :
uh st (L=r?) 3t |y || Atg((N = DAw)
ul 0 0 1 us Atg(NAz)

To solve the equation, we need to iterate k from 0 to K while applying the recursion
equation on initial condition repeatedly.

. Laplace and Poisson Equation
Since Laplace equation could be treated as a special case of Poisson equation, we are going
to use Poisson equation to do the derivation.

’u  O%*u

@+8—y225(x,y),0<x<X,0<y<Y
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Discretize it with centered difference,

u(z + Az, y) — 2u(z,y) + u(r — Az, y) +U(w, y+ Ay) —2u(z,y) + u(z,y — Ay)

AZL‘Q Ay2 = S(l’, y)

As in Heat equation and wave equation, we could use the index representation

Unm = wW(nAz, mAY), Sym = S(nAx, mAy)

X Y
where 0 <n < N Nand 0<m < N M. Then the equation could be written as
x Yy

Up+1,m — 2uu,m + Up—1,m + Up,m+1 — zun,m + Up,m—1 o S
— &nm

Ax? Ay? ’
Let Az = Ay, we could pull out w,, ,,

1 2
Upm = Z(un+1’m + Up—1m F Upmt1 + Unm—1 — SpmAz?), 0 <n <N, 0<m< M

as recursion equation.

Un—l,m un+17m

un,mfl

Note this equation shows that the solution has the property that the value at each point
(Tn, ym) is the “average” of the values at its four neighbouring points. However, this
relationship shows that two neighbor points are dependent on each other, which could
not give the solution. We are going to use Jacobi Method based on the property of
Laplace / Poisson equation that it is steady. First we have to make a guess of all the u,, ,,
as u? . Then we have to do the iteration

1
k+1 __ k k k k 2
Upom = Z_l(un—&-l,m + Up—1,m + U m+1 + Upm—-1 — Sn’mAl' ) (C)

k k+1

until the change between w; . and u,,

as

is small enough. The tolerance could be calculated

N M
=\ 2 Skt
n=0

=0

The initial guess requires boundary condition and it also works for the iteration (Since
there is no time involving, there is no initial conditions). The boundary conditions usually
are

w(0,y) =0, u(X,y) =0, u(z,Y) =0, u(z,0) = f(x)
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which could be discretized as
u(0,m) = u(N,m) =u(n, M) =0, u(n,0) = f(nAz)

Neumann boundary conditions can be incorporated by calculating values for u_;, (for
instance), as for the heat equation.
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Fourier Series

1. Motivation
Consider a heat equation
ou  ,0%
— = -,
ot 0x?
with Dirichlet boundary condition

u(0,t) =u(L,t) =0

O<zxz< L

and initial condition
u(z,0) = f(z)
We know, from previous section, that a possible solution is
u(x,t) _ eilmfa%%
which in the real form is
u(z,t) = e F(Acos(kx) + Bsin(kz))
Apply the boundary condition
A= Acos(kL)+ Bsin(kL) =0
which implies A =0, B € R and k, = %n’ n € Z. Therefore the solution could be in the

form of

a?n2x? nwx
_ t .
up(z,t) = Bpe” 12 "sin <T)

And the general solution could be the linear combination (superposition)

2,22

> o?n2x nwx
l) = Bne 12 'si (_>
u(z,t) ngzo e 7 Usin{—
To find out the coefficients, we need to apply the initial condition
= nmwx
’ 0 - Bn ! <_) -
u(z,0) ngo sin { — f(x)

Then we are facing an problem which is to represent an arbitrary function in terms of
infinite sine/cosine functions.
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2. Family of Cosine Functions
We define the collection of sine/cosine functions

. (TT T . [ 2mx 2rx
gpz{l,sm<f>,cos<f),sm ) cos| - -

= {1, sin (?) , COS (niLx)}? n € N,

as the family of cosine functions. To study how to decompose/expand an arbitrary func-
tion f(x) to the base functions in the family of cosine functions, we need to explore two
properties of the family.

e Any functions in the family is periodic with the period T' = 2L.
Proof. 1t is trivial that the constant function f(z) = 1 is periodic with any periods.
Besides, we have

. (nm(z+2L)\ | (nwx+2 )_, (mrx)
sin 7 = sin (— nm) = sin (—

and

nm(z+2L)\ (mrx 49 ) B (nﬂx)
Cos 7 = cos { — nm ) = cos (—

which shows sin <$> and cos (?) are periodic with a period T' = 2L.

Note. This property shows that the function f(z) should also be periodic with a pe-
riod T'= 2L.

e The family is orthogonal.
Proof. Although we don’t know what kind of vector space it is here, but we will figure
it out as long as we prove the completeness and convergence of linear combination of
the base functions in the family. We just need to define the inner product of the family
first.

(f.g) = / f@)g(a)da

To prove the the orthogonality, we need to prove the inner product of two base func-
tions equals to zero but the inner product of a base function itself is non-zero. We
have the combination with 1

=0 (a)
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and the combination with sine and cosine where n # m

[ (5 s (M) = [ foos () — o (N

=0 by (b) "
[ (e () = g o () o (72 s
=0 by (b) "
/ s (") os (™70 e = [ ! { (%) +sin (%)} as
=0 by (a)

and those combination with a sine/cosine itself where n = m

1+ cos 2nme
L L

/_LLCOS <?)2 :/_L 5 ) dz = L by (b) (£)
/_LLsm<nLL:C>2:/_L : 5 - >d:U:L by 