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Lecture 1 Jan 7

Topic: Introduction, Number Theory (Review), Definition of Rings, Invertible Ele-
ments

\Introduction\ Rings and modules could be related many other fields.

1. Representation theory (algebraic, analytic).

2. Algebraic number theory (e.g. what is the difference between 7 /e and V2?7 /2 is related
to Q[z]/(z* — 2)).

3. Algebraic geometry (e.g. What is the difference between y = 2% and y* = 23, i.e. where
does the singularity in y? = 23 come from? y = 22 is related to Rz, y]/(y — 2?) while

y? = x? is related to R[x,y]/(y* — z%)).

Number Theory Review ‘

1. N is the set of natural numbers where 0 € N.
2. 7 is the set of integers.

3. Well ordering principle: A nonempty subset of Z which is bounded below /above has
a smallest /largest element. (Note: This is not true in R, i.e (0, 1]).

4. Divisibility: Let a,b € Z, a # 0, a divide b and we write a|b when there exists ¢ € Z
such that b = ac.

5. Greatest common divisor: Let a,b € Z and (a,b) # (0,0), ged(a,b) = max{d €
Z|d|a and d|b} > 1.

6. Coprime: If ged(a,b) = 1, then a, b are coprime.

7. Least common multiple: Let a,b € Z and (a,b) # (0,0), lem(a,b) = min{m €
N|a|m and b|m}.

8. Z is a unique factorization domain. This means, for any = € 7Z,

x:in””

where p is prime, n, € N and n, = 0 except for finite p.

Consequence: Let a,b € Zanda = =[] p™, b= £ ][ p™. Then gcd(a,b) = [ p™inem)
and lem(a, b) = [ p™*»m») Then ged(a, b) x lem(a, b) = |ab|. And for any d € Z, if
d|a and d|b, we would have d| ged(a, b).
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9. Division algorithm: a,b € Z, b > 0, there exists unique (g, r) € Z* such that a = bg+r
where 0 < r < r. We call ¢ as quotient and r as remainder.
Proof. (!1Sketch!!) Let S = {a — bk|k € Z} NN. It is clear that S # and S is bounded
below. Then let r = min(S) by well ordering principle. There exists & such that
a — bk =, call it ¢. Then check 0 <7 < b and check a pair (¢, ) as in the theorem is
unique.

‘Formalism of 7 as a group‘

1. (Z,+) is a group.

2. The subgroups of (Z,+) are of the form aZ, where a € N.
Proof. (Sketch!!) If H = {0}, H = 0Z. Otherwise, H N (N\{0}) # 0. Let a =
min(H N (N\{0})). Using division algorithm, prove H = aZ.

3. Let a,b € Z and (a,b) # (0,0), aZ + bZ = {au + bv|u,v € Z} is a subgroup of Z. In
particular, aZ + bZ = ged(a, b)Z.
Proof. (Sketch!!) First prove it is a subgroup. Then there exists d € N, d > 1 such that
aZ 4+ bZ = dZ. Let D = ged(a,b). First by aZ C dZ and bZ C dZ, we know d|a and
d|b and then d|D. Second, since d € dZ, there exists ug,vg € Z, d = aug + bvg. Then
Dld. Then d = D.

Remark. 1t means that there exists u,v € Z such that ged(a, b) = au + bv.
FEzercise. Find u,v € Z for 25 and 7 such that 25u + 7v = ged(25, 7). We need to find

1-7
25u + T7v = 1. Then u = U. One solution is v = —7 and u = 2.

Integers mod n for n € N, n > 1‘

1. Relation on Z: = ~ y when n|z —y. It is a equivalence relation. We denote the set of
classes Z/ ~=Z/nZ = {[z],x € Z} where [z] = {y € Z|y ~ z}.

2. Notation: Instead of x ~ y, we write xt =y mod n and [z] = {y € Z|y =2 mod n} =
x+nZ. Then by division algorithm, Z/nZ = {[0],[1],...,[n—1]} ={Z,1+Z,...,(n—
1)+ Z}.

3. Operators: [z] ® [y] := [z + y] and [z] ® [y] := [z X y].
Check. 1t makes sense since 2’ € [z],y € [y] then [2'+y'] = [z+y] and [2' xy'] = [x xy].
(1) Namely, z = 2/ modn and y = v mod n then z +y = 2/ + 3 mod n. (2)
Namely, © = 2/ mod n and y = v mod n then = x y = 2/ x ¢/ since 2’y — xy =
2y —y) +y(@ —2).

4. (Z/nZ,®) is a group with identity element [0].
Remark. (Z/nZ,®) is not a group since [1] is the identity and [0] does not have an
inverse.
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Definition 1. Let R be a set equipped with 2 operations + and x. (R,+, X) is called a
ring if

e (R,+) is an abelian group.

e X is an associative operation.

e x is distributive with +, 7 x (s+t) = (r x s)+ (rxt) and (s+1¢) xr = (s xr)+ (t X 7).
Note. The identity element of + is called 0 or 0.

Definition 2. A ring (R, +, X) is called commutative when X is commutative. A ring
(R, +, x) is called unitary if x has an identity element called 1z or 1,i.e. Igxr =rx1lg=r
for any r € R.

Note. Our rings will be unitary.

Example 1. Rings.
1. (Z,+, x), (Q,+, x), (R,+, x) and (C, +, x).
2. (Z/nZ,+, x).

3. Let F ={f:R =R}, (f +9)(z) = f(z) + (), (fg)
is a ring. But (F,+,0) is not a ring where f o g(z) =

X

() = f(x)g(x). Then (F,+, x)
f(g(x)).

)
g9(z)

4. (Mpxn(R),+, x) is not a commutative ring.

Definition 3. Let (R, +, X) be unitary ring, » € R is called invertible (or the unit of the
ring) if there exits ' € R such that r x ' = 1" x r = 1. The set of invertible elements is
denoted by R*.

Example 2. Invertible elements.

1. Q= Q\{0}.
2. R* = R\{0}.
3. 7% = {&1}.

4. (Mpxn(R))* = GL,(R).
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Lecture 2 Jan 8

Topic: More on Invertible Elements, Integral Domain, Field, Subring, Homomorphism

Invertible Elements/Units

Proposition 1. (R*, x) is a group.
Proof.

Example 3. What is (Z/nZ)*? First try (Z/4Z)*
(Z/nZ)* ={z|ged(x,n) = 1}.

Key: ged(n, x)Z = nZ+ xZ. In particular ged(n, z) = 1, then there exists u, v € Z such that
1 = nu + zv. Vice versa if there exists u,v € Z such that 1 = mu + xv then 1 € nZ + xZ,
namely Z = nZ+ax7Z. This is just B’ezont Theorem: ged(z,n) =1 <= Ju,v € Z, s.t. 1 =
TU + nv.

Proof. First, & € (Z/nZ)*, there exists § € Z/nZ such that zy = 1. Then zy — 1 € nZ,
there exists u € Z such that xy —1 = nu. Then 1 = un+ (—y)x. So ged(n,z) = 1. Therefore
(Z/nZ)* C {z|ged(z,n) = 1}. Second, if ged(x,n) = 1, by B’ezont theorem, there exists
u,v € Z such that 1 = zu + nv. Then 1 = Zu. so 7 is invertible with inverse .

Remark 1. We define |(Z/nZ)*| = ¢(n), called Euler ¢ function.

Remark 2. If p is prime number, (Z/pZ)* = {1,...,p— 1} and ¢(p) = p— 1. So 7P~ = 1.
So if p Jz, we have P~ = 1 mod p. This is equivalent to say ¥ = x mod p for any .
This is called Fermat little theorem.

{1,3}. We want to generalize that

‘Integral Domain & Field‘

Definition 4. Let (P,+, x) be a unitary, commutative ring.

1. R us an integral domain if it has no nonzero divisor, i.e., for any z,y € R, xy = Og
would imply x = O or y = Op.

2. Ris a field if R* = R\{Ogr}.
Example 4. Integral Domain & Field
1. Z, Q, R are integral domains.
2. Z/4Z is not an integral domain since 2 x 2 = 4 = 0.
3. Q and R are fields.
4. Z is not a field since Z* = {£1}.

5. Z/nZ is a field if and only if n is prime.
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Proposition 2. A field is an integral domain.

Proof. Let (R, +, x) be a field. Let 2,y € R such that zy = 0g. If  # O then z € R\{0} =
R*, so there exists &’ such that 'z = 1z. Then y = 2’zy = 2'0g = Og. Then R is a integral
domain.

Remark. If (R,+, x) is not commutative but R* = R\{0} then R is a division ring.

Example 5. If R is an integral domain such that R is a finite set, R is a field.

Proof. Let R be an integral domain and suppose R is finite. We want to show R is a field.
Let r € R\{0}. Consider m, : R — R denoted by x + xr. This is a homomorphism on
group. Let x € kerm,. This means xr = 0, and then z = Or because R is an integral
domain. So m, is injective. And |R| < oo so m, is surjective. So there exists z € R such
that m,(x) = 1g, namely xr = 1.

Definition 5. (R, +, x) is a unitary ring and S C R. Then (S, +, X) is a (unitary) subring
of R if

1. (S,+) is a subgroup of (R, +).
2. S is closed under x.
3. 1p € S.
Example 6. Subrings.
1. Q is a subring of R.
2. Z is a subring of Q.
3. My(Z) is a subring of Ms(R).
4. Feomt ig a subring of F.

‘ Homomorphism ‘

Definition 6. Let (R,+, x) and (S5, +, x) be two unitary rings. Then f : R — S is a
homomorphism of unitary rings if

L. f:(R,4+) — (S,+) is a homomorphism of groups.
2. f(x xy) = f(x) x f(y) for any z,y € R.
3. f(1r) = 1s.

Note 1. We say f is an isomorphism of rings if f is surjective. !!Check!! that the inverse
map f!:S — R is a homomorphism of rings.

Note 2. We define the kernel Kerf = f~'{0s} (preimage). Then f is injective if and only if
ker f = {Ogr}. Notice 1x & ker f.

Note 3. ITmage of f, f(R) is a subring of S.
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Example 7. Homomorphisms of rings.
1. Id : Z — R denoted by x — x is a homomorphism of rings. The kernel is {0}.

2. fo: F — R denote by ¢ — ¢(s) is a homomorphism of rings. For example f,(1) = 15.
The image is R and the kernel is {¢ : R — R|p(s) = 0}.

3. Let Ry, Ry to be two rings. Consider the product Ry X Ry = {(r1,72)|r1 € Ry1,79 € Ra}.
Ry x Ry has a structure of ring addition and multiplication coordinate by coordinate.
Identity element of Ry X R is (1g,, 1g,). Then fi : (Ry, R2) — Ry denoted by (rq,72) —
r1 is a ring homomorphism. And f; : Ry — (R1, Rs) denoted by r; — (r1, 1g,) is not a
ring homomorphism since it does not preserve addition.

4. f:Z — Z/nZ denoted by x — x mod n is a homomorphism of rings.

Lecture 2 9



Lecture 3 Jan 14

Topic: More on Homorphism; Field of Fraction of an Integral Domain; Ideals of a
Unitary Ring

‘An example on Homomorphism‘

Example 8. Let R be a unitary ring with 1z € R and let e € R to be idempotent,
ie. e x e = e. Check that eRe = {exe,x € R} is a ring: exe + eye = e(x + y)e and
(exe)(eye) = e(xey)e. It is is a unitary ring with unit e. eRe is a ring contained in R but in
general they don’t have the same unit. Then eRe is not a subring of R.

Remark. (1g—e)? = (1g—e€)(lg—e€) = lp—e—e+ee = 1g—e. So likewise (1g—e)R(1p—e)
is also a ring.

FEzercise. Study the map f: R — eRe x (1 —e)R(1 —e) by r+— (ere, (1 —e)r(1 —e)). It is
an isomorphism of rings?

‘Field of Fraction of an Integral Domain‘

Definition 7. Let R be an integral domain. On R x (R\{0}) define the notation (z,y) ~
(«',y") when xy’ = ya’. Then

1. We could check it is equivalence relation.

2. Change the notation: Let (z,y) € R x (R\{0}). Its equivalence class [(x,y)] is denoted
by £ and the set of all these equivalence class denoted by frac(R) = R x (R\{0})/ ~.

3. Equip frac(R) with a structure of ring. We define TP § = % and § ® § = fj—;:
Then we have to
(a) Show that these operations are well defined. Let (z1,y1) ~ (2}, 9]) and (x9,y2) ~
(5, 95). We need to check yiya, 1195 € R\{0}, (2192 + @2y1, y192) ~ (2195 +
75y, Y15) and (2122, y1ya) ~ (2175, Y1y5)-
(b) (frac(R), ®) is a commutative group.
(¢) ® is distributive with respect to .

(d) ® is associative.

Then frac(R) is a ring. In fact, it is a unitary ring with }—1’:(: 2 for any v € R\{0}).

Remark. Neutral element in frac(R) is (1)—2(: % for any x € R\{0}). Let 2 ¢

frac(R)\{(l)—g}, it means that z # Og. Can consider [(z,y)] = £, we have 3% =¥ = }—?
So % is invertible and frac(R) is a field.
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. This is a homomorphism of
R} = {ZE € R|$1R = OR]-R =

1r

4. Consider ¢ : R — frac(R) such that z — [(z,1r)] = i~
rings. This is injective because kerp = {z € R|% =9

OR} = {OR}
5. Note. In fact frac(R) is the smallest field containing R.

Example 9. (Field of Fraction)
1. frac(Z) := Q.

2. Let k be a field, k[z] = {>_ @z’ |n € N,q; € k} to be the set of polynomials in the
variable x with coefficient in k. Then frac(k[z]) := k(x) = {§|P, Q € k[z], Q # 0}.

‘Ideals of a unitary ring‘

Definition 8. Let [ C R. It is a left (respectively right) ideal of R if
1. (I,+) is a subgroup of (R, +).

2.rx 1 C I forany r € R, namely r x z € [ for any r € R and x € I. (respectively
I xrcl).

Definition 9. We say I C R is a two sided ideal of R if it is a left ideal and a right ideal.
But if R is commutative, we just say ideal (left=right=two-sided).

Example 10. (left/right/two-sided ideals)
1. {Og} and R are 2-sided ideals of R.

2. If k is a field, then the ideals of k is 0 and k.

Proof. Let I C k to be an ideal and I # {0x}. Let x € I\{0x}. It is invertible then
1

lp=a " x_x €l Notletyek,y= y x 1 €. Thenk C I and k = I.
ck el ek el

3. Let f: R — S to be the ring homomorphism. Let J to be a (left /right /two-sided) ideal
of S. Then f~1(J) is a (left /right /two-sided) ideal of R. This is because z € f~(J),y €
R then f(zy) = f(z)f(y) € J. Then (f~'(J),+) is a subgroup of R because f is a
homomorphism of groups for +.

4. f: R — S is homomorphism of rings. Then ker f is a two-sided ideal.

5. (Consequence to 4) Let f : k — R to be the homomorphism of unitary rights. f(1x) =
1 then f is not the zero map (does not send entire k to Og, namely ker f # k). So
ker f = {Og} and f is injective. So k identifies as a subring of R.

6. Ideals of Z are all the nZ for n € N.
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7. Let f: R — S to be the homomorphism of unitary rings. Let I to be the ideal of R.
f(I) is not necessary an ideal. Note. f(I) is an ideal if f is isomorphism.

Proposition 3. If [ and J are (left/right/two-sided) ideals of R, IN.J is an (left /right /two-
sided) ideal of R.

Proof. I'UJ is a subgroup of R. For any r € R, x € I U J, (for example) zr € [ and zr € J
and then zr € I U J.

Definition 10. If X C R, we call

(X) = N J

X CJ, J(left /right /two-sided) ideal
is the (left/right/two-sided) ideal generated by X.
Note. For any ideal I of R, if X C I, (X) C I.

Example 11. X = {a} where a € R, the left ideal generated by a is (a) = Ra = {ra,r € R}.
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Lecture 4 Jan 16

Topic: Quotient Ring; Isomorphism theorem

‘ Quotient Ring ‘

Definition 11. Let R be a ring, I, J C R are left/right/two-sided ideals. Then we define

I+J={z+ylxel,ye J}and IJ = szyz

i=1

n>1lx€l,y € J}. Note: I 4+ J and

IJ are still left /right/two-sided ideals.

Definition 12. Let (R,+, x) be a unitary ring. Let I be an two-sided ideal. Define a
relation on R such that © ~ y when x — y € I (check by (I,+) is an abelian group). Then
let R/I = R/ ~= {z + I|lx € R}. We want to define a structure of rings on R/I such
that the canonical map 7 : R — R/I by © — x + I is a homomorphism of unitary ring.
Let z,y € R, check that: (z+1)® (y+ 1) =7(x) ®7(y) = m(z+y) = (x +y)+ I and
(x+ 1)@ y+I)=n(r)@7n(y) = n(zy) = (vy) + I. So that’s how we define @ and ® on
R/I.

Remark 1. Is this really a well defined structure of ring on R/I?
1. Check: Well defined. Let x,z’,y,9y" € R such that z ~ 2’ and y ~ 3'. We know

(@ +y)—(z+y) =(@-2)+(y—y)

sox+y+1=2+y + 1. Wealsoknow that

2y —zy=_2 (Y —y)+(@ —=
y —ry=2_(y —y)+( ) Y
€R el eI €R

- > 4
g g

el el

sox'y + 1 =uxy+ 1.

2. Check that (R/I,®,®) is a unitary ring. It is easy to see the closedness, associativity
and commutativity. And Or/; = 0r + I and 1z = 1z + I.

3. Check that 7 : R — R/I is a homomorphism of unitary rings.

Example 12. (Examples on Quotient rings)
1. R/{0} = R.
2. Z/nZ.
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3. F={f:R—=R}and I = {f € F|f(1) = 0}. Iis an two-sided ideal since I is the
kernel of 7 — R and f — f(1). Then F/I is an quotient ring. It is also an R-vector
space with dimension 1. Let to be the constant function equal to 1. [1] # 0#/; because
07,1 = [0] and if we had [1] = [0] then 1—0 € I and 1(1) = 0(0) +0 = 0. Then we want
to show any element in F/I is R-proportional to [1]. Let g € F, we claim [g] = [gf(\lJ)]
because g — g(1) € I. So [g] = g(1)[1]. So [g] is indeed R-proportional to [1] and [1] is
the basis of F/I as a vector space.

Remark 2. 7: R — R/I is a homomorphism which is surjective.

We have three corollaries.

1. If J is an ideal of R/I then n~!(.J) is an ideal of R containing I because Og;; C J so
I =710g/) C 7w (J). [cf. Example 10.3]

2. Let J be an ideal of quotients containing I, 7(.J) is an ideal of R/I. [cf. Example 10.7]

3. Conclusion: For J and ideal containing I, define J/I = n(J) = {z + I|lx € J} C R/I.
By 1. and 2. together, the ideals of R/I are all the J/I where J is the ideal of R
containing I.

Proof. 1f J is an ideal of R containing J, then w(J) = J/I is an ideal of R/I by 2. If
J is an ideal of R/I, then by 1 7~ ! is an ideal K of R containing I. Since 7 surjective,
J=m(r"1(J))=n(K)=K/I.

Example 13. (Examples on Remark 2.3)
1. Ideals of Z/6Z: Z/6Z, 2Z/6Z, 37/6Z and 6Z/6Z = {0}.

2. F, J =Af € FIf(1) = 0}. Let K = (x — 1)F be the set of functions generated by
x —1. Since K C J, J/K is an ideal for F/K.
Question: What are ideals of F/J? Since F/J = R is a field then the ideals of F/J
are F/J and {0z/,}.

‘ Isomorphism Theorem ‘

Theorem 1. Let ¢ : R — S to be the homomorphism of unitary rings. Let I to be the ideal
of Rand I C ker ¢. Then there exists a unique homomorphism of unitary rings g : R/I — S
such that the following diagram commutes.

R e S
N\ %
R/I

Namely B o = ¢, s0 p(z + I) = F(x(x)) = p(x).
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Remark 3. Following the previous theorem, we have
1. Im ® = Im ¢, so P is surjective if and only if ¢ is surjective.
2. kerp = ker ¢/I = w(ker ). So @ is injective if and only if I = ker .

And we have a corollary: Let ¢ : R — S to be homomorphism of unitary rings. Still call
U : R — ¢(R) with z — ¢(z) which is surjective. Take I = ker ¢ in the theorem and then
I = kerp = ker U. Then V¥ is injective and surjective. Then ¥ : R/kerp = ¢(R), i.e.
R/ ker ¢ = p(R).

Note: ¢ : Z — Z/nZ x Z/mZ then ¢ : Z/mnZ — Z/nZ X Z/nZ.
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Lecture 5 Jan 21

Topic: Isomorphism Theorem; Vector space

‘Motivation of Isomorphism Theorem

Example 14. (Motivation of using isomorphism theorem) We know f : Z/3Z — 7Z/6Z by
x mod 3 — x mod 6 is not well-defined since 0 mod 3 =3 mod 3 # 3 mod 6. However,
g:ZJ6Z — Z/3Z by x mod 6 — x mod 3 is well defined homomorphism of unitary rings.

We want to have a more efficient proof of that fact. We want to apply isomorphism theorem
to show ¢ is well-defined homomorphism of unitary rings.

Introduce ¢ : Z — Z/37 by x — x mod 3 which is a well-known homomorphism of unitary
rings. Since ker ¢ = 37 D 6Z. So there exists unique @ : Z/6Z — Z/3Z such that p = gor
and B(z + 6Z) = p(z) for any x € Z, namely @([z]g) = ¢(z) = [z]3. So g = P.

‘Proof of Isomorphism Theorem and Corollaries‘

Proof. (Isomorphism Theorem) We introduce ¢ : R/I — S by r+1 — ¢(r). Then we would
check:

1. @ is well defined. If r +71 =7+ I, then r — 1" € I C kerp. So ¢(r' —r) = 0 then
p(r') = o(r).

2. © is an homomorphism of unitary rings. Note @ o m = ¢ implies the required unitary
ring homomorphism @ has to be unique. R/I = {r + I|r € R} = {n(r),r € R}. Then
®:R/I — S by ¢(r) since p(m(r)) =@ on(r) forces (m(r)) has to be p(r).

3. Imp =1Imey is true. pom = ¢ then Imp C Imp. But 7 is surjective so we also have
Imp C Im .

4. kerp =ker/I is true. kerp ={r+Ilr € R,o(r +1) =0} = {n(r)|r € Rp(r) =0} =
{m(r)|r € R,r € ker ¢} = m(ker p) = ker p/I.

Remark 4. We have a corollary.

1. Ris aring, I, J are two-sided ideals in R such that I C J C R.[We have shown J/I is
an two- sided ideal of R/I], then R/I/J/I = R/J.
Proof. We have ¢ : R = R/I =% R/I/J/I is a surjective homomorphism of rings.
kerp = {r € R|my(mi(r)) = 0} = {r € R|m(r) € J/I} = {r € R|Fj € J, m(r) =
m(j)}={reRFjeJr—jekerm =1} ={reRjreJ+1}=Jbecause I C J.
By the first corollary of isomorphism theorem, R/I/J/I = R/J.
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Remark 5. R is commutative ring and [ is a two-sided ideal. R/I is a field if and only if I
is a maximal ideal.

Proof. (=) The ideal of a field k are {0} and k. («<=) Let A be a commutative ring with
only ideals A (J = R) and {0} (J = I). We want to show A is a field. Let a € A\{0}.
{0} # Aa since a € Aa and {0} is an ideal of A. So Aa = A and ! € Aa. So there exists
b € A such that 1 = ba = ab.

Note. We have shown: k is a field <= the ideals of k are {0} and k.

‘ Vector Space ‘

Remark 6. (V, +) is an abelian group. Then we define End(V) := {f : V225 V1 the set
of group homomorphism. This is a ring for o and + with identity idy,. We can check fo(g+
R)(V) = f(g(V))+ f(h(V)). In general, for group (V,+) and (W, +), Homgou,(V, W) = {f :
N W} is the set of group homorphism. Then if V' = W, Homgoup,(V, V') = Endgroup (V).

Definition 13. (Vector Space, MATH 223) A triple (V,+,) where V is a set and + :
VxV —Vand::kxV — V which is (A, z) = Az are maps is called vector space if

LVe,y,zeV(x+y) +z=a+(y + 2)

Ve,ye Ve +y=y+ .

30 € V such that x + 0 = x for Vz.

Vz € V,37 such that x+ = 0. (Notation: £ = —x and z + (—y) =z — y)
VA e k,x eV, Npux) = ().

VeeV lr=u.

VAek z,y eV \x+y) =+ \y.

© N o Ot LN

V\pu€kxeV,(AN+p)z = e+ px

Definition 14. (Vector Space, Alternative Version) Let k to be a field, (V, +) be a ablelian
group. V' is called a k-vector space if there exists an operation k x V' — V by (A\,v) = A-v

V-V
such that @ : k — Endgoup (V) by A — < V= N\

) is a homomorphism of unitary rings.
We can check the equivalence.

1. k — tdy, then 1, - v =v.

2. DA+ p) = ®(N\) + ®(u), then for any v € V, (A +p) - v = Av + pw.

3. D(Ap) = (A) o P(p), for any Muv) = (Ap)v.

4. ®(A) is an endomorphism of groups. A(z + y) = Az + \y.
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Example 15. (Examples on Vector Space)

1 X1 Ay
1. k" = Cl,ri€kpyand A | 2 | = : . For example k£ = R.
Tn Tn AT,
2. k[X] = {Z a; X' \'neN,aq; € k} is a k-vector space of polynomial in the variable X.
i=0
ai
We can write P = ZaiXi as a: . And X\ € k, P € k[z], we have \- P = > (\a;) X"
i=0 "

3. F={f:R—> R}, AeR. Then A- f : R = R by 2 — A(f(z)).

‘ Subvector Space ‘

Definition 15. Let V' be a k-vector space. W C V is a sub-k-vector space of V if
LW £0.

2. For any A, Ay € k, any wy,ws € W, A\jwy + Aowy € W.
Remark, The axiom implies 0 € W.

Example 16. (Examples on Subspace)

2v4+y =10

i b f R2.
r4y=0 is a subspace o

1. Solution of {

2. If P € k[X] with coefficients not being all zero, we define deg(P) = max{i < N|a; # 0}.
If zero polynomial P = 0 with all coefficients 0, the deg0 = —oo. Then the set
{P € k[X]|deg(P) < s} is a sub-k-vector space of k[X].

3. Let V be a k-vector space and X C V, X # (). Then we define

i=1
This is a subspace called space generated by X.

‘ Quotient Space ‘

Definition 16. Let W C V as a sub-k-vector space. Define V//W as a group. Let kxV/W —
V/W by (A, v+ W) — A+ W. This map is well-define and provides a homomorphism of
rings. k — Endg,ou,(V/W). So V/W is a k-vector space.

Example 17. (Example of Quotient Space) F is a R-vector space. I = {f € F|f(1) =0
is a subvector space. Then F/I is also a R vector space. We have shown in F/I, [f] =

F(0] = Fl.

Lecture 5 18



Lecture 6 Jan 23

Topic: Homomorphism of Vector Space; Generating Family and Basis; Finite Dimen-
sions; k-algebra

Homomorphism of Vector Space‘

Definition 17. Let V, W be k-vector space, f is an homomorphism of k-vector space, also
called k-linear transform, if f(Ajv1+Agva) = Ay f(v1) + Ao f(ve) for any Ay, Ay € k, vy,v9 € V.
Then set of such homomorphism is denoted by Homy(V,W). Similarly, we have the set of
endomorphism Endy (V') := Homy(V, V).

Example 18. (Examples on Linear Transform)

Lo ry (V) (3 ) (0) = ()

2. f:k[X] = k[X] by P+ P’ where if P =Y a,X", P':= Y a,X""". fis a k-linear

n>0 n>1

map by checking f(AP 4+ u@) = f (Z(Aan +ubn)X"> = Z()\an + b )n X" =
n>0 n>1
/\ZanX"_l - ,qunX”_l = M(P) + nf(Q). Actually, we can represent f as a
n>1 n>1
matrix
0100
0020
[f]{l,a:,m2,...} = 00 0 3

3. Let G = {f : R — R, differentiable}, then ¢ : G — F by f +— f’ is a linear map.

‘Generating Family of Vectors‘

Definition 18. (Basis)

1. V is a k-vector space. A collection/family of vector (vq)aca is called k-linear indepen-
dent if forany n € N, ay,...,a, € A, A\, ..., A\ € Kk, 71 \v,, = 0 implies \; = 0 for all
1=1,...,n.

2. A family of vector (v,)aca is a generating family for V' if any v € V| there exists n € N,

/\1,...,)\nEk:suchthatv:Z)\wai where aq,...,q, € A.

=1
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3. A collection of vector space is called a basis if it is a linearly independent and is a
generating family.

‘ Finite Dimension ‘

Proposition 4. Let V be a k-vector space and suppose that {vy,...,v,} is a (finite) gener-
ating family. One can extract from that family a basis for V.

Lemma 1. If V' has a basis with n vectors, then any linearly independent family in V' has
cardinality less then or equal to n.

Remark 7. If V has a basis with cardinality n, then any other basis has cardinality n.

Definition 19. If V has a basis with cardinality, we same the dimension, dim V' = n.

Proposition 5. If V has dim V' = n, then
1. A linearly independent family of n vectors is a basis.

2. A generating family of n vector is a basis.

Example 19. (Examples on Dimension)

Xz

1V = Z eR? { iig;j;io then dim V = 1.
0

2. k™ has dimension n and the canonical basis is {ey,...,e,} where ¢; = 1 where 1 is
0

on the i-th row.

3. k[X] has infinite dimension while {P € k[X]|deg P < n} is a sub-vector space with
dimension n + 1 and basis {1, z, 2%, ... 2"}

4. M, (k) has dimension n? over k so as vector space M, (k) = k™,
Define the unique linear transformation f : k* — V' by e; — v; where e; is i-th vector
is isomorphic. Also Endy (V) is a k-vector space. Then the map Endk(V) — M, (k)

by f + [flu.. v, 1 an isomorphism of vector spaces. So as vector spaces End (V) =
M, (k) = k™.

Proposition 6. (Dimension of Quotient Spaces and of Linear Maps)
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1. V is a n-dimensional vector space and W C V' is a subspace with dim W =< n. Then
dimV/W =n —m.

2. VW are finite dimensional vector spaces. For a linear map f : V. — W, we have
dimV = dimker f + dim Im f.
Corollary: If f:V — V, then f is injective if and only if f is surjective.

Example 20. (A motivation Example) k[X]| = {Z a, X", a, € k, finitely many a,, # 0}.
n>0
For P = ZanX" and Q = anX", we can define P x ) = ZC@XE where ¢, =
n>0 n>0 >0

Zfl:O apby_pn. One can check that Px (AQ+uR) = M(PxQ)+u(Px R) where P,Q, R € k[X]
and \, u € k.

We have a summary. k[X] is a k vector space then (k[X], +) is a group. We define a product
on k[X] and one can check that (k[X],+, x) is a unitary and commutative ring (with 0, 1).
And the product x behaves well with respect to the structure of vector space, we say that
k[X] is a k-algebra.

Remark 8. We can put it more formally.

1. Let R be a ring and k is a field. Suppose we have a homomorphism of unitary rings,
k — R. since the kernel as an ideal of a field can only be k or {0}. ker = k. Then the
homomorphism is injective.

2. Let R be a unitary ring and suppose that it contain the field of £ as subring. For
example, we consider k as a subring of k[X] while in fact k[X] only contains a copy of

k with the injective homomorphism, k < k[X] by A — A.

3. In more general, if k is contained in the center of R, then R is called a k-algebra.
Note. R is then naturally a k-vector space via k x R — R by (A,r) = A x r. One can
check that A - (r; X rg) =7y X (A-1r9) and 71 X (Aarg + Agr3) = Aa(r1 X r2) + A3(ry X 13)
since A commutes with everyone.
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Lecture 7 Jan 28

Topic: k-algebra; Group Rings; Polynomial Rings

Definition 20. Let (A, +, X) be a unitary ring. We say that A is k-algebra if A contain
k in its center. FEquivalently, we say A is a k-algebra if it is equipped with a structure of
k-vector space k x A — A by (A\,a) = A-a such that A- (a xb) = (A-a) xb=ax (A-b)
for any A\ € k and a,b € A.

Definition 21. Let (A, +, xX,-) be a k-algebra. Let (B,+, x) be a subring of A with the
same unit. Then B is a sub-k-algebra of A if it is also a sub-k-vector space. Namely for any
A, Ao € k and any by,by € B, we have A\y - by + Ay - by € B.

Definition 22. Let (A, +, %, ) and (B, +, X,-) be two k-algebra. A homomorphism of
unitary rings f : A — B is a homomorphism of k-algebra if f is also k-linear (f(A-14) =
A-1p).

Example 21. (Examples on k-algebra and k-algebra homomorphism)

1. k[z] is a k-algebra. Let f : k[X]| — k[X] be the unique homomorphism of k-algebra such
that X — X?2. It is image is a sub-k-algebra of k[X]. It is the smallest sub-k-algebra
containing X?2. It is denoted by k[X?].

2. Let (G,0) be a group. List of its elements G = g|g € G. k[G] is a k-vector space with
basis {e4}sec. k[G] has a natural structure of k-algebra where the multiplication X
is given by e, X ey = eg00. Then (Aeg + Aoeg,) X (Asegy + Aseg,) = AA3€g0095 +
AAL€g 09, T A3A3€g5005 T A2A1€g,00,. We have the following quick facts:

o If G is finite, |G| = n, then k[G] has dimension n as a k-vector space.
e If (G,0) is abelian, then k[G] is a commutative ring/algebra.
e If H < G is a subgroup of G, then k[H] is a subalgebra of k[G].

e The unique homomorphism of k-vector space such that f : k[G] — k by e, — 1; for
all g € G is in fact a homomorphism of k-algebra because f(e,xey) = f(€goq) = 1.
Then the kernel ker f is subspace with basis {e; — €1, }gec f16}-

Proof. ey — €1, € ker f then the subspace generated by {e, — ei,}sec\f1o) 18
a subset of ker f. Let x = > A\je, € ker f. Then means Y A\, = 0. So z =

2 A€ — (Do Aglerg = Do Agleg —eng)

‘Polynomial over a Ring‘
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Definition 23. Let R be a unitary ring. Suppose it’s commutative. Define R[X]| =

{iriXi,n eN,r; € R}.

i=0
Claim: R[X] is a unitary ring with identity 1 = 1X° Then we could check the addition

and multiplication.
max(m,n)

ZriXi + Z 5; X7 = Z (re 4 50) X"
=0 i=0 =0

where weset sy =0if¢/>m+1landr,=0if¢{>n+1. And
DX Y s X =) X!
i=0 i=0 >0

¢
where t, = E TiSe—;.

i=0
Example 22. Z[X] is a subring of Q[X].

Definition 24. Degree of P = Z r; X" € R[X] is defined as

i=0
| max{i:a; #0} ifP #
degP_{ —00 ifP =0
We say the dominate of P = ZriXi with degree d > 0 is r4. P is said to be monic if
i=0

rq=1g. [e.g. X? 43X — 2 is monic in Z[X]].

Lemma 2. Let A, B € R[X], then
1. deg(A + B) < max{deg A, deg B}
2. deg(AB) = deg A 4 deg B if R is an integral domain.

Example 23. Let R = Z/4Z, then (2X +2)(2X3) = 4X*+2X3 = 2X3. We see deg(AB) =
3#1+3=degA+degB.

Lemma 3. If R is an integral domain, (R[X])* = R* = {r- 1|r € R*}.

Proof. (1) P =r-1 =7 = rX° with R € R* then Q = r~!. Thus PQ = 1. Then
R* C (R[X])*. (2) If P € (R[X])*, let Q be its inverse. PQ = 1. Then deg P + deg@ = 0.
Then deg P = deg@Q = 0. So P, are constant polynomial. P =7 and Q = 5. PQ = 1.
Then rs = 1. Sor € R*.

Example 24. (Z/4Z[X])* = {2P + 1|P € Z/AZ[X]}. (2P +1)"! = —2P + 1.
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Definition 25. Let R be an integral domain. P € R[X]\{0} is irreducible if P = AB with
A, B € R[X] implies A € R* or B € R*.

Note. The basic idea is to decompose P into two polynomials A, B but it would not be
interesting to have A € R* since any P € R[X] can be written as P = 1P = A7'AP =
AP

Proposition 7. If R is an integral domain, then R[X] is also an integral domain.
Proof. Let A, B € R[X]. Suppose AB = 0 then deg A + deg B = o0. So deg A = —o0 or
degB=—00. So A=0or B=0.

Remark 9. If R is an integral domain, R[X] has an fraction field. [e.g frac(Z][X]) = Q(X)?7]

Example 25. Let R be a unitary commutative ring. S := R[X] is a unitary commutative

ring. Build S[Y] = R[X][Y] = {Z (Z rinJ) y} = {erijxjyi}. We usually

i>0 \ ;>0 i>0 >0

denote R[Y][X] by R[X,Y]. We would show later that R[X,Y]/(Y — X?) 2 R[T].

‘Polynomial over a Field R = k‘

Theorem 2. (Euclidean Division in k[X]) Let A, B € k[X]. Suppose B # 0, there exists
unique (@, R) € k[X]? such that A = BQ + R where deg R < deg B. [e.g. X?+ X +1 =
(X +1)(X2 =X +2) —1]

Definition 26. We say B divides A, B|A if R = 0 in the Euclidean division.

Example 26. If B = X — ) for A € k, what is the remainder R in the division A = BQ+ R?
We know R = 7 by degree comparison. Then by A = (x — X\)Q + 7, A(\) = r (evaluated at

A). Therefore R = A()).

Remark 10. If R is a unitary ring, A\ € R. We define fy\ : R[X] - Rby P = r X' —
>~ r; A% This is a homomorphism of rings called evaluation at \. We write P(\) = > ;A%

Lecture 7 24



Lecture 8 Jan 30

Topic: Polynomial Ring over a field: Euclidean Division, Principle Ideals, Induced
Homomorphism, Evaluation Map.

\ Euclidean Division \

In general, let A, B € k[X]. Suppose B # 0, there exists unique (Q, R) € k[X]? such that
A = BQ + R where deg R < deg B.

Example 27. Continued from the previous example. We have shown that if B = X — A

where A € k. Then A = @B + A(\). Therefore X — A\|A if and only if A(A\) = 0. In that
case we say A is a root of A. Given a root A € k for A € k[X], we call multiplicity of \ as
the number max{m € N|(X — \)™|A}.

Proposition 8. If A has degree n, it has at most n roots counted with multiplicity.
Proof. By induction on deg A. Base case: A = A\ X + Ay with one root. Inductive step,
A= (X —X)"C then degC =n —m.

Ideals of k[X]

Proposition 9. The ideal of k[X] are all of the form pk[X] = (P) where P can be picked
to be monic.

Proof. Let I be an ideal of k[X]. (1) If I = {0}, then I = (0). (2) Otherwise I # {0} so
it contains a non-zero polynomial. Let ug = min{u > |[3P € [,degP = n}. Let Py € I
with degree ng. One can choose Fy to be monic. If F, is not monic, we can find A € k
such that A™'P € I is monic. Then (Fy) C I since Py € I. We want show I C (). Let
A € I and we apply Euclidean division on A by Py, A = PyQ + R, deg R < deg Py. Then
R :\/}/—59/ € I. However deg R < deg P = ng. Then R=0s0 A € ().

el el

Corollary: Let P € k[X]\{0}. Then the following three statements are equivalent:
1. P is irreducible.
2. k[X]/(P) is an integral domain.
3. k[X]/(P) is a field.

Proof. (3 = 2 = 1) Assume k[X]/(P) is a field. Then k[X]/(P) is an integral
domain. Let A, B € k[X] such that P = AB. It implies that AB = 0 in k[X]/(P). So
A=0or B=0, namely P|A or P|B. For example P|A so deg P < deg A. But also A|P so
deg A < deg P so deg A =deg P. But P = AB sodeg B =0. So B € k*. We proved that if
P = AB then A € k* or B € k*. So P is irreducible.
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(1 = 3) Assume P is irreducible. We want to show that k[X]/(P) is a field. Let J be
an ideal of k[X] such that (P) C J C k[X]. There exists Py € k[X] such that J = (Fp) so
(P) C (Fy). Then P € (Fy) and we can find A € k[X] such that P = PyA. Then P,|P.
But P is irreducible so either Py € k[X] or A € k*. Then either J = (F) = k[X] or
J = (Fy) = (P). Then (P) is maximal and k[X]/(P) is a field.

Remark 11. 2z is irreducible in Q[X] or R[X] but not irreducible in Z[X]. P =2z =2z
where 2, X & Z*.

‘Induced Maps‘
Consider homomorphism of unitary rings f : R — S. We define f : RIX] — S[X] by
Example 28. Examples on Induced Maps
1. R is an integral domain and S is a field of fraction of R. [e.g. R =Z, S = Q. Let
f:R < Sbyr~ 7then f: R[X] — S[X] is an injection. So we identify R[X] as a
subring of S[X].
22R=Z7Zand S =Z/nZ. w:7Z — Z/nZ. Then 7 : Z|X| — Z/nZ[X] is surjective and

kerm = nZ[X] as the ideal of Z[X] generated by n. Then by isomorphism theorem,
Z/nZ[X] = Z[X]/nZ[X] as rings.

3. In more general, let be an ideal of the ring R and let /[X] denote the ideal of R[X]
generated by I, then R[X|/I[X] = (R/I)[X].

Evaluation Maps‘

Let R to be a commutative ring, ro € R. Then ev,, : R[X] — R by > a; X" — > a;\} is the
unique homomorphism of rings R[X] — R that fixes R and sends X to ro. ev,, is always
subjection so R = R[X]/ker ev,, as rings. Then what is the kernel?

Example 29. Kernel of Evaluation Maps.

1. R = k is a field and 7 is noted as A. evy : k[X] — k. Since X — A, we know
X — A — 0. Then we want to show (X — ) = kerev,. (1) We know (X — \) C ker ev),
since X — X € kerevy. (2) Let P € kerevy, evy(P) = P(A) = 0. Then by Euclidean
division P = (X —A\)Q + P(A\) = (X = AN)Q. So P € (X — \). So kerevy C (X — A).
Therefore, k[X]/(X—\) = k as rings, k-algebra and k-vector space. Note dim k[X]/(X —
\) = 1 with basis 1.

2. R =Z/AZ and ry = 2. Then evy : Z/AZ|X] — Z/AZ by X + 2. We know X — 2 €
ker evy and then (X — 2) C ker evy. However we can’t do Euclidean division here. Note
X?2.2X € kerevs but X? = (X —2)(X +2) and 2X = 2(X — 2).

3. R=7Z and rq = 2. We have ev, : Z[X]| = Z by X — 2. We know (X — 2) C ker evs.
But we can also show ker evy C (X — 2). Let P € ker evy, we can do Euclidean division
of P by X —2in Q[X]. We have P = (X —2)Q + P(2) = (X — 2)Q. Since X — 2 is
monic, @ € Z[X].
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Remark 12. A useful tool to “apply” Euclidean division on integral domain R. Let R

be an integral domain. We know R[X]| < frac(R)[X].

Let A.B € R[X], B # 0. Let

k := frac(R). One can compute Euclidean division of A by B in k[X]. There exists unique
(Q,T) € k[X]? such that A = BQ + T. If B € R[X] is monic (or other coefficient in R*),

then (Q,T) € R[X]. It’s not hard to see, because for the following example,

1 1
3 Xt

2X+1) X? +X+1

1
- X2 -1X

we know it is always the leading term determine the coefficients in (Q,T).
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Lecture 9 Feb 4

Topic: Revisit of Homomorphism of k-algebra; Revisit of Evaluation Map; Prime
Ideals; Max Ideals.

Homorphism of k—algebra‘

Recall the definition: Let (A, +, x,-) and (B, +, X, ) be two k-algebra. A homomorphism
of unitary rings f : A — B is a homomorphism of k-algebra if f is also k-linear. What is
the k-linear here? We can define it in two equivalent ways.

o f(Nai + Aaz) = A f(ar) + Aaf(az). Then for any A € k f(A-14) = A-1p. In some
sense f(A) = A, which identifies A in B.

o f()\ . 1A) =\ 15. Thus f()\lCLl + )\2(12) = f(()‘l : 1A> X ay + ()\2 ’ 1A> X aZ) = f(>\1 '
La) x fla1) + f(A2 - 1a) x f(az2) = A f(ar) + Ao f(az).

‘Revisit of Evaluation Map‘

Recall ev, : k[X] — k by P = P(z), fix x € k and k is a field. We have shown that
kerev, = (X — z). Then k[X]/(X — x) =2 k as a ring,.

By isomorphism theorem, we can introduce v, : P mod (X — z) — P(x). Notice that

e, (A mod (X —x)) = A(z) = A. So ev, fixes k. So ev, is an homomorphism of k-algebras.
Therefore k[X]/(X — x) = k as an k-algebra. So as a k-vector space.

P € k[X]\{0} with deg P = n. We can check that k[X]/(P) is a k-algebra as a vector space
with dimension n.

Example 30. What is the kernel of ev, : Z/6Z[X]| — Z/6Z?

Remark 13. Difference between polynomial functions P : k — k and polynomials. Consider
the map
F: k[X] — Functions(k — k)
Pi— (A= evy(P) =: P(\))

The image of this map is the ring of polynomial functions k& — k. By definition, k[X]| —
polynomial functions (kK — k) is surjective. For injectivity, we know P € ker F' if and
only if for any A € k, P(A\) = 0. We say that if P has degree n > 0, then P has at
most n roots. Then k is infinite, ker F' = {0}. If k& = Z/pZ with p prime. We can let
P:=(X—-1)(X —2)--- (X — p) has degree p and P € ker F.. Then F is not injective.

| Maximal Ideal |
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Definition 27. M is an left/right/two-sided ideal of R. M is called maximal ideal if
1. M #R.
2. For any J ideal of R such that M Cc J C R, M = J or J = R.

Theorem 3. If R is a unitary ring, then every proper (left/right/two-sided) ideal of R is
contained in a maximal ideal.

Proof. By Zorn’s Lemma.

Corollary: R is a unitary ring then it contains at least one ideal.

Proposition 10. If R is a unitary commutative ring and [ is a proper ideal of R, then [ is
maximal if and only if R/I is a field.

Example 31. Maximal ideals.

1. C[X]. P # 0. We have shown that P is irreducible if and only if k[X]/(P) is an integral
domain, if and only if k[X]/(P) is a field. Then the maximal ideals are (X — \) where
AeC.

Note. I is a proper ideal of C[X]. There exists P € C[X] such that [ = (P). P has a
root A then (X — A)|P which implies (P) C (X — \).

2. R[X]. Take the roots a; € C of P € C[X]. Then we can write P = [[(X — «;) € C[X].
We know P(@;) = P(«a;) = 0. This shows «; and @; are both roots of P. Then we can
match them in pair if Ima; # 0, (X — o;)(X —@;) = X? — 2(Rea;) X + |a|?. Or if o is
purely real, it is just X — a;. Then the irreducible polynomials are in the form X — a
where a € R or X + aX + b where a,b € R such that a> — 4b < 0. Then the maximal
ideals are in the form (X — a) where a € R or (X + aX + b) where a,b € R such that
a’ —4b < 0.

\ Prime Ideals \

Definition 28. Let R be a ring and P is a proper ideal of R. We say P is a prime ideal if
for any x,y € R, xy € R implies x € R or y € R.

Proposition 11. If R is a unitary commutative ring, I is a proper ideal of R. Then [ is
prime if and only if R/I is an integral domain.

Example 32. Prime ideals.

1. In k[X], prime ideals = maximal ideal = {(P)|P irreducible}. [R/I is field is equiv-
alent to R/I is an integral domain in k[X]]

2. In Z, prime ideals = maximal ideal = {(P)|P prime}.

Proposition 12. Let R be a unitary ring. Then [ is a maximal ideal implies I is a prime
ideal.
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Example 33. Prime ideal but not maximal ideal. Let R = Z[X].

1. Consider the map f : Z[X] — Z by P — P(0). Since the kernel ker f = (z),
Z[X]/(X) = Z. (X) is prime but not maximal.

2. With natural map 7 : Z — Z/27, we can compose g = wo f : Z[X| — Z/27 by
P +— P(0) mod 2. Then kerg D ker f = (X). And since Z[X]/kerg = Z /27, ker g
is the maximal ideal. P € kerg means P(0) = 0 mod 2. Then P is in the form of
S a; X'+ 2ag, a; €Z. So kerg = (X) + (2) = XZ[X] + 2Z[X] = (X, 2).

Example 34. Maximal Ideals.
1. Maximal ideal of C[X, Y] are ideals of the form (X — a,Y — b) where a,b € C.

2. A is finite dimensional C-algebra. Spec(A) would be the set of prime ideals of A on
which there is neutral top.
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Lecture 10 Feb 6

Topic: An example on Polynomial Rings; Chinese Remainder Theorem.

‘An example on Polynomial Rings‘

1. We want to show R[X,Y]/(Y —X?) = R[T] as R-algebra. We want to find f : R[X,Y] —
R[T] such that (Y — X?) C ker f. Such f is determined by the image f(X) and f(Y).

We could try f(Y) = T? and f(X) = T. Then (3 a; ; X'Y?) = 3 a;;T"T%. Then
f(Y =X?)=T?-T?=0and (Y — X?) C ker f. Then by isomorphism theorem, there
exists f : R[X, Y]/(Y — X?) = R[T] by P(X,Y) mod (Y — X2) v f(P) = P(T,T?).

y Q(T) — Q(X) modY—_XQ.
X modY — X2 And go f(YV
X2 =Y modY — X2 Then

We can find the inverse of f. Let g : R[T] — R[X,Y] b
Then g o f(X mod Y — X?) = g(f( ) = 9(T) =
mod Y — X?) = g(f(Y)) = g(T?) = X* mo

go f =1Id and g is the inverse of f.

(1)
dy —

2. What are the prime ideals of R[X,Y]/(Y — X?)? Since R[X,Y]/(Y — X?) 2 R[T], we
can find the prime ideals in R[T] and map it back to R[X,Y]/(Y — X?).

As we have shown in the last lecture, to find the prime ideal (Q) C R[T] is to find
the irreducible polynomial @ € R[T]. The irreducible polynomial in R[T"] has the form
T—oa,a€RorT?+ ol + 3, a, 3 € R such that o? — 43 < 0.

Then the prime ideals of R[X, T]/(Y — X?) is the image by g of (T—a) and (T?*+aT+/3).
We have
g(T—a))=(T-a)=(X-aY - X)/(Y - X?)

g(T* +aT +B) = (X2 +aX +5) = (X*+aX +5,Y — X3)/(Y — X?)

We can see there are two kinds of max/prime ideals in R[X,Y]/(Y — X?) = A as a
R-algebra. We write

(X —a,Y = X)/(Y = X*) = (X —a,Y —a)/(Y — X?) =1,
(X?+aX +B8Y - X)/(Y - X?)=(X?+aX +8,Y +aX +8) = Iz,

[Note. (X —a,Y —X?)=(X —a,Y —a?) because (1) Y = X? =Y —a?’+a? - X?=
Y—a?—(X—a)(X+a)e (X—a,Y—a?)and (2) Y —a? = (Y - X))+ (X —a)(X +a) €
(X —a,Y — X?)] Then we have

A/L, = R[T)/(T — a) =R, dim A/, = 1
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AfIgy = RIT)/(T? + BT + ) 2 R, dim A/, = 2

[Note. A/, =R[X,Y]/(Y-X?)/(X—a,Y-X?)/(Y-X?) 2 R[X,Y]/(X—a,V - X?).
Then P € R[X,Y], P € RX][Y]. P = (Y — X*)Q + R where Q € R[X,Y] and
R € R[X]. Then P = (Y—XZ)Q—F(X—Q)S:—I—R(Q) = R(o) mod I, = R(«)(1

(.

Ta
mod 1,)]

[Note. A=R and f((X —a)) = (X — a). Therefore A/I, = R[T]/(T — a).]

3. Spectrum of A. As a set, Spec(4) = {a,a € R, (8.7), 8,7 € R, 32 — 4y < 0}. Consider
the homomorphism of R-algebra ¢ : A — R. Kernel of ¢ is an ideal of A such that
A/ker p 2 R. There exists a € R such that kerp =1, = (X —,Y — a?)/(Y — X?).
Then (X mod Y —X?) = p(X —a mod Y —X%?+a mod Y —X?) = p(a mod Y —
X?)=ap(l modY —X?) =a. And p(Y mod Y — X?) = p(a® mod Y — X?) = o?.

Then there is a one to one correspondence between I, and points on the curve y = z2.

| Chinese Remainder Theorem |

Definition 29. Let R be aring, e € R. We say e is idempotent if e = e. We say e is central
idempotent if further e € Z(R), namely er = re for any r € R. We say two idempotent
e, f are orthogonal if ef = fe = 0r. Let R has unit 1z. Then the decomposition of 15 into
orthogonal idempotent 1z = e; + ez + - - - + ¢, such that e;e; = d;;.

Lemma 4. Suppose the idempotent decomposition are central and e; # 0, then
R = Re; X Rey X --+- X Re,
by 7+ (req,rea, ..., rey).
Lemma 5. Let M, N two sides ideals of R such that M UN = {0} and M + N = R,

then there exists (ep,en) € M x N such that ey, ey are central idempotent in R and
R+ Ren X Rey by 1+ (rep, rey) is an isomorphism of unitary ring.
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Lecture 15-16 Mar 5,10

Topic: Introduction to Modules; Definition and Examples; Submodule.

\ Definition of Module \

Definition 30. R is a ring (not commutative but unitary). M is an R-module (on the left)
if (M,+) is an abelian group and there exists ¢ : R — Endgoup (M) as homomorphism of
unitary rings.

Note. We often write: M is R-module via R x M — M by (r,m)
Then we have the following: (1) 7(m +n) = rm +rn; (2) 1g - m = m [p(1

(r+s)m = rm+ sm [p(r + s) = o(r) + ¢(s)]; and (4) (rs) = r(sm) [p(rs) = @(r)p(s)].
This is a equivalent definition.

s 1
3
I
- 5

Example 35. Examples of Modules.
1. R =k is a field. Then k-modules is just k-vector space.

2. R = Z. Let (M,+) be an abelian group. It is naturally a Z-module since we have
Q. 7 — Endgmup(]\/[) by 1= ZdM (and 2 ’ldM + ZdM)

3. If k is a vector space and R is a k-algebra, then an R-module is a also a k-vector space.
Since we can construct the following ring homomorphism

rings
/—80\
k — R—— Endgroup(M>
A=A 1gp
4. R is an R-module via R X R — R by (r,z) — ra. Or we have the ring homomophism
¢ : R — Endgoup(R) by 7 — (r — rz). For example, Z is an Z-module.

5. I ia a left ideal of R, then it is a (left) R-module via R x I — I by (r,z) + rz.

6. V is a k-vector space. R = End,(V) C Endgoup(V). So V' is an End,(V)-module via
End, (V) x V. — V by (f,v) — f(v).

7.V =Ek" Endg(V) = M, (k) so k™ is a M, (k)-module via M,,(k) x k" — k by (A,v) —
Av.

8. R, S arerings and ¥ : R — S is a ring homomorphism. Let M be a S-module. Then it
is a naturally an R-module via R x M — M by (r,m) — U (r)m = o(¥(r))(m). More

simply it is just map composition: p oW : R LS4 Endg;oup(M).
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9. k is field and V' is a k-vector space. Pick T' € Endg (V') where Endg (V) is k algebra.
Define k[X] — Endg(V) by P(X) — P(T). We just endowed V' with a structure of
k[X]-module via T'. This is because V is a Endg (V) so by 8, it is a k[X]-module. Or
more explicitly, we have k[X]| x V — V by (P,v) — P(T)(v).

10. V = k™. Pick a matrix A € M, (k). V is a k[X]-module via A. More explicitly, we have
E[X] x k™ — k™ by (P,v) — P(A)(v). We could study k" as a k[X]-module and decide
the statements about A.

11. In general, G is a group then G acts on set X if we have a group homomorphism
G — o(X) where o(X) is the set of bijections X — X. Let k be a field and V is a k-
vector space. Representation of G on V is a group homomorphism ¢ : G — Autg (V) =
GL(V) where GL(V) := (Endi(V))*. It is a group action of G on V which satisfies
g(Av + pw) = Agv + pgw. Let R = k[G] a group ring of G over k. We can find a ring
homomorphism k[G] — End, (V) by Z Nigi — Z Aig(gi). So V is a k[G]-module via

finite finite
(- Aigi,v) — > Niw(gi)v. Vice verso, one can check that a k[G]-module can be seen
on a representation of G over a k-vector space.
Example: G is a group and k is a field. Consider ¢ : G — k* = GLy(k) by g— 1 a
trivial map of G. This is a 1-dimensional representation of G over V = k. Set V =k
as a k[G]-module and we can find a homomorphism k[G] — Endy(k) = M(k) = k by

YoNigi = DA

| Submodules |

Definition 31. If M is an R-module and (N, +) is a subgroup of (M, +), it is a (left) sub-
R-module of M if r € R, n € N, we have rn € N. [We can induce a group homomorphism
¢ R — Endgoup(N)].

Example 36. Examples on Submodules.

1. R is an R-module, its submodules are left ideals.

2. Ris aring, [ is a left ideal and M is an R-module. IM = {Z xm;,x; € I,m; € M}

finite

is a subgroup of M. This is an sub-R-module of M.

3. Let B = { (8 i) a,b,ce k} C GLy(k). We have know that k? is a k[B]-module via
k[B] x k* — k* by (O° M\iAi,v) = > NAw. Then we want to find the submodules of &2

The trivial one is simply {0}. If it is not {0}, then it is a 1 dimensional vector space,
We want to for any A € B, A(Aje; + \yez) € V. Then it could be reduced back to an

01 . .
0 O)' This restrict v = ke;y.

eigenvalue problem Ab = kv. We can pick A = (
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= k? and we choose canonical basis. Let T': V — V represented in this basis
0 0
3 1]. Consider V' as a k[X]-module via T. We want to find the sub-k[X]-
0 1

module of V. (1) Let W = ke;. Let P € k[X] and v € W. Then Pv = P(T)ke; =
kZGiTi(el) = kZaiZi(el) = (k:ZazZZ)el e W. (2) U= ](7262-’-]47363. Let P € k?[X] and
v e U. Since Tes € U and Tes € U, then Pv = P(Agea+Aae3) = AP (T)ea+A 3P (T )es €
U. We see the key point is T(U) C U, namely U is stable by T.

Summary: (of 3 and 4) V is a k-vector space. T" € Endy (V). Consider V' as a k[X]-module
via T'. Then we have

1. A sub-k[X]-module of V' is a sub-vector space of V.

2. Let U be a sub-k-vector space of V. U is a sub-k[X]-modules of V' if and only if
T(U) C U, namely, U is stable by T

Example 37. An exercise related to submodules. Consider U = { ((1) T) x € k} where

k=7/pZ. Show (a) U = Z/pZ as a group. (b) k? is naturally a k[U]-module. What are its
submodule?
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