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Lecture 1 Jan 7

Topic: Introduction, Number Theory (Review), Definition of Rings, Invertible Ele-
ments

Introduction Rings and modules could be related many other fields.

1. Representation theory (algebraic, analytic).

2. Algebraic number theory (e.g. what is the difference between π/e and
√

2?
√

2 is related
to Q[x]/(x2 − 2)).

3. Algebraic geometry (e.g. What is the difference between y = x2 and y2 = x3, i.e. where
does the singularity in y2 = x3 come from? y = x2 is related to R[x, y]/(y − x2) while
y2 = x3 is related to R[x, y]/(y2 − x3)).

Number Theory Review

1. N is the set of natural numbers where 0 ∈ N.

2. Z is the set of integers.

3. Well ordering principle: A nonempty subset of Z which is bounded below/above has
a smallest/largest element. (Note: This is not true in R, i.e (0, 1]).

4. Divisibility: Let a, b ∈ Z, a 6= 0, a divide b and we write a|b when there exists c ∈ Z
such that b = ac.

5. Greatest common divisor: Let a, b ∈ Z and (a, b) 6= (0, 0), gcd(a, b) = max{d ∈
Z
∣∣d|a and d|b} ≥ 1.

6. Coprime: If gcd(a, b) = 1, then a, b are coprime.

7. Least common multiple: Let a, b ∈ Z and (a, b) 6= (0, 0), lcm(a, b) = min{m ∈
N
∣∣a|m and b|m}.

8. Z is a unique factorization domain. This means, for any x ∈ Z,

x = ±
∏

pnp

where p is prime, np ∈ N and np = 0 except for finite p.
Consequence: Let a, b ∈ Z and a = ±

∏
pnp , b = ±

∏
pmp . Then gcd(a, b) =

∏
pmin(np,mp)

and lcm(a, b) =
∏
pmax(np,mp). Then gcd(a, b)× lcm(a, b) = |ab|. And for any d ∈ Z, if

d|a and d|b, we would have d| gcd(a, b).
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9. Division algorithm: a, b ∈ Z, b > 0, there exists unique (q, r) ∈ Z2 such that a = bq+r
where 0 ≤ r < r. We call q as quotient and r as remainder.
Proof. (!!Sketch!!) Let S = {a− bk|k ∈ Z} ∩ N. It is clear that S 6= and S is bounded
below. Then let r = min(S) by well ordering principle. There exists k such that
a− bk = r, call it q. Then check 0 ≤ r ≤ b and check a pair (q, r) as in the theorem is
unique.

Formalism of Z as a group

1. (Z,+) is a group.

2. The subgroups of (Z,+) are of the form aZ, where a ∈ N.
Proof. (Sketch!!) If H = {0}, H = 0Z. Otherwise, H ∩ (N\{0}) 6= ∅. Let a =
min(H ∩ (N\{0})). Using division algorithm, prove H = aZ.

3. Let a, b ∈ Z and (a, b) 6= (0, 0), aZ + bZ := {au + bv|u, v ∈ Z} is a subgroup of Z. In
particular, aZ + bZ = gcd(a, b)Z.
Proof. (Sketch!!) First prove it is a subgroup. Then there exists d ∈ N, d ≥ 1 such that
aZ + bZ = dZ. Let D = gcd(a, b). First by aZ ⊂ dZ and bZ ⊂ dZ, we know d|a and
d|b and then d|D. Second, since d ∈ dZ, there exists u0, v0 ∈ Z, d = au0 + bv0. Then
D|d. Then d = D.

Remark. It means that there exists u, v ∈ Z such that gcd(a, b) = au+ bv.
Exercise. Find u, v ∈ Z for 25 and 7 such that 25u + 7v = gcd(25, 7). We need to find

25u+ 7v = 1. Then u =
1− 7v

25
. One solution is v = −7 and u = 2.

Integers mod n for n ∈ N, n ≥ 1

1. Relation on Z: x ∼ y when n|x− y. It is a equivalence relation. We denote the set of
classes Z/ ∼= Z/nZ = {[x], x ∈ Z} where [x] = {y ∈ Z|y ∼ x}.

2. Notation: Instead of x ∼ y, we write x ≡ y mod n and [x] = {y ∈ Z|y ≡ x mod n} =
x+nZ. Then by division algorithm, Z/nZ = {[0], [1], . . . , [n− 1]} = {Z, 1 +Z, . . . , (n−
1) + Z}.

3. Operators: [x]⊕ [y] := [x+ y] and [x]⊗ [y] := [x× y].
Check. It makes sense since x′ ∈ [x], y′ ∈ [y] then [x′+y′] = [x+y] and [x′×y′] = [x×y].
(1) Namely, x ≡ x′ mod n and y ≡ y′ mod n then x + y ≡ x′ + y′ mod n. (2)
Namely, x ≡ x′ mod n and y ≡ y′ mod n then x × y = x′ × y′ since x′y′ − xy =
x′(y′ − y) + y(x′ − x).

4. (Z/nZ,⊕) is a group with identity element [0].
Remark. (Z/nZ,⊕) is not a group since [1] is the identity and [0] does not have an
inverse.

Rings
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Definition 1. Let R be a set equipped with 2 operations + and ×. (R,+,×) is called a
ring if

• (R,+) is an abelian group.

• × is an associative operation.

• × is distributive with +, r× (s+ t) = (r× s) + (r× t) and (s+ t)× r = (s× r) + (t× r).

Note. The identity element of + is called 0R or 0.

Definition 2. A ring (R,+,×) is called commutative when × is commutative. A ring
(R,+,×) is called unitary if × has an identity element called 1R or 1, i.e. 1R×r = r×1R = r
for any r ∈ R.
Note. Our rings will be unitary.

Example 1. Rings.

1. (Z,+,×), (Q,+,×), (R,+,×) and (C,+,×).

2. (Z/nZ,+,×).

3. Let F = {f : R → R}, (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x). Then (F ,+,×)
is a ring. But (F ,+, ◦) is not a ring where f ◦ g(x) = f(g(x)).

4. (Mn×n(R),+,×) is not a commutative ring.

Definition 3. Let (R,+,×) be unitary ring, r ∈ R is called invertible (or the unit of the
ring) if there exits r′ ∈ R such that r × r′ = r′ × r = 1R. The set of invertible elements is
denoted by R×.

Example 2. Invertible elements.

1. Q× = Q\{0}.

2. R× = R\{0}.

3. Z× = {±1}.

4. (Mn×n(R))× = GLn(R).
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Lecture 2 Jan 8

Topic: More on Invertible Elements, Integral Domain, Field, Subring, Homomorphism

Invertible Elements/Units

Proposition 1. (R×,×) is a group.
Proof.

Example 3. What is (Z/nZ)×? First try (Z/4Z)× = {1̄, 3̄}. We want to generalize that
(Z/nZ)× = {x̄| gcd(x, n) = 1}.
Key : gcd(n, x)Z = nZ+xZ. In particular gcd(n, x) = 1, then there exists u, v ∈ Z such that
1 = nu + xv. Vice versa if there exists u, v ∈ Z such that 1 = mu + xv then 1 ∈ nZ + xZ,
namely Z = nZ+xZ. This is just B’ezont Theorem: gcd(x, n) = 1⇐⇒ ∃u, v ∈ Z, s.t. 1 =
xu+ nv.
Proof. First, x̄ ∈ (Z/nZ)×, there exists ȳ ∈ Z/nZ such that x̄ȳ = 1. Then xy − 1 ∈ nZ,
there exists u ∈ Z such that xy−1 = nu. Then 1 = un+(−y)x. So gcd(n, x) = 1. Therefore
(Z/nZ)× ⊂ {x̄| gcd(x, n) = 1}. Second, if gcd(x, n) = 1, by B’ezont theorem, there exists
u, v ∈ Z such that 1 = xu+ nv. Then 1̄ = x̄ū. so x̄ is invertible with inverse ū.
Remark 1. We define |(Z/nZ)×| = φ(n), called Euler φ function.
Remark 2. If p is prime number, (Z/pZ)× = {1̄, . . . , p− 1} and φ(p) = p− 1. So x̄p−1 = 1̄.
So if p 6 |x, we have xp−1 ≡ 1 mod p. This is equivalent to say xp ≡ x mod p for any x.
This is called Fermat little theorem.

Integral Domain & Field

Definition 4. Let (P,+,×) be a unitary, commutative ring.

1. R us an integral domain if it has no nonzero divisor, i.e., for any x, y ∈ R, xy = 0R
would imply x = 0R or y = 0R.

2. R is a field if R× = R\{0R}.

Example 4. Integral Domain & Field

1. Z, Q, R are integral domains.

2. Z/4Z is not an integral domain since 2̄× 2̄ = 4̄ = 0̄.

3. Q and R are fields.

4. Z is not a field since Z× = {±1}.

5. Z/nZ is a field if and only if n is prime.
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Proposition 2. A field is an integral domain.
Proof. Let (R,+,×) be a field. Let x, y ∈ R such that xy = 0R. If x 6= 0R then x ∈ R\{0} =
R×, so there exists x′ such that x′x = 1R. Then y = x′xy = x′0R = 0R. Then R is a integral
domain.
Remark. If (R,+,×) is not commutative but R× = R\{0} then R is a division ring.

Example 5. If R is an integral domain such that R is a finite set, R is a field.
Proof. Let R be an integral domain and suppose R is finite. We want to show R is a field.
Let r ∈ R\{0}. Consider mr : R → R denoted by x 7→ xr. This is a homomorphism on
group. Let x ∈ kermr. This means xr = 0r and then x = 0R because R is an integral
domain. So mr is injective. And |R| < ∞ so mr is surjective. So there exists x ∈ R such
that mr(x) = 1R, namely xr = 1R.

Subring

Definition 5. (R,+,×) is a unitary ring and S ⊂ R. Then (S,+,×) is a (unitary) subring
of R if

1. (S,+) is a subgroup of (R,+).

2. S is closed under ×.

3. 1R ∈ S.

Example 6. Subrings.

1. Q is a subring of R.

2. Z is a subring of Q.

3. M2(Z) is a subring of M2(R).

4. F cont is a subring of F .

Homomorphism

Definition 6. Let (R,+,×) and (S,+,×) be two unitary rings. Then f : R → S is a
homomorphism of unitary rings if

1. f : (R,+)→ (S,+) is a homomorphism of groups.

2. f(x× y) = f(x)× f(y) for any x, y ∈ R.

3. f(1R) = 1S.

Note 1. We say f is an isomorphism of rings if f is surjective. !!Check!! that the inverse
map f−1 : S → R is a homomorphism of rings.
Note 2. We define the kernel Kerf = f−1{0S} (preimage). Then f is injective if and only if
ker f = {0R}. Notice 1R 6∈ ker f .
Note 3. Image of f , f(R) is a subring of S.
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Example 7. Homomorphisms of rings.

1. Id : Z→ R denoted by x 7→ x is a homomorphism of rings. The kernel is {0}.

2. fs : F → R denote by ϕ 7→ ϕ(s) is a homomorphism of rings. For example fs(1̃) = 1R.
The image is R and the kernel is {ϕ : R→ R|ϕ(s) = 0}.

3. Let R1, R2 to be two rings. Consider the product R1×R2 = {(r1, r2)|r1 ∈ R1, r2 ∈ R2}.
R1 × R2 has a structure of ring addition and multiplication coordinate by coordinate.
Identity element of R1×R2 is (1R1 , 1R2). Then f1 : (R1, R2)→ R1 denoted by (r1, r2) 7→
r1 is a ring homomorphism. And f2 : R1 → (R1, R2) denoted by r1 7→ (r1, 1R2) is not a
ring homomorphism since it does not preserve addition.

4. f : Z→ Z/nZ denoted by x 7→ x mod n is a homomorphism of rings.

Lecture 2 9



Lecture 3 Jan 14

Topic: More on Homorphism; Field of Fraction of an Integral Domain; Ideals of a
Unitary Ring

An example on Homomorphism

Example 8. Let R be a unitary ring with 1R ∈ R and let e ∈ R to be idempotent,
i.e. e × e = e. Check that eRe = {exe, x ∈ R} is a ring: exe + eye = e(x + y)e and
(exe)(eye) = e(xey)e. It is is a unitary ring with unit e. eRe is a ring contained in R but in
general they don’t have the same unit. Then eRe is not a subring of R.

Remark. (1R−e)2 = (1R−e)(1R−e) = 1R−e−e+ee = 1R−e. So likewise (1R−e)R(1R−e)
is also a ring.

Exercise. Study the map f : R→ eRe× (1− e)R(1− e) by r 7→ (ere, (1− e)r(1− e)). It is
an isomorphism of rings?

Field of Fraction of an Integral Domain

Definition 7. Let R be an integral domain. On R × (R\{0}) define the notation (x, y) ∼
(x′, y′) when xy′ = yx′. Then

1. We could check it is equivalence relation.

2. Change the notation: Let (x, y) ∈ R× (R\{0}). Its equivalence class [(x, y)] is denoted
by x

y
and the set of all these equivalence class denoted by frac(R) = R× (R\{0})/ ∼.

3. Equip frac(R) with a structure of ring. We define x
y
⊕ x′

y′
:= xy′+yx′

yy′
and x

y
⊗ x′

y′
= xx′

yy′
.

Then we have to

(a) Show that these operations are well defined. Let (x1, y1) ∼ (x′1, y
′
1) and (x2, y2) ∼

(x′2, y
′
2). We need to check y1y2, y

′
1y
′
2 ∈ R\{0}, (x1y2 + x2y1, y1y2) ∼ (x′1y

′
2 +

x′2y
′
1, y
′
1y
′
2) and (x1x2, y1y2) ∼ (x′1x

′
2, y
′
1y
′
2).

(b) (frac(R),⊕) is a commutative group.

(c) ⊗ is distributive with respect to ⊕.

(d) ⊗ is associative.

Then frac(R) is a ring. In fact, it is a unitary ring with 1R
1R

(= x
x

for any x ∈ R\{0}).

Remark. Neutral element in frac(R) is 0R
1R

(= 0R
x

for any x ∈ R\{0}). Let x
y
6∈

frac(R)\{0R
1R
}, it means that x 6= 0R. Can consider [(x, y)] = y

x
, we have x

y
y
x

= xy
xy

= 1R
1R

.

So x
y

is invertible and frac(R) is a field.
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4. Consider ϕ : R → frac(R) such that x 7→ [(x, 1R)] = x
1R

. This is a homomorphism of

rings. This is injective because kerϕ = {x ∈ R| x
1R

= 0R
1R
} = {x ∈ R|x1R = 0R1R =

0R} = {0R}.

5. Note. In fact frac(R) is the smallest field containing R.

Example 9. (Field of Fraction)

1. frac(Z) := Q.

2. Let k be a field, k[x] = {
∑n

i=0 aix
i|n ∈ N, ai ∈ k} to be the set of polynomials in the

variable x with coefficient in k. Then frac(k[x]) := k(x) = {P
Q
|P,Q ∈ k[x], Q 6= 0}.

Ideals of a unitary ring

Definition 8. Let I ⊂ R. It is a left (respectively right) ideal of R if

1. (I,+) is a subgroup of (R,+).

2. r × I ⊂ I for any r ∈ R, namely r × x ∈ I for any r ∈ R and x ∈ I. (respectively
I × r ⊂ I).

Definition 9. We say I ⊂ R is a two sided ideal of R if it is a left ideal and a right ideal.
But if R is commutative, we just say ideal (left=right=two-sided).

Example 10. (left/right/two-sided ideals)

1. {0R} and R are 2-sided ideals of R.

2. If k is a field, then the ideals of k is 0k and k.
Proof. Let I ⊂ k to be an ideal and I 6= {0k}. Let x ∈ I\{0k}. It is invertible then
1k = x−1︸︷︷︸

∈k

× x︸︷︷︸
∈I

∈ I. Not let y ∈ k, y = y︸︷︷︸
∈k

× 1k︸︷︷︸
∈I

∈ I. Then k ⊂ I and k = I.

3. Let f : R→ S to be the ring homomorphism. Let J to be a (left/right/two-sided) ideal
of S. Then f−1(J) is a (left/right/two-sided) ideal of R. This is because x ∈ f−1(J), y ∈
R then f(xy) = f(x)f(y) ∈ J . Then (f−1(J),+) is a subgroup of R because f is a
homomorphism of groups for +.

4. f : R→ S is homomorphism of rings. Then ker f is a two-sided ideal.

5. (Consequence to 4) Let f : k → R to be the homomorphism of unitary rights. f(1k) =
1R then f is not the zero map (does not send entire k to 0R, namely ker f 6= k). So
ker f = {0R} and f is injective. So k identifies as a subring of R.

6. Ideals of Z are all the nZ for n ∈ N.
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7. Let f : R → S to be the homomorphism of unitary rings. Let I to be the ideal of R.
f(I) is not necessary an ideal. Note. f(I) is an ideal if f is isomorphism.

Proposition 3. If I and J are (left/right/two-sided) ideals of R, I ∩J is an (left/right/two-
sided) ideal of R.
Proof. I ∪ J is a subgroup of R. For any r ∈ R, x ∈ I ∪ J , (for example) xr ∈ I and xr ∈ J
and then xr ∈ I ∪ J .

Definition 10. If X ⊂ R, we call

(X) =
⋂

X⊂J, J(left/right/two-sided) ideal

J

is the (left/right/two-sided) ideal generated by X.
Note. For any ideal I of R, if X ⊂ I, (X) ⊂ I.

Example 11. X = {a} where a ∈ R, the left ideal generated by a is (a) = Ra = {ra, r ∈ R}.

Lecture 3 12



Lecture 4 Jan 16

Topic: Quotient Ring; Isomorphism theorem

Quotient Ring

Definition 11. Let R be a ring, I, J ⊂ R are left/right/two-sided ideals. Then we define

I + J = {x + y|x ∈ I, y ∈ J} and IJ =

{
n∑
i=1

xiyi

∣∣∣∣∣n ≥ 1, xi ∈ I, yi ∈ J

}
. Note: I + J and

IJ are still left/right/two-sided ideals.

Definition 12. Let (R,+,×) be a unitary ring. Let I be an two-sided ideal. Define a
relation on R such that x ∼ y when x − y ∈ I (check by (I,+) is an abelian group). Then
let R/I = R/ ∼= {x + I|x ∈ R}. We want to define a structure of rings on R/I such
that the canonical map π : R → R/I by x → x + I is a homomorphism of unitary ring.
Let x, y ∈ R, check that: (x + I) ⊕ (y + I) = π(x) ⊕ π(y) = π(x + y) = (x + y) + I and
(x + I) ⊗ (y + I) = π(x) ⊗ π(y) = π(xy) = (xy) + I. So that’s how we define ⊕ and ⊗ on
R/I.

Remark 1. Is this really a well defined structure of ring on R/I?

1. Check: Well defined. Let x, x′, y, y′ ∈ R such that x ∼ x′ and y ∼ y′. We know

(x′ + y′)− (x+ y) = (x− x′)︸ ︷︷ ︸
∈I

+ (y − y′)︸ ︷︷ ︸
∈I

so x+ y + I = x′ + y′ + I. We also know that

x′y′ − xy = x′︸︷︷︸
∈R

(y′ − y)︸ ︷︷ ︸
∈I︸ ︷︷ ︸

∈I

+ (x′ − x)︸ ︷︷ ︸
∈I

y︸︷︷︸
∈R︸ ︷︷ ︸

∈I

so x′y′ + I = xy + I.

2. Check that (R/I,⊕,⊗) is a unitary ring. It is easy to see the closedness, associativity
and commutativity. And 0R/I = 0R + I and 1R/I = 1R + I.

3. Check that π : R→ R/I is a homomorphism of unitary rings.

Example 12. (Examples on Quotient rings)

1. R/{0} = R.

2. Z/nZ.
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3. F = {f : R → R} and I = {f ∈ F|f(1) = 0}. I is an two-sided ideal since I is the
kernel of F → R and f → f(1). Then F/I is an quotient ring. It is also an R-vector
space with dimension 1. Let to be the constant function equal to 1. [1̃] 6= 0F/I because

0F/I = [0̃] and if we had [1̃] = [0̃] then 1̃− 0̃ ∈ I and 1̃(1) = 0̃(0) + 0 = 0. Then we want

to show any element in F/I is R-proportional to [1̃]. Let g ∈ F , we claim [g] = [g̃(1)]

because g − g̃(1) ∈ I. So [g] = g(1)[1̃]. So [g] is indeed R-proportional to [1̃] and [1̃] is
the basis of F/I as a vector space.

Remark 2. π : R→ R/I is a homomorphism which is surjective.

We have three corollaries.

1. If J is an ideal of R/I then π−1(J) is an ideal of R containing I because 0R/I ⊂ J so
I = π−1(0R/I) ⊂ π−1(J). [cf. Example 10.3]

2. Let J be an ideal of quotients containing I, π(J) is an ideal of R/I. [cf. Example 10.7]

3. Conclusion: For J and ideal containing I, define J/I = π(J) = {x + I|x ∈ J} ⊂ R/I.
By 1. and 2. together, the ideals of R/I are all the J/I where J is the ideal of R
containing I.
Proof. If J is an ideal of R containing J , then π(J) = J/I is an ideal of R/I by 2. If
J is an ideal of R/I, then by 1 π−1 is an ideal K of R containing I. Since π surjective,
J = π(π−1(J)) = π(K) = K/I.

Example 13. (Examples on Remark 2.3)

1. Ideals of Z/6Z: Z/6Z, 2Z/6Z, 3Z/6Z and 6Z/6Z = {0}.

2. F , J = {f ∈ F|f(1) = 0}. Let K = (x − 1)F be the set of functions generated by
x− 1. Since K ⊂ J , J/K is an ideal for F/K.
Question: What are ideals of F/J? Since F/J ∼= R is a field then the ideals of F/J
are F/J and {0F/J}.

Isomorphism Theorem

Theorem 1. Let ϕ : R→ S to be the homomorphism of unitary rings. Let I to be the ideal
of R and I ⊂ kerϕ. Then there exists a unique homomorphism of unitary rings ϕ : R/I → S
such that the following diagram commutes.

R/I

R S

ϕ

π ϕ

Namely ϕ ◦ π = ϕ, so ϕ(x+ I) = ϕ(π(x)) = ϕ(x).

Lecture 4 14



Remark 3. Following the previous theorem, we have

1. Im ϕ = Im ϕ, so ϕ is surjective if and only if ϕ is surjective.

2. kerϕ = kerϕ/I = π(kerϕ). So ϕ is injective if and only if I = kerϕ.

And we have a corollary: Let ϕ : R → S to be homomorphism of unitary rings. Still call
Ψ : R → ϕ(R) with x 7→ ϕ(x) which is surjective. Take I = kerϕ in the theorem and then

I = kerϕ = ker Ψ. Then Ψ is injective and surjective. Then Ψ : R/ kerϕ
∼−→ ϕ(R), i.e.

R/ kerϕ ∼= ϕ(R).

Note: ϕ : Z→ Z/nZ× Z/mZ then ϕ : Z/mnZ→ Z/nZ× Z/nZ.
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Lecture 5 Jan 21

Topic: Isomorphism Theorem; Vector space

Motivation of Isomorphism Theorem

Example 14. (Motivation of using isomorphism theorem) We know f : Z/3Z → Z/6Z by
x mod 3 7→ x mod 6 is not well-defined since 0 mod 3 = 3 mod 3 6= 3 mod 6. However,
g : Z/6Z→ Z/3Z by x mod 6 7→ x mod 3 is well defined homomorphism of unitary rings.

We want to have a more efficient proof of that fact. We want to apply isomorphism theorem
to show g is well-defined homomorphism of unitary rings.

Introduce ϕ : Z→ Z/3Z by x 7→ x mod 3 which is a well-known homomorphism of unitary
rings. Since kerϕ = 3Z ⊃ 6Z. So there exists unique ϕ : Z/6Z→ Z/3Z such that ϕ = ϕ ◦ π
and ϕ(x+ 6Z) = ϕ(x) for any x ∈ Z, namely ϕ([x]6) = ϕ(x) = [x]3. So g = ϕ.

Proof of Isomorphism Theorem and Corollaries

Proof. (Isomorphism Theorem) We introduce ϕ̄ : R/I → S by r+ I 7→ ϕ(r). Then we would
check:

1. ϕ is well defined. If r + I = r′ + I, then r − r′ ∈ I ⊂ kerϕ. So ϕ(r′ − r) = 0 then
ϕ(r′) = ϕ(r).

2. ϕ is an homomorphism of unitary rings. Note ϕ ◦ π = ϕ implies the required unitary
ring homomorphism ϕ has to be unique. R/I = {r + I|r ∈ R} = {π(r), r ∈ R}. Then
ϕ : R/I → S by ϕ(r) since ϕ(π(r)) = ϕ ◦ π(r) forces ϕ(π(r)) has to be ϕ(r).

3. Imϕ = Imϕ is true. ϕ ◦ π = ϕ then Imϕ ⊂ Imϕ. But π is surjective so we also have
Imϕ ⊂ Imϕ.

4. kerϕ = kerϕ/I is true. kerϕ = {r + I|r ∈ R,ϕ(r + I) = 0} = {π(r)|r ∈ Rϕ(r) = 0} =
{π(r)|r ∈ R, r ∈ kerϕ} = π(kerϕ) = kerϕ/I.

Remark 4. We have a corollary.

1. R is a ring, I, J are two-sided ideals in R such that I ⊂ J ⊂ R.[We have shown J/I is
an two- sided ideal of R/I], then R/I

/
J/I ∼= R/J .

Proof. We have ϕ : R
π1−→ R/I

π2−→ R/I
/
J/I is a surjective homomorphism of rings.

kerϕ = {r ∈ R|π2(π1(r)) = 0} = {r ∈ R|π1(r) ∈ J/I} = {r ∈ R|∃j ∈ J, π1(r) =
π1(j)} = {r ∈ R|∃j ∈ J, r − j ∈ kerπ1 = I} = {r ∈ R|r ∈ J + I} = J because I ⊂ J .
By the first corollary of isomorphism theorem, R/I

/
J/I ∼= R/J .

Lecture 5 16



Remark 5. R is commutative ring and I is a two-sided ideal. R/I is a field if and only if I
is a maximal ideal.
Proof. (=⇒) The ideal of a field k are {0} and k. (⇐=) Let A be a commutative ring with
only ideals A (J = R) and {0} (J = I). We want to show A is a field. Let a ∈ A\{0}.
{0} 6= Aa since a ∈ Aa and {0} is an ideal of A. So Aa = A and ! ∈ Aa. So there exists
b ∈ A such that 1 = ba = ab.
Note. We have shown: k is a field ⇐⇒ the ideals of k are {0} and k.

Vector Space

Remark 6. (V,+) is an abelian group. Then we define End(V ) := {f : V
group−−−→ V } the set

of group homomorphism. This is a ring for ◦ and + with identity idV . We can check f ◦ (g+
h)(V ) = f(g(V ))+f(h(V )). In general, for group (V,+) and (W,+), Homgroup(V,W ) = {f :

V
group−−−→ W} is the set of group homorphism. Then if V = W , Homgroup(V, V ) = Endgroup(V ).

Definition 13. (Vector Space, MATH 223) A triple (V,+, )̇ where V is a set and + :
V × V −→ V and · : k × V −→ V which is (λ, x) 7→ λx are maps is called vector space if

1. ∀x, y, z ∈ V, (x+ y) + z = x+ (y + z)

2. ∀x, y ∈ V, x+ y = y + x.

3. ∃0 ∈ V such that x+ 0 = x for ∀x.

4. ∀x ∈ V, ∃x̃ such that x+ = 0. (Notation: x̃ = −x and x+ (−y) = x− y)

5. ∀λ, µ ∈ k, x ∈ V, λ(µx) = (λµ)x.

6. ∀x ∈ V, 1x = x.

7. ∀λ ∈ k, x, y ∈ V, λ(x+ y) = λx+ λy.

8. ∀λ, µ ∈ k, x ∈ V, (λ+ µ)x = λx+ µx

Definition 14. (Vector Space, Alternative Version) Let k to be a field, (V,+) be a ablelian
group. V is called a k-vector space if there exists an operation k × V → V by (λ, v)→ λ · v

such that Φ : k → Endgroup(V ) by λ 7→
(

V → V

v 7→ λ · v

)
is a homomorphism of unitary rings.

We can check the equivalence.

1. k 7→ idV , then 1k · v = v.

2. Φ(λ+ µ) = Φ(λ) + Φ(µ), then for any v ∈ V , (λ+ µ) · v = λv + µv.

3. Φ(λµ) = Φ(λ) ◦ Φ(µ), for any λ(µv) = (λµ)v.

4. Φ(λ) is an endomorphism of groups. λ(x+ y) = λx+ λy.
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Example 15. (Examples on Vector Space)

1. kn =


x1

...

xn

 , xi ∈ k

 and λ ·

x1
...

xn

 =

λ · x1
...

λ · xn

. For example k = R.

2. k[X] =

{
∞∑
i=0

aiX
i

∣∣∣∣∣n ∈ N, ai ∈ k

}
is a k-vector space of polynomial in the variable X.

We can write P =
n∑
i=0

aiX
i as


a1
...

an
...

. And λ ∈ k, P ∈ k[x], we have λ ·P =
∑

(λai)X
i.

3. F = {f : R→ R}, λ ∈ R. Then λ · f : R→ R by x 7→ λ(f(x)).

Subvector Space

Definition 15. Let V be a k-vector space. W ⊂ V is a sub-k-vector space of V if

1. W 6= ∅.
2. For any λ1, λ2 ∈ k, any w1, w2 ∈ W , λ1w1 + λ2w2 ∈ W .

Remark, The axiom implies ~0 ∈ W .

Example 16. (Examples on Subspace)

1. Solution of

{
2x+ y = 0

x+ y = 0
is a subspace of R2.

2. If P ∈ k[X] with coefficients not being all zero, we define deg(P ) = max{i ≤ N |ai 6= 0}.
If zero polynomial P = 0̃ with all coefficients 0, the deg 0̃ = −∞. Then the set
{P ∈ k[X]| deg(P ) ≤ s} is a sub-k-vector space of k[X].

3. Let V be a k-vector space and X ⊂ V , X 6= ∅. Then we define

〈X〉 :=

{
n∑
i=1

λixi, n ≥ 1;xi ∈ X;λi ∈ k

}
This is a subspace called space generated by X.

Quotient Space

Definition 16. Let W ⊂ V as a sub-k-vector space. Define V/W as a group. Let k×V/W →
V/W by (λ, v + W ) 7→ λv + W . This map is well-define and provides a homomorphism of
rings. k → Endgroup(V/W ). So V/W is a k-vector space.

Example 17. (Example of Quotient Space) F is a R-vector space. I = {f ∈ F|f(1) = 0}
is a subvector space. Then F/I is also a R vector space. We have shown in F/I, [f ] =

[f̃(1)] = f(1)[1̃].
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Lecture 6 Jan 23

Topic: Homomorphism of Vector Space; Generating Family and Basis; Finite Dimen-
sions; k-algebra

Homomorphism of Vector Space

Definition 17. Let V,W be k-vector space, f is an homomorphism of k-vector space, also
called k-linear transform, if f(λ1v1 +λ2v2) = λ1f(v1)+λ2f(v2) for any λ1, λ2 ∈ k, v1, v2 ∈ V .
Then set of such homomorphism is denoted by Homk(V,W ). Similarly, we have the set of
endomorphism Endk(V ) := Homk(V, V ).

Example 18. (Examples on Linear Transform)

1. f : R2 → R2 by

(
x

y

)
7→
(

1 2

3 4

)(
x

y

)
=

(
x+ 2y

3x+ 4y

)
2. f : k[X]→ k[X] by P 7→ P ′ where if P =

∑
n≥0

anX
n, P ′ :=

∑
n≥1

anX
n−1. f is a k-linear

map by checking f(λP + µQ) = f

(∑
n≥0

(λan + µbn)Xn

)
=
∑
n≥1

(λan + µbn)nXn−1 =

λ
∑
n≥1

anX
n−1 + µ

∑
n≥1

bnX
n−1 = λf(P ) + µf(Q). Actually, we can represent f as a

matrix

[f ]{1,x,x2,... } =


0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

...
. . .


3. Let G = {f : R→ R, differentiable}, then ϕ : G → F by f 7→ f ′ is a linear map.

Generating Family of Vectors

Definition 18. (Basis)

1. V is a k-vector space. A collection/family of vector (vα)α∈A is called k-linear indepen-
dent if for any n ∈ N, α1, . . . , αn ∈ A, λ1, . . . , λn ∈ k, ni=1λivαi = 0 implies λi = 0 for all
i = 1, . . . , n.

2. A family of vector (vα)α∈A is a generating family for V if any v ∈ V , there exists n ∈ N,

λ1, . . . , λn ∈ k such that v =
n∑
i=1

λivαi where α1, . . . , αn ∈ A.
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3. A collection of vector space is called a basis if it is a linearly independent and is a
generating family.

Finite Dimension

Proposition 4. Let V be a k-vector space and suppose that {v1, . . . , vn} is a (finite) gener-
ating family. One can extract from that family a basis for V .

Lemma 1. If V has a basis with n vectors, then any linearly independent family in V has
cardinality less then or equal to n.

Remark 7. If V has a basis with cardinality n, then any other basis has cardinality n.

Definition 19. If V has a basis with cardinality, we same the dimension, dimV = n.

Proposition 5. If V has dimV = n, then

1. A linearly independent family of n vectors is a basis.

2. A generating family of n vector is a basis.

Example 19. (Examples on Dimension)

1. V =


xy
z

 ∈ R3

∣∣∣∣∣∣
{
x+ y + z = 0

x+ 3y + 4z = 0

 then dimV = 1.

2. kn has dimension n and the canonical basis is {e1, . . . , en} where ei =


0
...

1
...

0

 where 1 is

on the i-th row.

3. k[X] has infinite dimension while {P ∈ k[X]| degP ≤ n} is a sub-vector space with
dimension n+ 1 and basis {1, x, x2, . . . , xn}.

4. Mn(k) has dimension n2 over k so as vector space Mn(k) ∼= kn
2
.

Define the unique linear transformation f : kn → V by ei 7→ vi where ei is i-th vector
is isomorphic. Also Endk(V ) is a k-vector space. Then the map Endk(V ) → Mn(k)
by f 7→ [f ]v1,...,vn is an isomorphism of vector spaces. So as vector spaces Endk(V ) ∼=
Mn(k) ∼= kn

2
.

Proposition 6. (Dimension of Quotient Spaces and of Linear Maps)
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1. V is a n-dimensional vector space and W ⊂ V is a subspace with dimW =≤ n. Then
dimV/W = n−m.

2. V,W are finite dimensional vector spaces. For a linear map f : V → W , we have
dimV = dim ker f + dim Im f .
Corollary: If f : V → V , then f is injective if and only if f is surjective.

k-algebra

Example 20. (A motivation Example) k[X] =

{∑
n≥0

anX
n, an ∈ k, finitely many an 6= 0

}
.

For P =
∑
n≥0

anX
n and Q =

∑
n≥0

bnX
n, we can define P × Q =

∑
`≥0

c`X
` where c` :=∑`

n=0 anb`−n. One can check that P×(λQ+µR) = λ(P×Q)+µ(P×R) where P,Q,R ∈ k[X]
and λ, µ ∈ k.
We have a summary. k[X] is a k vector space then (k[X],+) is a group. We define a product
on k[X] and one can check that (k[X],+,×) is a unitary and commutative ring (with 0̃, 1̃).
And the product × behaves well with respect to the structure of vector space, we say that
k[X] is a k-algebra.

Remark 8. We can put it more formally.

1. Let R be a ring and k is a field. Suppose we have a homomorphism of unitary rings,
k → R. since the kernel as an ideal of a field can only be k or {0}. ker = k. Then the
homomorphism is injective.

2. Let R be a unitary ring and suppose that it contain the field of k as subring. For
example, we consider k as a subring of k[X] while in fact k[X] only contains a copy of

k with the injective homomorphism, k ↪→ k[X] by λ→ λ̃.

3. In more general, if k is contained in the center of R, then R is called a k-algebra.
Note. R is then naturally a k-vector space via k × R→ R by (λ, r) 7→ λ× r. One can
check that λ · (r1 × r2) = r1 × (λ · r2) and r1 × (λ2r2 + λ3r3) = λ2(r1 × r2) + λ3(r1 × r3)
since λ commutes with everyone.
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Lecture 7 Jan 28

Topic: k-algebra; Group Rings; Polynomial Rings

k-algebra

Definition 20. Let (A,+,×) be a unitary ring. We say that A is k-algebra if A contain
k in its center. Equivalently, we say A is a k-algebra if it is equipped with a structure of
k-vector space k × A → A by (λ, a) 7→ λ · a such that λ · (a × b) = (λ · a) × b = a × (λ · b)
for any λ ∈ k and a, b ∈ A.

Definition 21. Let (A,+,×, ·) be a k-algebra. Let (B,+,×) be a subring of A with the
same unit. Then B is a sub-k-algebra of A if it is also a sub-k-vector space. Namely for any
λ1, λ2 ∈ k and any b1, b2 ∈ B, we have λ1 · b1 + λ2 · b2 ∈ B.

Definition 22. Let (A,+,×, ·) and (B,+,×, ·) be two k-algebra. A homomorphism of
unitary rings f : A → B is a homomorphism of k-algebra if f is also k-linear (f(λ · 1A) =
λ · 1B).

Example 21. (Examples on k-algebra and k-algebra homomorphism)

1. k[x] is a k-algebra. Let f : k[X]→ k[X] be the unique homomorphism of k-algebra such
that X 7→ X2. It is image is a sub-k-algebra of k[X]. It is the smallest sub-k-algebra
containing X2. It is denoted by k[X2].

2. Let (G, ◦) be a group. List of its elements G = g|g ∈ G. k[G] is a k-vector space with
basis {eg}g∈G. k[G] has a natural structure of k-algebra where the multiplication ×
is given by eg × eg′ := eg◦g′ . Then (λ1eg1 + λ2eg2) × (λ3eg3 + λ4eg4) = λ1λ3eg1◦g3 +
λ1λ4eg1◦g4 + λ3λ3eg2◦g3 + λ2λ1eg2◦g4 . We have the following quick facts:

• If G is finite, |G| = n, then k[G] has dimension n as a k-vector space.

• If (G, ◦) is abelian, then k[G] is a commutative ring/algebra.

• If H < G is a subgroup of G, then k[H] is a subalgebra of k[G].

• The unique homomorphism of k-vector space such that f : k[G]→ k by eg 7→ 1k for
all g ∈ G is in fact a homomorphism of k-algebra because f(eg×eg′) = f(eg◦g′) = 1k.
Then the kernel ker f is subspace with basis {eg − e1G}g∈G\{1G}.
Proof. eg − e1G ∈ ker f then the subspace generated by {eg − e1G}g∈G\{1G} is
a subset of ker f . Let x =

∑
λgeg ∈ ker f . Then means

∑
λg = 0. So x =∑

λgeg − (
∑
λg)e1G =

∑
λg(eg − e1G).

Polynomial over a Ring
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Definition 23. Let R be a unitary ring. Suppose it’s commutative. Define R[X] ={
n∑
i=0

riX
i, n ∈ N, ri ∈ R

}
.

Claim: R[X] is a unitary ring with identity 1̃ = 1X0. Then we could check the addition
and multiplication.

n∑
i=0

riX
i +

m∑
i=0

sjX
j =

max(m,n)∑
`=0

(r` + s`)X
`

where we set s` = 0 if ` ≥ m+ 1 and r` = 0 if ` ≥ n+ 1. And

n∑
i=0

riX
i ×

m∑
i=0

sjX
j =

∑
`≥0

t`X
`

where t` =
∑̀
i=0

ris`−i.

Example 22. Z[X] is a subring of Q[X].

Definition 24. Degree of P =
n∑
i=0

riX
i ∈ R[X] is defined as

degP =

{
max{i : ai 6= 0} ifP 6=
−∞ ifP = 0̃

We say the dominate of P =
n∑
i=0

riX
i with degree d ≥ 0 is rd. P is said to be monic if

rd = 1R. [e.g. X2 + 3X − 2 is monic in Z[X]].

Lemma 2. Let A,B ∈ R[X], then

1. deg(A+B) ≤ max{degA, degB}

2. deg(AB) = degA+ degB if R is an integral domain.

Example 23. Let R = Z/4Z, then (2X+2)(2X3) = 4X4 +2X3 = 2X3. We see deg(AB) =
3 6= 1 + 3 = degA+ degB.

Lemma 3. If R is an integral domain, (R[X])× = R× = {r · 1̃|r ∈ R×}.
Proof. (1) P = r · 1̃ = r̃ = rX0 with R ∈ R× then Q = ˜r−1. Thus PQ = 1̃. Then
R× ⊂ (R[X])×. (2) If P ∈ (R[X])×, let Q be its inverse. PQ = 1̃. Then degP + degQ = 0.
Then degP = degQ = 0. So P,Q are constant polynomial. P = r̃ and Q = s̃. PQ = 1̃.
Then rs = 1. So r ∈ R×.

Example 24. (Z/4Z[X])× = {2P + 1|P ∈ Z/4Z[X]}. (2P + 1)−1 = −2P + 1.
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Definition 25. Let R be an integral domain. P ∈ R[X]\{0} is irreducible if P = AB with
A,B ∈ R[X] implies A ∈ R× or B ∈ R×.
Note. The basic idea is to decompose P into two polynomials A,B but it would not be
interesting to have A ∈ R× since any P ∈ R[X] can be written as P = 1P = A−1AP =
A−1P ′.

Proposition 7. If R is an integral domain, then R[X] is also an integral domain.
Proof. Let A,B ∈ R[X]. Suppose AB = 0 then degA + degB = ∞. So degA = −∞ or
degB = −∞. So A = 0 or B = 0.

Remark 9. If R is an integral domain, R[X] has an fraction field. [e.g frac(Z[X]) = Q(X)??]

Example 25. Let R be a unitary commutative ring. S := R[X] is a unitary commutative

ring. Build S[Y ] = R[X][Y ] =

{∑
i≥0

(∑
j≥0

rijX
j

)
yi

}
=

{∑
i≥0

∑
j≥0

rijX
jY i

}
. We usually

denote R[Y ][X] by R[X, Y ]. We would show later that R[X, Y ]/(Y −X2) ∼= R[T ].

Polynomial over a Field R = k

Theorem 2. (Euclidean Division in k[X]) Let A,B ∈ k[X]. Suppose B 6= 0̃, there exists
unique (Q,R) ∈ k[X]2 such that A = BQ + R where degR < degB. [e.g. X3 + X + 1 =
(X + 1)(X2 −X + 2)− 1]

Definition 26. We say B divides A, B|A if R = 0 in the Euclidean division.

Example 26. If B = X−λ for λ ∈ k, what is the remainder R in the division A = BQ+R?
We know R = r̃ by degree comparison. Then by A = (x− λ)Q+ r̃, A(λ) = r (evaluated at

λ). Therefore R = Ã(λ).

Remark 10. If R is a unitary ring, λ ∈ R. We define fλ : R[X] → R by P =
∑
riX

i 7→∑
riλ

i. This is a homomorphism of rings called evaluation at λ. We write P (λ) =
∑
riλ

i.
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Lecture 8 Jan 30

Topic: Polynomial Ring over a field: Euclidean Division, Principle Ideals, Induced
Homomorphism, Evaluation Map.

Euclidean Division

In general, let A,B ∈ k[X]. Suppose B 6= 0̃, there exists unique (Q,R) ∈ k[X]2 such that
A = BQ+R where degR < degB.

Example 27. Continued from the previous example. We have shown that if B = X − λ
where λ ∈ k. Then A = QB + Ã(λ). Therefore X − λ|A if and only if A(λ) = 0. In that
case we say λ is a root of A. Given a root λ ∈ k for A ∈ k[X], we call multiplicity of λ as
the number max{m ∈ N|(X − λ)m|A}.

Proposition 8. If A has degree n, it has at most n roots counted with multiplicity.
Proof. By induction on degA. Base case: A = λ1X + λ2 with one root. Inductive step,
A = (X − λ)mC then degC = n−m.

Ideals of k[X]

Proposition 9. The ideal of k[X] are all of the form pk[X] = (P ) where P can be picked
to be monic.
Proof. Let I be an ideal of k[X]. (1) If I = {0}, then I = (0). (2) Otherwise I 6= {0} so
it contains a non-zero polynomial. Let u0 = min{u ≥ |∃P ∈ I, degP = n}. Let P0 ∈ I
with degree n0. One can choose P0 to be monic. If P0 is not monic, we can find λ ∈ k
such that λ−1P ∈ I is monic. Then (P0) ⊂ I since P0 ∈ I. We want show I ⊂ (P0). Let
A ∈ I and we apply Euclidean division on A by P0, A = P0Q + R, degR < degP0. Then
R = A︸︷︷︸

∈I

−P0Q︸︷︷︸
∈I

∈ I. However degR < degP = n0. Then R = 0 so A ∈ (P0).

Corollary: Let P ∈ k[X]\{0}. Then the following three statements are equivalent:

1. P is irreducible.

2. k[X]/(P ) is an integral domain.

3. k[X]/(P ) is a field.

Proof. (3 =⇒ 2 =⇒ 1) Assume k[X]/(P ) is a field. Then k[X]/(P ) is an integral
domain. Let A,B ∈ k[X] such that P = AB. It implies that AB = 0 in k[X]/(P ). So
A = 0 or B = 0, namely P |A or P |B. For example P |A so degP ≤ degA. But also A|P so
degA ≤ degP so degA = degP . But P = AB so degB = 0. So B ∈ k×. We proved that if
P = AB then A ∈ k× or B ∈ k×. So P is irreducible.
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(1 =⇒ 3) Assume P is irreducible. We want to show that k[X]/(P ) is a field. Let J be
an ideal of k[X] such that (P ) ⊂ J ⊂ k[X]. There exists P0 ∈ k[X] such that J = (P0) so
(P ) ⊂ (P0). Then P ∈ (P0) and we can find A ∈ k[X] such that P = P0A. Then P0|P .
But P is irreducible so either P0 ∈ k[X] or A ∈ k×. Then either J = (P0) = k[X] or
J = (P0) = (P ). Then (P ) is maximal and k[X]/(P ) is a field.

Remark 11. 2x is irreducible in Q[X] or R[X] but not irreducible in Z[X]. P = 2x = 2 · x
where 2, X 6∈ Z×.

Induced Maps

Consider homomorphism of unitary rings f : R → S. We define f̃ : R[X] → S[X] by∑
riX

i 7→ f(ri)X
i.

Example 28. Examples on Induced Maps

1. R is an integral domain and S is a field of fraction of R. [e.g. R = Z, S = Q]. Let

f : R ↪→ S by r 7→ r
1

then f̃ : R[X] ↪→ S[X] is an injection. So we identify R[X] as a
subring of S[X].

2. R = Z and S = Z/nZ. π : Z → Z/nZ. Then π̃ : Z[X] → Z/nZ[X] is surjective and
ker π̃ = nZ[X] as the ideal of Z[X] generated by n. Then by isomorphism theorem,
Z/nZ[X] ∼= Z[X]/nZ[X] as rings.

3. In more general, let be an ideal of the ring R and let I[X] denote the ideal of R[X]
generated by I, then R[X]/I[X] ∼= (R/I)[X].

Evaluation Maps

Let R to be a commutative ring, r0 ∈ R. Then evr0 : R[X]→ R by
∑
aiX

i 7→
∑
aiλ

i
0 is the

unique homomorphism of rings R[X] → R that fixes R and sends X to r0. evr0 is always
subjection so R ∼= R[X]/ ker evr0 as rings. Then what is the kernel?

Example 29. Kernel of Evaluation Maps.

1. R = k is a field and r0 is noted as λ. evλ : k[X] → k. Since X 7→ λ, we know
X − λ 7→ 0. Then we want to show (X − λ) = ker evλ. (1) We know (X − λ) ⊂ ker evλ
since X − λ ∈ ker evλ. (2) Let P ∈ ker evλ, evλ(P ) = P (λ) = 0. Then by Euclidean
division P = (X − λ)Q+ P (λ) = (X − λ)Q. So P ∈ (X − λ). So ker evλ ⊂ (X − λ).
Therefore, k[X]/(X−λ) ∼= k as rings, k-algebra and k-vector space. Note dim k[X]/(X−
λ) = 1 with basis 1̃.

2. R = Z/4Z and r0 = 2. Then ev2 : Z/4Z[X] → Z/4Z by X 7→ 2. We know X − 2 ∈
ker ev2 and then (X − 2) ⊂ ker ev2. However we can’t do Euclidean division here. Note
X2, 2X ∈ ker ev2 but X2 = (X − 2)(X + 2) and 2X = 2(X − 2).

3. R = Z and r0 = 2. We have ev2 : Z[X] → Z by X 7→ 2. We know (X − 2) ⊂ ker ev2.
But we can also show ker ev2 ⊂ (X − 2). Let P ∈ ker ev2, we can do Euclidean division
of P by X − 2 in Q[X]. We have P = (X − 2)Q + P (2) = (X − 2)Q. Since X − 2 is
monic, Q ∈ Z[X].
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Remark 12. A useful tool to “apply” Euclidean division on integral domain R. Let R
be an integral domain. We know R[X] ↪→ frac(R)[X]. Let A.B ∈ R[X], B 6= 0. Let
k := frac(R). One can compute Euclidean division of A by B in k[X]. There exists unique
(Q, T ) ∈ k[X]2 such that A = BQ + T . If B ∈ R[X] is monic (or other coefficient in R×),
then (Q, T ) ∈ R[X]. It’s not hard to see, because for the following example,

1
2
X + 1

4

2X + 1
)

X2 +X + 1
−X2 − 1

2
X

1
2
X + 1

− 1
2
X − 1

4
3
4

we know it is always the leading term determine the coefficients in (Q, T ).

Lecture 8 27



Lecture 9 Feb 4

Topic: Revisit of Homomorphism of k-algebra; Revisit of Evaluation Map; Prime
Ideals; Max Ideals.

Homorphism of k-algebra

Recall the definition: Let (A,+,×, ·) and (B,+,×, ·) be two k-algebra. A homomorphism
of unitary rings f : A → B is a homomorphism of k-algebra if f is also k-linear. What is
the k-linear here? We can define it in two equivalent ways.

• f(λ1a1 + λ2a2) = λ1f(a1) + λ2f(a2). Then for any λ ∈ k f(λ · 1A) = λ · 1B. In some
sense f(λ) = λ, which identifies λ in B.

• f(λ · 1A) = λ · 1B. Thus f(λ1a1 + λ2a2) = f((λ1 · 1A) × a1 + (λ2 · 1A) × a2) = f(λ1 ·
1A)× f(a1) + f(λ2 · 1A)× f(a2) = λ1f(a1) + λ2f(a2).

Revisit of Evaluation Map

Recall evx : k[X] → k by P = P (x), fix x ∈ k and k is a field. We have shown that
ker evx = (X − x). Then k[X]/(X − x) ∼= k as a ring.

By isomorphism theorem, we can introduce evλ : P mod (X − x) 7→ P (x). Notice that

evx(λ̃ mod (X − x)) = λ̃(x) = λ. So evx fixes k. So evx is an homomorphism of k-algebras.
Therefore k[X]/(X − x) ∼= k as an k-algebra. So as a k-vector space.

P ∈ k[X]\{0} with degP = n. We can check that k[X]/(P ) is a k-algebra as a vector space
with dimension n.

Example 30. What is the kernel of evr : Z/6Z[X]→ Z/6Z?

Remark 13. Difference between polynomial functions P : k → k and polynomials. Consider
the map

F : k[X]→ Functions(k → k)

P 7→ (λ 7→ evλ(P ) =: P (λ))

The image of this map is the ring of polynomial functions k → k. By definition, k[X] →
polynomial functions (k → k) is surjective. For injectivity, we know P ∈ kerF if and
only if for any λ ∈ k, P (λ) = 0. We say that if P has degree n ≥ 0, then P has at
most n roots. Then k is infinite, kerF = {0}. If k = Z/pZ with p prime. We can let
P := (X − 1)(X − 2) · · · (X − p) has degree p and P ∈ kerF . Then F is not injective.

Maximal Ideal
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Definition 27. M is an left/right/two-sided ideal of R. M is called maximal ideal if

1. M 6= R.

2. For any J ideal of R such that M ⊂ J ⊂ R, M = J or J = R.

Theorem 3. If R is a unitary ring, then every proper (left/right/two-sided) ideal of R is
contained in a maximal ideal.
Proof. By Zorn’s Lemma.
Corollary: R is a unitary ring then it contains at least one ideal.

Proposition 10. If R is a unitary commutative ring and I is a proper ideal of R, then I is
maximal if and only if R/I is a field.

Example 31. Maximal ideals.

1. C[X]. P 6= 0. We have shown that P is irreducible if and only if k[X]/(P ) is an integral
domain, if and only if k[X]/(P ) is a field. Then the maximal ideals are (X − λ) where
λ ∈ C.
Note. I is a proper ideal of C[X]. There exists P ∈ C[X] such that I = (P ). P has a
root λ then (X − λ)|P which implies (P ) ⊂ (X − λ).

2. R[X]. Take the roots αi ∈ C of P ∈ C[X]. Then we can write P =
∏

(X − αi) ∈ C[X].

We know P (αi) = P (αi) = 0. This shows αi and αi are both roots of P . Then we can
match them in pair if Imαi 6= 0, (X −αi)(X −αi) = X2− 2(Reαi)X + |αi|2. Or if αi is
purely real, it is just X − αi. Then the irreducible polynomials are in the form X − a
where a ∈ R or X + aX + b where a, b ∈ R such that a2 − 4b < 0. Then the maximal
ideals are in the form (X − a) where a ∈ R or (X + aX + b) where a, b ∈ R such that
a2 − 4b < 0.

Prime Ideals

Definition 28. Let R be a ring and P is a proper ideal of R. We say P is a prime ideal if
for any x, y ∈ R, xy ∈ R implies x ∈ R or y ∈ R.

Proposition 11. If R is a unitary commutative ring, I is a proper ideal of R. Then I is
prime if and only if R/I is an integral domain.

Example 32. Prime ideals.

1. In k[X], prime ideals = maximal ideal = {(P )|P irreducible}. [R/I is field is equiv-
alent to R/I is an integral domain in k[X]]

2. In Z, prime ideals = maximal ideal = {(P )|P prime}.

Proposition 12. Let R be a unitary ring. Then I is a maximal ideal implies I is a prime
ideal.
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Example 33. Prime ideal but not maximal ideal. Let R = Z[X].

1. Consider the map f : Z[X] → Z by P 7→ P (0). Since the kernel ker f = (x),
Z[X]/(X) ∼= Z. (X) is prime but not maximal.

2. With natural map π : Z → Z/2Z, we can compose g = π ◦ f : Z[X] → Z/2Z by
P 7→ P (0) mod 2. Then ker g ⊃ ker f = (X). And since Z[X]/ ker g ∼= Z/2Z, ker g
is the maximal ideal. P ∈ ker g means P (0) = 0 mod 2. Then P is in the form of∑
aiX

i + 2a0, ai ∈ Z. So ker g = (X) + (2) = XZ[X] + 2Z[X] = (X, 2).

Example 34. Maximal Ideals.

1. Maximal ideal of C[X, Y ] are ideals of the form (X − a, Y − b) where a, b ∈ C.

2. A is finite dimensional C-algebra. Spec(A) would be the set of prime ideals of A on
which there is neutral top.
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Lecture 10 Feb 6

Topic: An example on Polynomial Rings; Chinese Remainder Theorem.

An example on Polynomial Rings

1. We want to show R[X, Y ]/(Y−X2) ∼= R[T ] as R-algebra. We want to find f : R[X, Y ]→
R[T ] such that (Y −X2) ⊂ ker f . Such f is determined by the image f(X) and f(Y ).

We could try f(Y ) = T 2 and f(X) = T . Then f(
∑
aijX

iY j) =
∑
aijT

iT 2j. Then
f(Y −X2) = T 2− T 2 = 0 and (Y −X2) ⊂ ker f . Then by isomorphism theorem, there
exists f : R[X, Y ]/(Y −X2)→ R[T ] by P (X, Y ) mod (Y −X2) 7→ f(P ) = P (T, T 2).

We can find the inverse of f . Let g : R[T ]→ R[X, Y ] by Q(T ) 7→ Q(X) mod Y −X2.
Then g ◦ f(X mod Y − X2) = g(f(X))) = g(T ) = X mod Y − X2. And g ◦ f(Y
mod Y − X2) = g(f(Y )) = g(T 2) = X2 mod Y − X2 = Y mod Y − X2. Then
g ◦ f = Id and g is the inverse of f .

2. What are the prime ideals of R[X, Y ]/(Y −X2)? Since R[X, Y ]/(Y −X2) ∼= R[T ], we
can find the prime ideals in R[T ] and map it back to R[X, Y ]/(Y −X2).

As we have shown in the last lecture, to find the prime ideal (Q) ⊂ R[T ] is to find
the irreducible polynomial Q ∈ R[T ]. The irreducible polynomial in R[T ] has the form
T − α, α ∈ R or T 2 + αT + β, α, β ∈ R such that α2 − 4β < 0.

Then the prime ideals of R[X,T ]/(Y −X2) is the image by g of (T−α) and (T 2+αT+β).
We have

g((T − α)) = (T − α) = (X − α, Y −X2)/(Y −X2)

g((T 2 + αT + β)) = (X2 + αX + β) = (X2 + αX + β, Y −X2)/(Y −X2)

We can see there are two kinds of max/prime ideals in R[X, Y ]/(Y − X2) = A as a
R-algebra. We write

(X − α, Y −X2)/(Y −X2) = (X − α, Y − α2)/(Y −X2) = Iα

(X2 + αX + β, Y −X2)/(Y −X2) = (X2 + αX + β, Y + αX + β) = Iβ,γ

[Note. (X − α, Y −X2) = (X − α, Y − α2) because (1) Y −X2 = Y − α2 + α2 −X2 =
Y −α2−(X−α)(X+α) ∈ (X−α, Y −α2) and (2) Y −α2 = (Y −X2)+(X−α)(X+α) ∈
(X − α, Y −X2)] Then we have

A/Iα ∼= R[T ]/(T − α) ∼= R, dimA/Iα = 1
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A/Iβ,γ ∼= R[T ]/(T 2 + βT + γ) ∼= R2, dimA/Iβ.γ = 2

[Note. A/Iα = R[X, Y ]/(Y −X2)
/

(X−α, Y −X2)/(Y −X2) ∼= R[X, Y ]/(X−α, Y −X2).
Then P ∈ R[X, Y ], P ∈ R[X][Y ]. P = (Y − X2)Q + R where Q ∈ R[X, Y ] and
R ∈ R[X]. Then P = (Y −X2)Q+ (X − α)S︸ ︷︷ ︸

Tα

+R(α) ≡ R(α) mod Iα ≡ R(α)(1

mod Iα)]

[Note. A ∼= R and f((X − α)) = (X − α). Therefore A/Iα ∼= R[T ]/(T − α).]

3. Spectrum of A. As a set, Spec(A) = {α, α ∈ R, (β.γ), β, γ ∈ R, β2 − 4γ < 0}. Consider
the homomorphism of R-algebra ϕ : A → R. Kernel of ϕ is an ideal of A such that
A/ kerϕ ∼= R. There exists α ∈ R such that kerϕ = Iα = (X − α, Y − α2)/(Y −X2).
Then ϕ(X mod Y −X2) = ϕ(X−α mod Y −X2 +α mod Y −X2) = ϕ(α mod Y −
X2) = αϕ(1 mod Y −X2) = α. And ϕ(Y mod Y −X2) = ϕ(α2 mod Y −X2) = α2.
Then there is a one to one correspondence between Iα and points on the curve y = x2.

Chinese Remainder Theorem

Definition 29. Let R be a ring, e ∈ R. We say e is idempotent if e2 = e. We say e is central
idempotent if further e ∈ Z(R), namely er = re for any r ∈ R. We say two idempotent
e, f are orthogonal if ef = fe = 0R. Let R has unit 1R. Then the decomposition of 1R into
orthogonal idempotent 1R = e1 + e2 + · · ·+ en such that eiej = δij.

Lemma 4. Suppose the idempotent decomposition are central and ei 6= 0, then

R ∼= Re1 ×Re2 × · · · ×Ren

by r 7→ (re1, re2, . . . , ren).

Lemma 5. Let M,N two sides ideals of R such that M ∪ N = {0} and M + N = R,
then there exists (eM , eN) ∈ M × N such that eM , eN are central idempotent in R and
R 7→ ReN ×ReM by r 7→ (reM , reN) is an isomorphism of unitary ring.
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Lecture 15-16 Mar 5,10

Topic: Introduction to Modules; Definition and Examples; Submodule.

Definition of Module

Definition 30. R is a ring (not commutative but unitary). M is an R-module (on the left)
if (M,+) is an abelian group and there exists ϕ : R → Endgroup(M) as homomorphism of
unitary rings.

Note. We often write: M is R-module via R × M → M by (r,m) 7→ r · m = ϕ(r)(m).
Then we have the following: (1) r(m + n) = rm + rn; (2) 1R · m = m [ϕ(1R) = id]; (3)
(r + s)m = rm + sm [ϕ(r + s) = ϕ(r) + ϕ(s)]; and (4) (rs) = r(sm) [ϕ(rs) = ϕ(r)ϕ(s)].
This is a equivalent definition.

Example 35. Examples of Modules.

1. R = k is a field. Then k-modules is just k-vector space.

2. R = Z. Let (M,+) be an abelian group. It is naturally a Z-module since we have
ϕ : Z→ Endgroup(M) by 1 7→ idM (and 2 7→ idM + idM).

3. If k is a vector space and R is a k-algebra, then an R-module is a also a k-vector space.
Since we can construct the following ring homomorphism

k R Endgroup(M)
ϕ

λ 7→ λ · 1R

rings

4. R is an R-module via R × R → R by (r, x) 7→ rx. Or we have the ring homomophism
ϕ : R→ Endgroup(R) by r 7→ (r 7→ rx). For example, Z is an Z-module.

5. I ia a left ideal of R, then it is a (left) R-module via R× I → I by (r, x) 7→ rx.

6. V is a k-vector space. R = Endk(V ) ⊂ Endgroup(V ). So V is an Endk(V )-module via
Endk(V )× V → V by (f, v) 7→ f(v).

7. V = kn. Endk(V ) ∼= Mn(k) so kn is a Mn(k)-module via Mn(k)× kn → k by (A, v) 7→
Av.

8. R, S are rings and Ψ : R→ S is a ring homomorphism. Let M be a S-module. Then it
is a naturally an R-module via R ×M → M by (r,m) 7→ Ψ(r)m = ϕ(Ψ(r))(m). More

simply it is just map composition: ϕ ◦Ψ : R
Ψ→ S

ϕ→ Endgroup(M).
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9. k is field and V is a k-vector space. Pick T ∈ Endk(V ) where Endk(V ) is k algebra.
Define k[X] → Endk(V ) by P (X) 7→ P (T ). We just endowed V with a structure of
k[X]-module via T . This is because V is a Endk(V ) so by 8, it is a k[X]-module. Or
more explicitly, we have k[X]× V → V by (P, v) 7→ P (T )(v).

10. V = kn. Pick a matrix A ∈Mn(k). V is a k[X]-module via A. More explicitly, we have
k[X]× kn → kn by (P, v) 7→ P (A)(v). We could study kn as a k[X]-module and decide
the statements about A.

11. In general, G is a group then G acts on set X if we have a group homomorphism
G → σ(X) where σ(X) is the set of bijections X → X. Let k be a field and V is a k-
vector space. Representation of G on V is a group homomorphism ϕ : G→ Autk(V ) =
GL(V ) where GL(V ) := (Endk(V ))×. It is a group action of G on V which satisfies
g(λv + µw) = λgv + µgw. Let R = k[G] a group ring of G over k. We can find a ring

homomorphism k[G]→ Endk(V ) by
∑
finite

λigi 7→
∑
finite

λiϕ(gi). So V is a k[G]-module via

(
∑
λigi, v) →

∑
λiϕ(gi)v. Vice verso, one can check that a k[G]-module can be seen

on a representation of G over a k-vector space.
Example: G is a group and k is a field. Consider ϕ : G → k× = GL1(k) by g 7→ 1 a
trivial map of G. This is a 1-dimensional representation of G over V = k. Set V = k
as a k[G]-module and we can find a homomorphism k[G] → Endk(k) = M1(k) = k by∑
λigi 7→

∑
λi

Submodules

Definition 31. If M is an R-module and (N,+) is a subgroup of (M,+), it is a (left) sub-
R-module of M if r ∈ R, n ∈ N , we have rn ∈ N . [We can induce a group homomorphism
ϕ′ : R→ Endgroup(N)].

Example 36. Examples on Submodules.

1. R is an R-module, its submodules are left ideals.

2. R is a ring, I is a left ideal and M is an R-module. IM :=

{∑
finite

ximi, xi ∈ I,mi ∈M

}
is a subgroup of M . This is an sub-R-module of M .

3. Let B =

{(
a b

0 c

)∣∣∣∣ a, b, c ∈ k} ⊂ GL2(k). We have know that k2 is a k[B]-module via

k[B]×k2 → k2 by (
∑
λiAi, v) 7→

∑
λiAiv. Then we want to find the submodules of k2.

The trivial one is simply {0}. If it is not {0}, then it is a 1 dimensional vector space,
We want to for any A ∈ B, A(λ1e1 + λ2e2) ∈ V . Then it could be reduced back to an

eigenvalue problem Ab = kv. We can pick A =

(
0 1

0 0

)
. This restrict v = ke1.

Lecture 15-16 34



4. Let V = k3 and we choose canonical basis. Let T : V → V represented in this basis

as

2 0 0

0 3 1

0 0 1

. Consider V as a k[X]-module via T . We want to find the sub-k[X]-

module of V . (1) Let W = ke1. Let P ∈ k[X] and v ∈ W . Then Pv = P (T )ke1 =
k
∑
aiT

i(e1) = k
∑
ai2

i(e1) = (k
∑
ai2

i)ei ∈ W . (2) U = k2e2+k3e3. Let P ∈ k[X] and
v ∈ U . Since Te2 ∈ U and Te3 ∈ U , then Pv = P (λ2e2+λ2e3) = λ2P (T )e2+λ3P (T )e3 ∈
U . We see the key point is T (U) ⊂ U , namely U is stable by T .

Summary: (of 3 and 4) V is a k-vector space. T ∈ Endk(V ). Consider V as a k[X]-module
via T . Then we have

1. A sub-k[X]-module of V is a sub-vector space of V .

2. Let U be a sub-k-vector space of V . U is a sub-k[X]-modules of V if and only if
T (U) ⊂ U , namely, U is stable by T .

Example 37. An exercise related to submodules. Consider U =

{(
1 x

0 1

)∣∣∣∣x ∈ k} where

k = Z/pZ. Show (a) U ∼= Z/pZ as a group. (b) k2 is naturally a k[U ]-module. What are its
submodule?
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