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Appendix A: End-Of-Shift E�ect

As discussed in Observation 1 from Section 4.1, we �nd evidence of the ED decision maker's patient routing

decisions being a�ected by the physicians' shift. The exact physician shift schedule is not available for this

study. However, we can utilize the patient visit data structure to approximate the physician shift schedule.

Since the data contains physician ID for each patient visit, we can sort patient visits �rst by physician ID

and next by selection time of each patient (time of choice incident). This allows us to compute, for each and

every patient choice incident, the time gap until the very next patient choice incident treated by the same

physician. If the time gap is larger than 480 minutes, we consider that as a sign of change in the physician's

shift|the former patient being the last to be treated in a shift and the latter patient being the �rst in a

new shift. If the time gap is smaller than 480 minutes, the patients are considered to be treated in the same

shift.

With the physician shift being approximated, we explore models controlling for various end-of-shift e�ect

time windows. We hypothesize that shift changes will mainly a�ect patient routing decision across di�erent

triage levels rather than within triage levels. Thus, we introduce the end-of-shift e�ect by interacting the

triage level-2 intercept, Triage2j , with a time-dependent binary end-of-shift indicator, EOSt. The coe�cient

of Triage2j �EOSt e�ectively captures the impact of the choice incident occurring at the end of a physician's

shift compared to a non-end-of-shift choice incident on the prioritization behavior between triage level-2 and

-3 patients. We explore �ve di�erent time windows as the \end" of a shift. First, we consider only the very

last choice incident of a physician shift as the end and all other choice incidents as normal time period. Next,

we consider the very last choice incident and choice incidents that occurred within a certain time|ranging

from 15 to 60 minutes|before that very last choice incident as the end of the focal physician's shift.

Table 5 End-Of-Shift E�ect: BIC Score for Models with Varying End-Of-Shift Windows

End-of-shift window ED A ED B ED C ED D

Last choice incident only 233966.8 115758.8 119813.5 95983.8
15 mins from last choice incident 233976.2 115767.6 120094.4 96065.7
30 mins from last choice incident 233977.7 115763.7 120070.6 96048.3
45 mins from last choice incident 233978.3 115763.2 120052.6 96047.4
60 mins from last choice incident 233978.6 115763.1 120014.5 96047.2

Similar to our model selection in Section 5.1, we use the BIC score to compare models with di�erent

end-of-shift time windows. Table 5 reports the model �t by end-of-shift de�nitions. For all four EDs, the last

choice incident only model consistently outperforms the wider time window models. The BIC performance

is quite stable between 15 to 60 minutes time window models, while the gap between the last choice incident

only model and the other models is much larger in all four EDs. Hence, we conclude that the end-of-shift

e�ect exists only for the very last choice incident in a physician's shift and exclude those choice incidents

from the main analysis.
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Appendix B: Asymptotic Optimality of the Gc�-Rule

The Gc� rule has been proved asymptotically optimal (Mandelbaum and Stolyar 2004, Gurvich and Whitt

2009) in a multi-class queueing system with non-decreasing marginal holding cost. However, according to

Observation 2, the marginal holding cost can drop to a constant (e.g., zero) when the treatment starts. This

violates the non-decreasing assumption of the Gc�-rule. To reconcile this, we consider a new system where

the marginal holding cost during the treatment period has been shifted up by a large constant c. According

to our observations, cj(waitj(t);Xj) is continuous, Xj has �nite support, and waitj(t) is bounded, hence,

we can choose a su�ciently large c such that c > cj(waitj(t);Xj) for all patient and wait times. As a result,

the marginal holding cost in the new system satis�es the non-decreasing assumption and the asymptotic

optimality of the Gc�-rule can be proved. Since the total holding costs in the new system and original system

always di�ers by a constant (c�Total treatment time for all patients) when the same routing policy is used,

the cost minimization problems in the two systems are equivalent. That means, if the Gc� is asymptotically

optimal in the new system, it must be asymptotically optimal in the original system as well. Therefore,

allowing the marginal holding cost to drop to a small constant will not undermine the asymptotic optimality

of the Gc�-rule.

Appendix C: No Skill-Based Patient Routing: Conditional Independence Test

Table 6 Independence Test Between Physician IDs and Triage Levels Conditional on Hour-of-Day and

Weekday/Weekend

ED Likelihood Ratio Statistic p-value Pearson Statistic p-value No. of Obs. df

A 5384.11 0.799 5394.41 0.770 87,158 5,472
B 4676.08 1.000 5307.55 0.392 69,703 5,280
C 3017.18 1.000 3390.68 1.000 57,302 3,744
D 2668.71 0.144 2672.68 0.132 48,687 2,592

We perform independence tests between the physician IDs5 and the patient triage levels treated by those

physician IDs to explore whether more acute and di�cult patients are likely assigned to certain physicians.

Due to the fact that both physician shifts and patient triage levels have a pattern by hour-of-day and

weekday/weekend, we test the independence conditional on hour-of-day and whether it is a weekday (Mon{

Fri) or weekend (Sat, Sun). Table 6 reports the independence test results conditional on the hour-of-day and

weekday/weekend combination, which contains 48 cells within a week (2 types of day * 24 hours). In our

data, the expected counts in each cell is greater than 5 observations in all four EDs. Thus, according to the

conventional rule of thumb (McDonald 2009), both the G-test (likelihood ratio statistic) and Chi-square test

(Pearson statistic) are acceptable for independence test. For both tests, the null hypothesis of independence

between physician IDs and triage levels cannot be rejected at the 5% level of signi�cance. This is consistent

with what we have learned from the ED physicians and administrators that the assigning more acute or

more di�cult patients to certain physicians is not the discipline in the study EDs and in general. Using the

same test methods, we also �nd independence between physician IDs and patient Chief Complaint System

(CCS) codes which classify patients at the clinical department level (the minimum p-value is 0:617 for all

four EDs).
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Appendix D: Decision Maker Heterogeneity

As alluded to in Section 4.1, we expect every ED to have consistency in the patient routing decisions, and

assume a single decision maker in each ED. We test whether our �ndings are robust when it comes to potential

decision maker heterogeneity. Our approach is to estimate a random coe�cients model also known as mixed

logit, where the coe�cients of interest are allowed to vary by a parametric structure (normal distribution)

across individual choice makers. We estimate the normally distributed random triage-level intercepts and

slopes of the piece-wise linear marginal waiting cost function (Equation (6)) with the break-points �xed at

the locations from the non-random model reported in Table 5. The mixed logit model also relaxes the IIA

property of the conditional logit model and allows correlation across valuation of patients in the same choice

incident. However, the information necessary to identify the choice maker, such as work shift schedules of

ED personnel, is not available.

We take two di�erent approaches to isolate the decision maker's identity. First, we approximate identity

by work shift combinations of day-of-the-week and day-night groupings. For instance, we treat Monday-day,

Monday-night, and Tuesday-day as di�erent shifts. Hence there are a total of 14 shifts per week. Second,

we use the masked physician ID information for each patient visit. We use this as the identi�er of possible

decision maker heterogeneity. Both estimation results show that decision maker heterogeneity is statistically

insigni�cant at the 5% level.

Appendix E: Unobserved Patient Heterogeneity

Our data contains rich information for each individual patient which includes CCD, age, sex, method of

arrival, and discharge decision. This allows us to successfully control patient heterogeneity. Yet, there still

may be patient characteristics that a�ect the decision makers' patient choice but are not observed by the

researcher. An example may include extreme medical conditions requiring special resources that are not

captured by the control variables. If so, omitted variable bias may be a concern in Equation (3), as it violates

the iid assumption of the error term � in the conditional logit model.

Our approach in this regard is to model the unobserved heterogeneity as a random intercept,

�j �N (0; �2�); (9)

which is associated with patient j and is consistent across choice incident t. The valuation of choosing patient

j at choice incident t then has the following expression

Vjt(�j ;waitj(t);Xj) = (�j + fTrj(j)w (waitj(t))+ fc(Xj))�j : (10)

The consistency in choice incidents addresses possible serial correlation in patient valuation across di�erent

choice incidents. The likelihood of observing the sequence of choices is given by

L=

Z Y
t

P (c(t)j�(t))f(� j ��)d�; (11)

where choice probability, P (c(t)j�(t)) is equivalent to Equation (4) with Equation (10) as the valuation

term. Unfortunately, the integral in Equation (11) does not have a closed form. Hence, we cannot compute

the likelihood function exactly. Instead, we approximate the choice probabilities through simulation and
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Table 7 Robust Analysis: Estimation Results of Unobserved Patient Heterogeneity Term

ED A ED B ED C ED D

�� 0.0085 0.0058 0.0099 0.0123
(0.1181) (0.0821) (0.1262) (0.1351)

Standard errors in parentheses.

maximize the simulated log-likelihood function. We take R number of draws from f(� j ��) for each patient

and let �rj��j denote the r�th draw of patient j. The simulated log-likelihood function of the observed choice

sequence is constructed as

lnSL= ln
1

R

RX
r=1

Y
t

Pt(c(t)j�
rj��
j ;waitj(t);Xj 8j 2ChoiceSet(t)): (12)

The estimation of Equation (12) is computationally di�cult as we cannot take advantage of the log-

transformation in log-likelihood functions. The dimension of t, the number of choice incidents, is large

in all EDs we studied, ranging from 31,427 to 56,604. Hence, the simulated probability of observing the

choice sequence,
Y
t

P (c(t)j�rj��
c(t) ;waitj(t);Xj 8j 2ChoiceSet(t)), is very small and brings in computational

challenge.

In order to circumvent this problem, we propose an alternative model where we group the choice incidents

by each calendar day and assume that the random error term of unobserved patient heterogeneity is drawn

from a distribution each day instead of the entire sample path. Driven by Observation 4, we already excluded

choice incidents between 2AM and 10AM in each day, so there is no overlap of patients across di�erent days.

With this structure, the patient valuation function is:

Vjdt(�jd;waitj(t);Xj) = (�jd+ fTrj(j)w (waitj(t))+ fc(Xj))�j ; (13)

where, �jd � Nd(0; �
2
�). For the grouped data, there are a total of D days and each day, d, has Td choice

incidents. Then the likelihood function can be expressed as following:

L=

DY
d=1

Z TdY
t=1

P (c(t)j�jd;waitj(t);Xj 8j 2ChoiceSet(t))f(� j ��)d�: (14)

And the simulated log-likelihood function for the observed choice sequence is:

lnSL=

DX
d=1

ln
1

R

RX
r=1

TdY
t=1

P (c(t)j�rj��pd ;waitj(t);Xj 8j 2ChoiceSet(t)): (15)

Estimation of Equation (15) is more manageable than Equation (12) as the number of choice incidents

in a day, Td, ranges from 68 to 110. We estimate Equation (15) with a piece-wise linear marginal waiting

cost function (Equation (8)) by taking 50 halton draws (Train 2000) from Nd(0; �
2
�). Coe�cient estimates

of the piece-wise linear marginal waiting cost function are robust to our main �ndings in Section 5.2. The

estimate of �� is statistically insigni�cant for all four EDs suggesting there is not enough evidence to support

unobserved patient heterogeneity in our model (Table 7).
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Appendix F: Independence from Irrelevant Alternatives (IIA) Property of The

Conditional Logit Model

The conditional logit model exhibits a certain substitution pattern across alternatives which is known as

the property of independence from irrelevant alternatives (IIA). Speci�cally, the ratio of the probabilities of

patients i and k being chosen in ChoiceSet(t) can be expressed as

P (ij�(t))

P (kj�(t))
=

exp(Vit(waiti(t);Xi))X
j2ChoiceSet(t)

exp(Vjt(waitj(t);Xj))

exp(Vkt(waitk(t);Xk))X
j2ChoiceSet(t)

exp(Vjt(waitj(t);Xj))

= exp(Vit(waiti(t);Xi)�Vkt(waitk(t);Xk)): (16)

The relative odds of patient i being chosen over patient k depend only on the characteristics of patients i and

k, and are independent of what other patients are present in the ED at ChoiceSet(t) and what characteristics

the other patients have. Hence, the substitution pattern is known to be IIA. In the context of ED patient

routing, the IIA property of the conditional logit model can be viewed as a restriction on the substitution

pattern between two patients.

To test whether the IIA property is a reasonable assumption for the observed data, we investigate the

mixed logit model, which has been discussed in Appendix D. The conditional logit model used in this paper

is a special case of the mixed logit model when the random slopes and intercepts of the piece-wise linear

marginal waiting cost speci�cation have zero variance (Train 2009). After �tting the mixed logit model, the

statistical insigni�cance of the variances at the 5% level suggests that the observed data exhibits the IIA

pattern.

Appendix G: Number of Break-points in Piece-wise Linear Speci�cation

Our conditional logit-Gc� framework has assumed that the piece-wise linear marginal waiting cost functions,

fTri(j)w (waitj(t)) 8 Tri(j)2 f2;3g, have at most one break-point per triage level. To justify this assumption,

we �t a marginal cost function with two and three break-points using the estimation method introduced in

Muggeo (2003), which can identify multiple break-points. Estimation results from the two-break-point piece-

wise linear marginal waiting cost functions are plotted in Figure 5. We �nd that the marginal waiting cost

slope plateaus after the largest break-point for each triage level in a manner similar to the one-break-point

model (Figure 2). Hence, the phenomena of the piece-wise linear marginal waiting cost function attening

after a threshold are robust to the number of break-points in the piece-wise speci�cation.

Appendix H: Asymptotic Property of the MLE for the Conditional Logit-Gc�
Framework

We next prove consistency of the MLE under the conditional logit-Gc� framework. We �rst provide a formal

description of the general conditional logit-Gc� framework. We strive to de�ne the setting with su�cient

generality so that it covers all models we have compared earlier (e.g., Urgency(only)-based or Complexity-

based model, di�erent functional forms of fTriw (�)).
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(a) ED A (b) ED B

(c) ED C (d) ED D

Figure 5 Robust Analysis: Two Break-points in Piece-wise Linear Marginal Waiting Cost

Observed Data: The researcher observes a sequence of n choice incidents. In each choice set t, she observes

the data for each patient's �xed attributes and waiting time, �(t) (de�ned in (5)), as well as the index of the

chosen patient, c(t). Therefore, the observed data for each choice incident can be summarized as (c;�)6. Let


 denote the domain of (waitj(t);Xj). Since the choice set can contain r(= 1;2; : : :) patients, the domain of

� can be expressed as 
 :=[+1r=1

r.

Model Parameters: The choice probability is predicted using formula (4), with the deterministic value

function Vjt(waitj(t);Xj) de�ned in (7). In the expression (7), we assume that the function fc(Xj) is linear

and have the following form

fc(Xj) = �0+

MX
m=1

�kXjm; (17)

where Xjm denotes the value of the mth attribute of patient j (m = 1; : : : ;M). We assume the univariate

functions, fTri(j)w (waitj(t)) 8 Tri(j)2 f2;3g are polynomial regression splines with the highest degree D and

B break-points, i.e.,

fTri(j)w (waitj(t)) =

DX
d=1

�
Tri(j)
d (waitj(t))

d+

BX
b=1

�
Tri(j)
D+b � ((waitj(t)� 

Tri(j)
b )+)D (18)
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Note that we assume the polynomial splines do not have a degree-0 term so fTriw (0) = 0 for all triage levels,

as the constant intercept �0 has already been included in the fc(Xj) function.

The polynomial regression spline is a standard tool for �tting continuous but possibly nonlinear and non-

smooth functions with unknown parametric forms7(Dierckx 1995, Ruppert and Carroll 1999, Antoniadis

et al. 2011), and thus well serves for our purpose. It also covers all functional forms that we have discussed

earlier in Section 4 and 5. For example, D= 1, B = 1 leads to a piece-wise linear function, and D= 3, B = 0

corresponds to the cubic model with no break point. This framework also covers the three patient complexity

models by plugging di�erent values of �j into the expression of Vjt.

The parameters in our model thus includes coe�cients for the �xed attributes � = f�kjk = 0; : : : ;Kg,

coe�cients in the piecewise polynomials � := f�Trik jk= 1; : : : ;D+B; Tri= 2;3g, and locations of the break-

points  := fTrib jb= 1; : : : ;B; Tri= 2;3g8. We use a vector � := (�;;�) to record all the parameters. Note

that the integers D and B are also parameters that we have to choose. We will �rst discuss the asymptomatic

properties for �, and then discuss the identi�cation issue for D and B in the end of this section.

The MLE: Let � denote the candidate set of �. Let �̂n denote the MLE � for a sequence of n choice

incidences, that is,

�̂n := argmaxflnLn(�̂) j �̂ 2�g (19)

where

lnLn(�̂) = ln

nY
t=1

P (c(t)j�(t); �̂) =
nX
t=1

lnP (c(t)j�(t); �̂) (20)

with P (c(t)j�(t); �̂) given by (4) conditional on parameters �̂.

We prove that under some regularity conditions, �̂
n
, the MLE for a sequence of n choice incidents, converges

to �, the MLE for the true log-likelihood function, when n!1.

Theorem H.1 (Consistency of MLE) Given �xed integers D and B, assume:

� (a1) f�(t)jt= 1; : : : ; ng is a positive recurrent and periodically stationary Markovian process. Therefore,

it is ergodic, which means there exists a limiting probability measure �, such that

1

n

nX
t=1

1(�(t)2A)
p
! �(A) for all A�
: (21)

� (a2) � is compact.

� (a3) The data of �xed patient attributes are not multicollinear, that is, the matrix

((1;Xj)
T j all patient j observed in the data) has full column rank.

� (a4) Xj has a �nite domain; waitj has a �nite upper bound W
Tri(j)

for Tri(j) = 2;39.

� (a5) Any two patient attribute vectors Xj can appear in the same choice set with a positive probability.

� (a6) Conditional on any �xed patient attributes Xj, waitj has a positive density over [0;W
Tri(j)

].

Then when n!1,

�̂n
p
! �: (22)
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Proof. By Theorem 2.1 of (Newey and McFadden 1994), to prove Equation (22), it su�ces to show that

(i) The true log-likelihood function Q(�) = lnL(�̂) is well de�ned and uniquely maximized at �; (ii) � is

compact; (iii) lnL(�) is continuous in �; (iv) Qn(�) := 1
n
lnLn(�) converges uniformly in probability to Q(�).

We next prove each of the above conditions.

Note that it is common to de�ne a likelihood function as in (6) using probabilities conditional on part

of data (i.e, �). In this case, the true log-likelihood function lnL(�̂) is the expectation of the conditional

probabilities with respect to the marginal distribution for that part of data (i.e., the limiting distribution of

�, �). That gives

Q(�) =E���Ec lnP (cj�;�):

We next prove that Q(�) has a unique maximizer. To prove that, in view of Lemma 2.2 of (Newey and

McFadden 1994), it su�ces to prove that the MLE � is identi�ed. That is, if �1 6= �2, then when n!1,

with probability approaching to one, we will have a � in the choice data sequence such that

P (cj�; �̂
1
) 6= P (cj�; �̂

2
): (23)

To prove the above statement, we �rst show that when n!1, with probability approaching one,

�1 6= �2) Vjt(waitj(t);Xj j�̂
1
)�Vjt(waitj(t);Xj j�̂

2
) 6�C; (24)

where C denotes any constant. We next prove Equation (24) by considering the following two cases.

If �1 6=�2, we must have

fc(Xj j�
1)� fc(Xj j�

2) =Xj
T (�1��2) 6�C (25)

Because otherwise, we will have Xj
T (�1��2)�C � 0 for all j. The only solution to this linear equation is

�1��2 = 0 due to the non-multicollinearity assumption (a3).

By (a6), when n ! 1, with probability approaching one we can �nd choice sets in which a patient

with attributes Xj has waitj(t) 2 [0; �] for some � > 0. By choosing �! 0, both fTri(j)w (waitj(t)j�
1) and

fTri(j)w (waitj(t)j�
2) converge to zero. Thus, in those choice sets,

Vjt(waitj(t);Xj j�̂
1
)�Vjt(waitj(t);Xj j�̂

2
)! (fc(Xj j�

1)� fc(Xj j�
2))�j 6�C; (26)

where the inequality follows from Equation (25).

If �1 = �2, then �1 and �2 must di�er in the (�;) part. The two piece-wise polynomials are then

di�erent and there must exist a � 2 [0;W
Tri(j1)

] such that fTri(j
1)

w (� j�1)� fTri(j
1)

w (� j�2) 6= 0. By (a6), we

can �nd a choice set t1 such that waitj1(t
1) lies in a neighborhood of � and thus fTri(j

1)
w (waitj1(t

1)j�1)�

fTri(j
1)

w (waitj1(t
1)j�2) 6= 0. Still by (a6), we can �nd another choice set t2 such that waitj2(t

2) lies in a

neighborhood of 0 and thus fTri(j
2)

w (waitj2(t
2)j�1)� fTri(j

2)
w (waitj2(t

2)j�2)! 0. The existence of j1, t1, j2,

and t2 implies that

fTri(j)w (waitj(t)j�
1)� fTri(j)w (waitj(t)j�

2) 6�C: (27)

Since �1 =�2, the fc part has the same value under parameters �
1 and �2. Only the fTriw term remains in

the di�erence of Vjt(waitj(t);Xj j�̂
1
)�Vjt(waitj(t);Xj j�̂

2
). Thus,

Vjt(waitj(t);Xj j�̂
1
)�Vjt(waitj(t);Xj j�̂

2
) = (fTri(j)w (waitj(t)j�

1)� fTri(j)w (waitj(t)j�
2))�j 6�C: (28)
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We have thus proved Equation (24) for both cases of �1 =�2 and �1 6=�2.

We next prove Equation (23). Since V 1
jt�V 2

jt 6�C, we can �nd two patients j1 and j2 in choice sets t1 and

t2, respectively, such that

Vj1;t1(�̂
1
)�Vj2;t2(�̂

1
)>Vj1;t1(�̂

2
)�Vj2;t2(�̂

2
): (29)

By (a5), there is a positive probability for two patients with attributesXj1 andXj2 to appear in the same

choice set t0. Furthermore, by (a6), with a positive probability their wait times waitj1(t
0) and waitj2(t

0) are

in a small neighborhood of waitj1(t
1) and waitj2(t

2), respectively. Therefore, the deterministic valuation of

patient j1 and j2 in choice set t0 are approximately given by Vj1;t1(�̂
i
) and Vj2;t2(�̂

i
), respectively, under

parameters �̂
i
(i= 1;2). Then the strict inequality (29) implies that patient j1 will be more favored under

parameters �1 compared to �2. This, expressed by the odds ratio, gives

P (j1j�(t0);�1)

P (j2j�(t0);�1)
>
P (j1j�(t0);�2)

P (j2j�(t0);�2)
: (30)

The above inequality implies that either P (j1j�(t0);�1) 6= P (j1j�(t0);�2) or P (j2j�(t0);�1) 6=

P (j2j�(t0);�2). In either case, we have shown that Equation (23) holds for � = �(t0). Therefore, when

n!1, with probability approaching one, Equation (23) is satis�ed for some �. Thus, � can be identi�ed.

Condition (ii) follows from assumption (a2) directly.

To prove condition (iii), we mainly need to prove that fTriw (�) is continuous in , as its continuity with

respect to � are straightforward. If a break point Trib has changed by � > 0, then the polynomial value over

all the subsequent intervals [Trib0 ; Trib0+1] with b0 � b will change by at most

supf
D+b0X
k=D+b

�Trik (xD � yD)jx; y�W
Tri

; jx� yj � �g �K�: (31)

where K is a uniform upper bound for the absolute value of the derivative of polynomial
PD+B

k=D+b �
Tri
k xD over

[0;W
Tri

]. Intuitively, if the function curve has been shifted horizontally by a distance �, then the function

value of fTriw (�j�) changes by at most K�.

Now suppose k�1��2k= �10, so the location of each break point can change by at most �. Since there are

B break points, the total change to the function value can be upper bounded as

jfTri(j)w (waitj(t);Xj j�
1)� fTri(j)w (waitj(t);Xj j�

2)j �BK�=BKk�1��2k: (32)

That implies that the function fTri(j)w (�j�̂) is (Lipschitz) continuous in �̂ and condition (iii) gets proved.

Finally, to prove condition (iv), we �rst prove that Qn(�̂)! Q(�̂) for all �̂, and then prove that the

convergence is uniform. We de�ne the empirical distribution �n for a sequence of n choice incidents as

�n(A) =
1

n

nX
i=1

1(�(t)2A); for all A�
 (33)

Equation (21) in (a1) implies that �n weakly converges to �. Therefore,

Qn(�̂) = 1
n

Pn

t=1 lnP (c(t)j�(t); �̂)
= 1

n

P
fAg as a partition of 


P
i
1(�(t)2A; i2ChoiceSet(t)) lnP (ij�(t); �̂)

p
! E���Ec lnP (cj�; �̂)
= Q(�̂):

(34)
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where the convergence follows from �n weakly converges to � and the strong law of large number.

It remains to show that the above convergence is uniform. In view of Lemma 2.9 of (Newey and McFadden

1994), it su�ces to show that Qn(�̂) is Lipschitz continuous in �̂. Since the multinomial-type log-likelihood

function ln exp(zi)P
k
exp(zk)

is Lipschitz continuous in each zk when all zks are bounded, we deduce that Q
n(�̂) is

Lipschitz continuous in each zk = fc(Xkj�̂)+fTriw (waitk(t)j�̂). Because fc(Xkj�̂) is a�ne and therefore must

be Lipschitz continuous in �̂, and fTriw (waitk(t)j�̂) is Lipschitz continuous due to Equation (32), we deduce

that Qn(�̂) is Lipschitz continuous in �̂.

Discussion of Assumptions The assumptions (a1)-(a6) are all needed to show that the MLE � is iden-

ti�able. We next provide more details about those assumptions. The ergodic condition mentioned in (a1) is

a weaker assumption than the commonly-used iid condition. We cannot assume (c(t);�(t))t=1;2;:::; to be iid

in our model, because the choice sets are actually not independent { patients in the current choice set are

likely to appear in the next one (if not chosen). Also, the sequence is not stationary, as the distribution of

patient attributes may vary due to the hour-of-day or day-of-week e�ect. Instead, in (a1) we assume that the

sequence f�(t)jt = 1;2; : : :g is a positively recurrent and periodically stationary Markovian process, which

leads to ergodicity. This assumption is based on the following logic. First, the waitlist in ED can be modeled

as a GtnGn1 queue with time-varying arrival rates. The number of patients in each choice set is an embedded

discrete-time Markov chain at the departure epochs of this queueing process. We allow the distribution of the

�xed attributes Xj of arrived patients to vary with time, but has to be periodically stationary. Therefore,

given �(t), the next state �(t+1) depends on the random number of the arrived patients between two suc-

cessive departure (choice) epochs, the random draw of the new arrived patients' attributes, and the selection

outcome of the last choice incidence, c(t). Thus, �(t) is a Markovian process with time-varying transition

probabilities. Second, we can assume that the arrival process is periodically stationary. This is supported by

the Pearson's Chi-square test, which shows that the dependence of the main patient attributes on week is

statistically insigni�cant (p-value > 0:05). Consequently, the sample paths of the Markov process �(t) have

the same distribution in each week, which implies periodic stationarity. Finally, the positive recurrence of

f�(t)gt=1;2;::: follows from that the average arrival rate is smaller than the average service capacity in the

long run, so that the queue length will not grow to in�nity. This is certainly a reasonable assumption in the

ED setting.

(a2) requires the parameter to be contained in a compact domain. This assumption is necessary because

otherwise the MLE may not exist. To illustrate that, we consider a simpli�ed model which has no �xed

patient attributes, only one triage class, �j = 1, and fTriw (waitj(t)) = �1waitj(t). Thus, Vjt(waitj(t);Xj) =

�1waitj(t). If we observe that patients are FCFS in all choice sets, then the likelihood function will be

maximized at �1 =+1 so that the contribution of the stochastic term � to Vjt(waitj(t);Xj) is minimized.

This example shows that the MLE may not exists if we have not required � to be compact.

(a3) is a standard assumption for the coe�cients � to be identi�ed. (a4) is required to show boundedness

and Lipschitz continuity of fTriw (�j�̂) with respect to �̂, which are used to prove uniform convergence of

Qn(�̂) to Q(�̂). (a5) is necessary for all parameters to be identi�able. Without (a5), one may consider an
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example in which each choice set contains either all males or all females. Then the e�ect of gender on the

choice probability can never be identi�ed, because we have not observed any competition between di�erent

genders. To see the necessity of (a6), one may consider the case when the probability of the waiting times

are zero over certain intervals for some patients, then we cannot �t the piece-wise polynomial during those

intervals so � and  cannot be identi�ed.

Asymptotic Normality: Although �̂n
p
! �, the asymptotic distribution of �̂n is generally not normal.

This is because the MLE can sometimes be achieved at the boundary of �, in which case the asymptotic

distribution of the MLE has to be asymmetric and therefore not normal (see the example in p.2144 of (Newey

and McFadden 1994)). To see that the MLE can be achieved at the boundary of �, recall the previous

example in which Vjt(waitj(t);Xj) = �1waitj(t) and FCFS holds in all choice incidents. Then the MLE of

�1 is achieved at the boundary of �.

Parameter Choice of D and B: At the end, we comment on how to identify the parameters D and

B. The integers D and B give an upper bound for the highest degree and number of break points for the

polynomial regression splines we use to �t fTriw (�). From a theoretical perspective, we can always set D and

B to be a su�ciently large value, so that the MLE returns a piece-wise polynomial with the best �t, which

must be unique by Theorem H.1. The maximum degree and number of break points for that piece-wise

polynomial gives the optimal parameters D� 2 [0;D] and B� 2 [0;B]. By sending D and B to in�nity, the

optimal polynomial regression splines can always be identi�ed in theory. However, in reality, the complexity

of computing the MLE increases quickly with D and B. For our study data, in order to complete the

computation in a reasonable time scale, we have to test several combinations with either a smaller B (such

as the cubic model) or a small D (such as the piece-wise linear model) but not both, and then choose the

combination with the largest log-likelihood.

Appendix I: Out-of-Sample Test

To perform the out-of-sample test, we create an out-of-sample (test) data that collects all patient visits to

the four study EDs during 10am-2am the next day from December 2014 to February 2015, excluding the last

choice incident in each physician shift. We estimate the model coe�cients (See Table 4) using the in-sample

(training) data from April 2013 to November 2014, and predict the choice probability for each patient in the

out-of-sample data. These predictions allow us to evaluate the prediction power of the structural estimation

framework and further justify the validity of our framework replicating the ED decision makers patient

routing decisions. To obtain a robust assessment, we use three di�erent goodness-of-�t metrics.

The �rst metric is the McFadden's pseudo R2 (McFadden 1973). For the same data set, a larger pseudo

R2 suggests a better �t in terms of log-likelihood. However, the pseudo R2 heavily depends on the nature

of the data set and thus is not often used as performance measure for out-of-sample test (Train 2009, Sung

et al. 2016).

The second metric is the �tted probability (Louviere and Hensher 1983, Pardoe and Simonton 2008). The

model marks the patient with the highest predicted probability in each choice set as the predicted choice,

and calculate the percentage of correctly predicted choice sets as the �tted probability (Li 2002). The �tted

probability provides a direct measure of the model's capability in identifying the actual choice. Nevertheless,
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in some researchers' opinions (Train 2009), choice models provide a list of predicted probabilities, rather than

saying that the alternative with the highest probability must be selected. Therefore, criticize that the �tted

probability does not use the entire message that the model attempts to deliver. This limitation is shown

in the following example with a choice set of three patients f1;2;3g. The choice probabilities predicted by

Model A and Model B are, respectively, f0:5;0:4;0:1g and f0:5;0:1;0:4g; while in the data patient 2 was

chosen. Then the two models perform equally poorly according to the �tted probability as both models have

chosen patient 1 instead of patient 2. However, the �tted probability does not take into account that Model

A has assigned a much higher probability to the correct patient than Model B, and thus should deserve a

better score. Another limitation of using the �tted probability is its dependence on the sizes of the choice

sets (Li 2002). For this reason, one cannot use �tted probability to compare predictions made for di�erence

data sets.

Due to the above limitations of the pseudo R2 and �tted probability, we consider a third metric for predic-

tion accuracy, namely the area under the receiver operating characteristic curve (AUROC). The AUROC is a

standard statistical tool to measure prediction accuracy for binary data (Fawcett 2006, Lowsky et al. 2013),

and is therefore applicable to our setting in which each patient has binary outcomes: selected (positive) or

not (negative)11. For a given threshold � 2 [0;1], patients in a choice set are marked as \selected" if their

predicted probabilities are higher than �, and are marked as \not selected" otherwise. The method then

calculates the true positive rate (percentage of correct predictions among the selected patients) and false

positive rate (percentage of false predictions among the remaining patients). By varying � from 0 to 1, one

may plot the receiver operating characteristic (ROC) curve whose X- and Y-coordinates correspond to the

false and true positive rates for each �, respectively, and calculate the AUROC value. As a result, the average

chance for a patient to be marked as selected for all � 2 [0;1] is proportional to her predicted probability.

Therefore, the AUROC has e�ectively incorporated all the predicted probabilities into its assessment and is

therefore better aligned with the estimation results compared to �tted probability. To further illustrate that,

consider the previous three-patient example. For all �s between 0:1�0:4, Model A will mark both patients 1

and 2 as selected, while Model B will select both patients 1 and 3 but still miss the correct pick. Therefore,

Model A has a higher true positive rate as well as a lower false positive rate for those �s. In other words,

the AUROC metric successfully captures the advantage of Model A over Model B.

We calculate the three prediction performance metrics for the Urgency(only)-based model with three

functional forms of fTriw (�) that we have considered: linear, cubic, and piece-wise linear12. The comparison is

summarized in Table 8. We �nd that the piece-wise linear model outperforms the other two with respect to

both pseudo R2 and AUROC. For �tted probability, the piece-wise linear model also outperforms in ED A,

C, and D. In ED B, although the piece-wise linear model performs slightly worse than the cubic model, the

p-value (=0.960) shows that the di�erence is not statistically signi�cant. Therefore, the out-of-sample test

shows that the piece-wise linear model achieves the best performance among the three models for all three

test metrics, which demonstrates the robustness of the results.

The pseudo R2 values reported in Table 8 are comparable to the pseudo R2 values that we obtained

from the study data estimation results (see Table 4). We have argued earlier that these pseudo R2 values
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Table 8 Out-of-Sample Test Statistics

ED
Marginal waiting

Log-likelihood Pseudo R2 Fitted Probability (P-value) AUROC (P-value)
cost function

A
Linear -23584.4 0.065 24:4% (0.035) 0.723 (0.000)
Cubic -23338.4 0.075 24:4% (0.047) 0.731 (0.804)
Piece-wise linear -23304.4 0.076 24:9% 0.731

B
Linear -13515.8 0.080 45:6% (0.000) 0.772 (0.000)
Cubic -12452.5 0.152 48:7% (0.960) 0.802 (0.000)
Piece-wise linear -11922.7 0.188 47:9% 0.812

C
Linear -11445.8 0.137 39:8% (0.000) 0.781 (0.000)
Cubic -11053.4 0.167 41:1% (0.152) 0.794 (0.000)
Piece-wise linear -10783.4 0.187 41:6% 0.803

D
Linear -10023.8 0.088 36:8% (0.204) 0.749 (0.000)
Cubic -10052.1 0.085 36:4% (0.062) 0.751 (0.000)
Piece-wise linear -9841.5 0.104 37:1% 0.756

P-value refers to signi�cance of the di�erence from the piece-wise linear model.

indicate reasonably good except for ED A. For the �tted probability, the average choice set sizes are 10.4,

5.5, 7.1, and 6.8 in the four EDs respectively, which corresponds to average �tted probabilities of 9:6%,

18:3%, 14:0%, and 14:7% by completely randomized draws. Our structural estimation framework signi�cantly

outperforms the randomized draws. Unlike the pseudo R2 and �tted probability which are both sensitive to

data structure (e.g., choice set sizes), the AUROC test provides a universally comparable metric for binary

prediction performance. A �ve level performance accuracy classi�cation is widely accepted in the statistics

community: excellent (0.9-1.0), good (0.8-9.0), fair (0.7-0.8), poor (0.6-0.7), fail (0.5-0.6) regardless of the

data and prediction sources (Tape, Pines et al. 2012). According to Table 8, the prediction accuracy of the

piece-wise linear model is between good and fair, which supports the e�ectiveness of our framework.
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