
Submitted to Operations Research

manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

A Fluid Model for an Overloaded Bipartite Queueing
System with Heterogeneous Matching Utilities

Yichuan Ding, S. Thomas McCormick, Mahesh Nagarajan
Sauder School of Business, University of British Columbia, Vancouver, BC V6T1Z2,

{Daniel.Ding, Tom.McCormick, Mahesh.Nagarajan}@sauder.ubc.ca

We consider a bipartite queueing system (BQS) with multiple types of servers and customers, where different

customer-server combinations may generate different utilities. Whenever a server is available, it serves the

customer with the highest index, which is the sum of a customer’s waiting index and the matching index.

We call this an M+W index. We assume that the waiting index is an increasing function of a customer’s

waiting time and the matching index depends on both the customer’s and the server’s types. We develop a

fluid model to approximate the behavior of such a BQS system, and show that the fluid limit process can be

computed over any finite horizon. We develop an efficient algorithm to check whether a steady state of the

fluid process exists or not. When a steady state exists, the algorithm also computes one efficiently. We prove

that there can be at most one steady state, and that the fluid limit process converges to the steady state

under mild conditions. These results enable a policy designer to predict the behavior of a BQS when using

an M+W index, and to choose an indexing formula that optimizes a given set of performance metrics. We

derive a closed-form M+W index that optimizes the steady-state performance according to some well-known

efficiency and fairness metrics.

Key words : Bipartite Queueing System, Min Cost Max Flow, Nested Cuts for Parameterized Network,

Value-based Routing, Public Housing Assignment, Scarce Resource Allocation

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 1

1. Introduction

Many service systems can be modeled as queuing systems that allocate service capacity between

customers (clients), and servers (resources). In settings such as organ transplant systems, the

demand for services is typically higher than the capacity to service the demand. We refer to such

systems as being overloaded. As a result, some customers end up abandoning the queue without

being served.

In applications where the servers and customers are homogenous, the first-come-first-serve

(FCFS) rule is conventionally accepted as the gold standard of fairness. However, in applications

that have heterogenous customers (such as different classes of patients) and/or heterogenous servers

(such as different attributes of organs), FCFS is less appropriate. Different server-customer pairs

in these settings can generate different levels of welfare from the service provider’s perspective.

For example, for patients with end-stage renal disease who are awaiting kidney transplants, cer-

tain donor-recipient pairs can lead to higher post-transplant survival rates; and certain hospitals

can provide better treatment for some types of medical conditions than others. By implement-

ing priority rules in such settings, the service provider can generate more advantageous server

(resource)-customer pairs and achieve a better system-level efficiency than that achieved by apply-

ing the FCFS rule. Doing so may, however, result in longer waiting times for customers for whom

matching a server is difficult, which may in turn lead to higher abandonment rates.

When one considers settings such as the above example, the allocation of scarce resources usually

faces two conflicting needs: maximizing efficiency requires an increase in the proportion of higher

value yielding resource-customer pairs, while minimizing inequity (or unfairness) requires a reduc-

tion in the disparity of waiting times across customers of different types. Ideally one would like to

solve a stochastic optimization problem whose objective includes some combination of these two

factors. Unfortunately, it appears likely for the class of problems that interest us that this would

lead to optimal policies that are difficult to understand and thus hard to implement in practice.

Instead we consider a class of sophisticated priority rules that takes into account the matching

outcome as well as the customers’ waiting time in order to heuristically make a tradeoff between

these two conflicting objectives. Understanding the dynamics of the system under such priority

rules can be challenging. The goal of this paper is to develop tools which approximate the dynamics

of the queueing system under a broad but specific class of priority rules, so that the policy designer

can use the understanding of the dynamics to study the impact of using specific priority rules. This

is crucial in helping decide which priority rule one may want to use to achieve a particular overall

objective.

Author: An Overloaded Bipartite Queueing System with Matching Cost
2 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

1.1. Overview of the Model

In this section we introduce our model and notations. We use a bipartite queueing system (BQS),

which consists of I types of customers and J types of resource pools or service providers (we use

the terms “resource” and “service” interchangeably). Define I = {1,2, . . . , I} and J = {1,2, . . . , J}.

Customers and resources arrive at the system with time-varying mean arrival rates λi(t) and µj(t),

respectively, for customer type i ∈ I and resource type j ∈ J . Since this model is motivated by

the allocation of scarce resources, the focus of our study is on scenarios when the BQS on the

customer side is overloaded most of the time. As a result, customers of type i have to buffer in the

ith queue and the servers are often busy. A waiting customer in class i independently abandons the

system after a random time duration that follows a fixed distribution with continuous cdf Fi(·). We

assume that a customer will permanently leave the system by either being served or abandoning

the queue.

Assume that a utility U(j, i) is generated whenever a customer of type i receives service of type

j. Then a measure of system efficiency is the average utility of all matches. There are several

ways to measure fairness. One possibility is to look at measures that capture the differences across

queues in their likelihood of getting served. This can be rigorously measured as the variance of an

underlying random variable. We elaborate and discuss this carefully in Section 3, where we study

the impact of the scoring rule on the system and the overall objective of the service provider, which

in turn depends on these two factors.

We consider an implementable class of policies that ranks the customers by what we call an

M+W index or score (we use the terms “index” and “score” interchangeably from now on), where

“M” and “W” stand for matching score and waiting score, respectively, and “+” indicates that

the total score is a sum of the waiting and matching scores. For the “M” part, we assume that a

matching score L(j, i) is given or can be computed for each resource-customer pair (j, i), indicating

how good it would be to serve customer type i by server type j. One could set L(j, i) equal to

U(j, i), but it is possible that one could get better performance by choosing L(j, i) different from

U(j, i); Appendix 4.4 gives an example of this.

The “W” part depends on the amount of waiting time a customer has spent in the queue. Thus

we assume that a waiting score gi(τ) is given or can be computed for customer type i. We assume

that gi(τ) is a strictly increasing and continuous function of the customer’s cumulative waiting

time τ in order to incentivize the system to serve customers who have waited longer. The special

case where gi(·) is a linear function, gi(τ) = ciτ , has been commonly used in other ranking policies.

Therefore the total score of type i customers as seen by servers of type j, denoted by score(j, i, τ),

is

score(j, i, τ) =L(j, i)+ gi(τ). (1)

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 3

Whenever a server of type j becomes available, it will be assigned to the head-of-line (HOL)

customer in queue i with the highest M+W index score(j, i, τ). We consider only non-preemptive

service disciplines, because in our model the start of a service means that the resource has been

offered to a customer and this allocation is final.

Because customers of the same type (so in the same queue) have the same matching score with

respect to the same server, and the waiting score is strictly increasing in each customer’s waiting

time, we know that within each queue the discipline is first come, first served (FCFS). Customers

at the head of different queues have to compete for service determined by comparing their scores.

Since gi(·) is strictly increasing and continuous, and the inter-arrival and service completion times

both have continuous distributions, the probability that two customers’ indices are tied is zero.

We refer to a BQS equipped with the M+W indexing rule as the M+W-BQS model. This

framework has applications in many settings where scarce resources are allocated across different

types of service requests, particularly in public sectors. We now discuss an example that has been

extensively studied in the literature as an important social problem.

Motivating Example: Cadaver Kidney Allocation. The United Network of Organ Sharing

(UNOS) is a non-profit organization which coordinates U.S. organ transplant activities. UNOS

continues to face a serious shortage of kidney donations (Committee 2011). There were more than

90,000 patients registered on the kidney transplant waitlist at the end of year 2014 (OPTN/UNOS

2015). This number continues to grow. This waitlist can be modeled as a BQS, where patients

(kidneys) with similar physical attributes are regarded as being in the same queue. Patient in this

system renege either due to death or by receiving live donations.

The UNOS has been seeking an evidence-based and transparent ranking policy that strikes

a balance between maximizing the total life years saved by transplant and minimizing inequity

across different types of patients (Zenios et al. 2000). In 2008, the UNOS Scientific Registry of

Transplant Recipients (SRTR) proposed to rank candidates using their kidney allocation score

(KAS) (OPTN/UNOS 2008), which can be expressed as

KAS(j, i, τ) =
0.8× (1−DPI(j))

0.8×DPI(j)+ 0.2
×LYFT(j, i)+CPRA(i)× 4/100+ τ, (2)

where τ denotes the patient’s waiting time, LYFT (life years from transplant) is a measure of the

candidate’s net gain from transplantation (which depends on both the donor type j and patient

type i), DPI (donor profile index) is a function of donor type, and CPRA (calculated panel reactive

antibody) compensates patient types i for which it is difficult to find a matched kidney. Formula (2)

is a particular case of an M+W index by defining L(j, i) = 0.8×(1−DPI(j))

0.8×DPI(j)+0.2
×LYFT(j, i)+CPRA(i)×

4/100 and gi(τ) = τ (we assume gi(0) = 0, so the waiting-independent terms have been added into

Author: An Overloaded Bipartite Queueing System with Matching Cost
4 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

L(j, i)). The tools and methods developed in this paper using our M+W-BQS framework enable

one to evaluate the performance of the system using KAS in both a transient period or steady

state.

Next, we review the literature relevant to M+W-BQS, and clarify the contributions and the

relative positioning of our paper. This review will reveal that M+W-BQS does not in general

belong to the class of models that are known to be exactly solvable. Hence this paper will analyze

M+W-BQS using a deterministic fluid approximation of the underlying stochastic process.

1.2. Literature Review

BQS covers a broad set of service systems, and its formulation exhibits subtle differences depend-

ing on the specific application. According to the traditional definition of a BQS in the queueing

literature, each resource type j = 1, . . . , J can only serve a subset of compatible customer types, say

I(j). The topology of the BQS can be represented by a bipartite graph whose vertices on each side

represent the customer types and resource types (servers), respectively. An arc connecting vertices

j and i represents that (j, i) is a compatible resource-customer pair. Depending on the application

that is being modeled, each vertex on the resource side may represent a type of resource or a single

server.

In settings similar to our motivating example, at least two approaches are possible. The first

approach (“optimization”) studies what the optimal control policy would be for a BQS where

one has a clear objective that is being optimized. The second approach (“rule-based”) in such

cases is to invent a scoring rule (or state-dependent priority rule) that takes into account different

relevant considerations and uses this to allocate available capacity. In the rule-based approach,

understanding the impact of the scoring rule on the system is vital. We take the rule-based approach

in this paper. Our paper has connections to both approaches and the literature review is loosely

organized based on the approach each paper takes to studying the BQS.

One stream of literature uses the rule-based approach to characterize the dynamics of a BQS

under the FCFS service disciplines (hereafter referred to as FCFS-BQS). The FCFS rule in BQS

specifies that each newly available server j has to serve the first-arrived customer among those in

I(j). The FCFS-BQS model was first proposed by Schwartz (1974) in the study of a “lane-selection”

problem, and later motivated by other applications such as the allocation of public housing (Kaplan

1988) and the adoption of children (Caldentey and Kaplan 2007). Talreja and Whitt (2008) first

studied a fluid approximation for the FCFS-BQS with abandonment, where all flows are regarded

as deterministic. They discussed the conditions under which the system is globally FCFS, that

is, all customers are FCFS regardless of their types. They pointed out that the fluid process may

not be unique when the residual network of the bipartite graph contains a loop. Caldentey et al.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 5

(2009) studied a stochastic BQS where customers and resources both arrive according to a renewal

(non-Poisson) process with constant mean. They proposed a novel state description to characterize

the system behavior as a Markovian process. Later, Adan and Weiss (2012) modeled the same

BQS with a different Markovian process and derived its stationary distribution, which surprisingly

takes a product form. Using this state description, product-form stationary distributions have been

found for settings when a newly arriving customer was routed to a randomly selected compatible

server with fixed probability (Visschers et al. 2012), or the longest-idle compatible server (Adan

and Weiss 2014). Adan and Weiss (2014) also proved the convergence of the stochastic processes in

the FCFS-BQS to the fluid limit process when each type of service is provided by a single server.

Another stream of literature uses the optimization approach to examine scheduling rules in

BQS, and most of the problems in this literature have an objective of minimizing total delays

in the system. An early non-BQS result by Van Mieghem (1995) introduced the Gcµ rule for

a single-server multi-class queueing system with a holding cost Ci(Qi) for each queue i, where

Ci(Qi) is a convex increasing, differentiable function of the queue length Qi. The Gcµ rule says

that a newly available server j should myopically maximize the decrease in cost by serving the

queue i with the highest index µiC
′
i(Qi). Mandelbaum and Stolyar (2004) extended this result

to the BQS setting and proved that if each server j follows the Gcµ rule by serving the highest

index µijC
′
i(Qi), then it asymptotically minimizes both instantaneous and cumulative total holding

cost over all routing policies. An analogous result for a BQS with many servers for each type is

proved by Gurvich and Whitt (2009) under additional conditions. When there is holding cost of

c per unit time and customers renege at rate θ, Atar et al. (2010) proved that the cµ/θ rule (i.e.,

serving the customer with the highest index cµ/θ) minimizes linear holding costs in a Markovian

queue with homogeneous servers and multitype customers. However, it is not known whether the

optimality result of the cµ/θ rule can be extended to the BQS case. In fact, Stolyar and Tezcan

(2011) show that a shadow-routing based control policy numerically outperforms the cµ/θ rule for

the X-model (the simplest BQS with two customer classes and two server pools) in the sum of the

served customers weighted by their types. Other scheduling policies for a BQS have been studied

by Dai and Tezcan (2008), Larrañaga et al. (2014), and Ghamami and Ward (2013).

An important point to note is that the matching utility cannot be easily incorporated into the

analytical framework developed in the existing literature on BQS to obtain results that reconcile

with customer-server utilities. For example, in Section 4 we develop an optimal indexing rule for

the steady state of the fluid model which cannot be derived from the Gcµ nor cµ/θ rule by simply

including the matching utility U(j, i) into the cost rate c. In addition, the fairness objective requires

us to consider congestion-based measurements such as queue length and waiting time, so this

problem has to be considered under a queueing framework (e.g. (Ward and Armony 2013)).

Author: An Overloaded Bipartite Queueing System with Matching Cost
6 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Our paper takes a first step to investigate a BQS with heterogenous matching utility by focusing

on its fluid approximation based on our belief that the fluid process offers a robust approximation of

the stochastic behavior of the system. Our belief is well founded, because numerical evidence (Ata

et al. 2017, Ding et al. 2018) suggests that our fluid model provides accurate approximations for

resource matching queues or queues with a single, efficient server, or multiple homogeneous servers

with exponential service time distribution (the latter exhibits the same stochastic behavior as a

single efficient server), even when the arrival rate is thin. Moreover, Adan and Weiss (2014) proved

that the scaled stochastic process in FCFS-BQS with parallel servers converges to a fluid process

using the state description introduced in (Adan and Weiss 2012). We conjecture that a similar

result follows for our model. However, we believe that this extension would require a significant

technical effort since M+W-BQS exhibits much more complicated dynamics than FCFS-BQS. We

thus leave the issue of convergence to a fluid process for future research and in this paper we focus

on the fluid approximation to the M+W-BQS.

Note that the M+W indexing policy represents a general class of priority rules and subsumes

FCFS (by setting L(j, i) = 0 and gi(τ) = τ). In particular, it generalizes the dynamic priority policy

proposed by Jackson (1960) for a queueing system with a single server and multi-type customers.

Their dynamic priority rule prioritizes customers using the index

score(i, τ) =L(i)+ gi(τ), (3)

where Jackson (1960) call L(i) the “urgent number” for customer type i. Jackson (1960) studied

the simplest waiting score gi(τ) = τ . Nelson (1990) considered the more general case when the

gi(τ) are affine functions whose slopes and intercepts both depend on i. Kleinrock and Finkelstein

(1967), Netterman and Adiri (1979), Grindlay (1965) further analyzed situations when gi(τ) are

nonlinear functions. The M+W rule generalizes the dynamic priority policy by allowing function

L to depend on both customer and server types.

Finally, the network flow techniques used in this paper might be potentially useful for work on

process flexibility design (Chen et al. 2015, Désir et al. 2016, Shi et al. 2018, Wang and Zhang

2015, Yan et al. 2017). A notable difference between our model and the process flexibility model

is that the routing behavior in our model endogenously stems from score-maximizing behavior,

rather than being part of the initial process design.

1.3. Main Contributions

Our paper makes the following contributions. We present one of the first studies on a BQS where

the matching utility depends on both customer and resource types. We show several useful and

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 7

important theoretical properties of this system. We develop an algorithm to compute the tran-

sient trajectory of the fluid process over any finite horizon. Our characterization of the transient

trajectory of the fluid process has both theoretical and practical significance. From a theoreti-

cal perspective, the construction of the fluid process demonstrates its existence and uniqueness.

Moreover, building on the transient analysis, we show under certain assumptions that the fluid

process converges to the steady state, which means the steady state we characterize can not only

be theoretically achieved but can be used in practice. From a practical perspective, the arrival

rates of both resources and customers can vary in time. Even if the arrival rates are stationary, an

overloaded queueing system with reneging customers typically takes a substantial amount of time

before converging to the steady state. In such cases studying the transient trajectory can be quite

useful for policy evaluation and design. Thus we believe that proving results for the transient case

is important.

We characterize the steady state of the fluid process as a solution to a network flow problem, and

propose an optimal M+W index when the fairness is measured by the variance in the likelihood of

receiving service across different queues. These results for the fluid model let us test various rules

and their impact on possible fairness and efficiency metrics. Having the theoretical approximation

has the advantage that one does not have to resort to simulation, which can be more expensive

and less robust. Moreover, we prove structural results that give useful insights on the effect of the

policy which would be hard to imagine without this type of theoretical result.

The rest of the paper is organized as follows. Section 2 formally defines the fluid process as a

solution to a set of dynamic equations. In Section 3 we illustrate how to construct a fluid process

over any finite horizon. We also provide necessary and sufficient conditions under which the fluid

process is unique. In Section 4 we characterize the steady state as a solution to a min-cost-max-

flow problem, and derive a closed-form M+W index that optimizes the steady-state performance

according to certain performance metrics. Finally, Section 5 discusses the limitations of our paper

and future research directions. Several of the more technical proofs and minor results are deferred

to Appendices.

2. The Fluid Model

We consider the system as I parallel double-sided buffers (queues). On the right side of the buffer,

demand fluid of type i flows into the ith buffer at time-varying rate λi(t), and remains in the buffer

until it either leaks out of the buffer (abandons the queue, or self-reneges) or is served (is cancelled

out by an equal amount of supply fluid). On the left side of the buffer, each server j ∈ J sends in

supply fluid to cancel out the demand fluid with the highest M+W index score(j, i, τ) in buffer i.

The total rate of supply fluid sent by server j is capped by the time-varying rate µj(t).

Author: An Overloaded Bipartite Queueing System with Matching Cost
8 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Let τ denote the age of the demand fluid, i.e., its cumulative sojourn time in a buffer. The

demand fluid with age τ is called cohort τ . Given that the abandonment time has a complementary

cumulative distribution function (ccdf) FC
i (τ) := 1− Fi(τ), cohort τ in queue i has a population

density of λi(t− τ)FC
i (τ) conditional on not having been served yet. We assume that the function

λi(·) is well defined and piecewise continuous at any time before 0 (so t− τ may take a negative

value). We refer to this population density as a natural density. In our model, service fluid entering

queue i always cancels the oldest demand fluid in queue i. Consequently, by assuming that the

demand fluid has a natural density at time 0 in each buffer, it will have a natural density at any

later time.

Whenever supply fluid meets demand fluid, each is canceled out by an equal amount of the other.

The supply fluid always chooses the demand fluid with the highest M+W index, score(j, i, τ), to

cancel out. Since score(j, i, τ) is strictly increasing in the fluid’s age τ (see (1)), FCFS holds in each

buffer. Consequently, only the demand fluid at the head-of-line (HOL) can be cancelled out by the

incoming supply fluid. Figure 1 shows a picture of the fluid model.

Figure 1 The Fluid Approximation of M+W-BQS.

We next provide a formal description of the fluid model for M+W-BQS discussed informally

above.

Model Inputs: Index sets I and J , arrival rates of demand fluid (λi(t))i∈I and supply fluid

(µj(t))j∈J , ccdf of abandonment time (FC
i (·))i∈I , matching score functions (L(j, i))j∈J ,i∈I , waiting

score functions (gi(·))i∈I, and initial state W (0) := (Wi(0))i∈I.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 9

Assumptions on Model Inputs: Following the terminology in (Liu and Whitt 2012a,b,

2011), we assume that both λi(t) and µj(t) are piecewise continuous functions, which means that

they are right-continuous-with-left-limits and have finitely many discontinuity points over any

bounded interval. This broad assumption on arrival and service rates allows us to model situations

where a rate suddenly changes due to an external shock.

We require the ccdf of abandonment time FC
i (t) to be real analytic1 on domain [0,W i], whereW i

is either a positive real number with FC
i (W i) = 0; orW i =+∞ and we assume that limτ→∞FC

i (τ) =

0. We further assume that the pdf fi(·) exists and is positive over [0,W i]. We require the waiting

score function gi(·) to be real analytic on [0,+∞), strictly increasing, and to have initial value

gi(0) = 0. Finally, we assume the initial state Wi(0)∈ [0,W i]. Without loss of generality, we assume

the matching function L(j, i)> 0 so that score(j, i, τ) is always positive.

State Variables: The state of the fluid process at a given time t can be described by a

matching-rate (or service-rate) matrix r(t) := (rji(t))j∈J ,i∈I and a head-of-line (HOL) waiting-time

vector W (t) := (Wi(t))i∈I. Each rji(t) gives the rate of supply fluid of type j being routed to queue

i at time t, and each Wi(t) denotes the age of the HOL fluid in queue i. Given Wi(t), we can

calculate the HOL score (i.e., score of the fluid at the head-of-line) of queue i with respect to server

j at time t as

sji(t) =L(j, i)+ gi(Wi(t)). (4)

Since gi(·) is assumed strictly increasing, demand fluid in the same queue is always served from the

head-of-line. Thus, it suffices to compare the HOL score of different queues in order to determine

the service routing.

2.1. Definition of a Fluid Process

Definition 1 A fluid process in an M+W-BQS is a deterministic process {(W (t), r(t)) | t≥ 0} that

satisfies the following constraints:

1. The matching-rate matrix r(t) is score-maximizing, i.e., for each j ∈ J , its column vector

rj(t) := (rji(t))i∈I solves the following linear program for a given W (t):

max
∑

i∈I

sji(t)xi (5)

s.t.
∑

i

xi ≤ µj(t), (6)

xi ≤ λi(t)−
∑

k 6=j

rki(t) if Wi(t) = 0, (7)

xi ≥ 0. (8)

1 A real valued function f(x) is real analytic at x0 if there is a neighborhood of x0 where the Taylor series∑∞
n=1

1
n!
f (n)(x0)xn converge to f(x) point-wise.

Author: An Overloaded Bipartite Queueing System with Matching Cost
10 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

2. W ′
i (t), the right-derivative2 of Wi(t), exists everywhere and (when the r(t) are right-

continuous) satisfies:

W ′
i (t) = 1−

∑

j∈J rji(t)

λi(t−Wi(t))F
C
i (Wi(t))

. (9)

Intuition for Definition 1: Consider the LP (5)–(8). Its objective (5) maximizes the total score

credited to server j. In particular, server j receives sji(t) “points” per unit of supply fluid sent to

buffer i. Constraint (6) requires the total supply fluid from server j to be capped by its capacity µj.

If all buffers are non-empty, then constraints (7) don’t exist, i.e., each buffer has infinite capacity.

Then since sji(t)> 0, we see that the constraint (6) must be binding at the optimal solution, which

is the commonly-used non-idling condition in the queueing literature. Furthermore, in an optimal

solution of the LP, server j only sends supply fluid to buffers whose HOL scores are in the argmax.

We call the buffers in the argmax the active set of server j at time t, which we denote by A(t, j):

A(t, j) : {i∈ I | sji(t) =max
ℓ∈I

sjℓ(t)}. (10)

Thus rji(t)> 0 only if i∈A(t, j). Therefore, when all buffers are non-empty, the score-maximizing

condition implies that servers are non-idling and server j can only serve queues in A(t, j). If active

sets contain multiple queues, then there can be multiple ways to allocate the service capacity

among those queues. However, not all of those service-rate matrices satisfy right-continuity. Since

the validity of (9) depends on the right-continuity of r(t), only right-continuous service rates

provide useful information for the HOL waiting time trajectory W (t). Therefore, throughout this

paper we focus on constructing right-continuous r(t). In fact, restricting to right-continuous r(t)

is without loss of generality in both practice and theory: In practice, service rates in most real

service systems are not likely to jump all the time. In theory, focusing on right continuous service

rates does not restrict the scope of the HOL waiting time processes that the model could cover. In

particular, if r̃(·) is not right continuous but integrable, then there always exists a right-continuous

modification r(·) such that
∫ t2

t1
r̃(s)ds=

∫ t2

t1
r(s)ds. Thus, if (W (t), r̃(t) | t≥ 0} satisfies Definition 1,

{(W (t), r(t) | t≥ 0} must also satisfy Definition 1, because the trajectory of W (t) depends on r(·)

only through its integral over each period.

In the case that buffer i is empty, constraint (7) requires that buffer i can accommodate at most

λi(t) units of supply fluid. We impose this constraint to prevent any extra supply fluid from waiting

in the buffer, as we have argued in Section 1 that the system manager will not likely allow scarce

resources to stay idle while keeping other demands waiting (in other buffers). If all buffers in the

active set of server j are empty, then server j can send at most
∑

i∈A(t,j)(λi(t)−
∑

k 6=j rki(t)) units

of supply fluid to its active set, with the remaining supply fluid sent to buffers with the second

2 we use W ′
i (t) to denote the right derivative of Wi(t) by abuse of notation.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 11

highest scores, the third highest scores, and so on until exhaustion. If we consider the scenario as

a non-cooperative game in which each server chooses a service-rate vector to maximize its total

score, then rj, as the optimal solution to the jth LP, gives the optimal response of server j to the

other servers’ actions rk for k 6= j. Thus, any score-maximizing r(t) forms a Nash equilibrium of

this game. There can be multiple Nash equilibria and they might lead to different trajectories of

W (t). In Section 3.2, we provide a necessary and sufficient condition under which all the Nash

equilibria lead to the same trajectory of W (t) (despite r(t) not necessarily being unique). This

allows our fluid model to cover some cases when some of the buffers are empty.

To motivate (9), look at Figure 2, where the shaded area represents the volume of demand fluid

whose age is larger than Wi(t) at time t+∆t. For small ∆t, the shaded area can be approximately

age

Wi(t) Wi(t) + ∆tW
′
i (t)

natural density

λi(t−Wi(t))F
C
i (Wi(t))

λi(t)

(λi(t−Wi(t))F
C
i (Wi(t))−

∑

j∈J rji(t))∆t

Figure 2 The height of the curve represents the density of each cohort in buffer i. The area under the curve gives

the total volume of demand fluid in buffer i

computed via two different approaches via these equations:

Shaded Area = ∆tW ′
i (t)λi(t−Wi(t))F

C
i (Wi(t))+ o(∆t) (11)

= ∆t
(

λi(t−Wi(t))F
C
i (Wi(t))−

∑

j∈J

rji(t)
)

+ o(∆t). (12)

Equation (11) calculates the shaded area by multiplying the change in HOL waiting time, ∆tW ′
i (t),

by the density at Wi(t), λi(t−Wi(t))F
C
i (Wi(t)). In (12), λi(t−Wi(t))F

C
i (Wi(t)) and

∑

j∈J rji(t)

give the increment and decrement rate, respectively, with respect to the cohorts of demand fluid

with age greater than Wi(t). When ∆t→ 0, (11) and (12) lead to the expression for W ′
i (t) in (9).

A rigorous derivation is provided in Appendix EC.1.

Finally, we point out that it suffices to represent the state of the fluid process solely by W (t).

This is because both r(t) and W ′
i (t) depend on the history only through W (t) as implied by the

Author: An Overloaded Bipartite Queueing System with Matching Cost
12 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

conditions in Definition 1. Consequently, {W (t) | t≥ 0} is (deterministically) Markovian and can be

characterized by the differential equation (9) for some right continuous r(t). For any given Wi(t),

we can recover the cohort distribution in buffer i using the natural density. So we sometimes refer

to {W (t) | t≥ 0} alone as the fluid process.

3. Transient Trajectory of the Fluid Process

We next develop an algorithm to construct the transient trajectory of a fluid process that satisfies

Definition 1. We start with the simple case when all buffers stay non-empty throughout the fluid

process, i.e.,Wi(t)> 0 for all i∈ I and all t≥ 0. In this case, we can show that the HOL waiting-time

process {W (t) | t≥ 0} is unique, though it can be associated with multiple r(t)’s. We then consider

the more general case when some buffers can be empty at certain times. We show that either

this case can be reduced to the non-empty buffer case, or that the HOL waiting time trajectories

{W (t) | t≥ 0} are not unique.

The next Proposition provides a sufficient condition which guarantees Wi(t)> 0 for all i∈ I and

all t≥ 0.

Proposition 1 Suppose that λi(t)≡ λi for all i ∈ I and µj(t)≡ µj for all j ∈ J . For each j ∈ J ,

define the index set

A0(j) := {i |L(j, i)≥L(j, k) for all k ∈ I}. (13)

If
∑

j: i∈A0(j)

µj <λi for each i∈ J , (14)

then W (t)> 0 for all t > 0.

To provide some intuition towards the proof, (14) requires that the arrival rate of queue i is

always larger than the total service rate that it can potentially receive when all queues including

queue i are empty. If we keep queue i empty, but allow other queues to have a positive length, then

queue i cannot be more competitive than when all other queues are empty. In this case, the service

rate of queue i is capped by its arrival rate. That implies that whenever queue i is nearly empty,

its queue length must be increasing with time. So queue i always has a positive length. Appendix

EC.2 contains a formal proof of Proposition 1.

Note that the conditions specified in Proposition 1 are likely to hold in systems where the demand

rate is significantly bigger than the supply rate. Under those conditions, buffers always stay non-

empty so we can always construct a unique HOL waiting-time process. We provide the details of

the construction method in the next section.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 13

3.1. The Case of Non-Empty Buffers

Throughout this subsection, we construct a fluid process under the assumption of Wi(t) > 0 for

all i ∈ I and t≥ 0. The uniqueness of the HOL waiting time process will be proved at the end of

Section 3.1 (Theorem 1). As a running example of our algorithm we use the M+W-BQS with three

servers J = {1,2,3} and three buffers, I = {a, b, c} whose parameters are listed in Table 1. We will

revisit this example several times later to illustrate several difficult concepts.

Table 1 Parameters of the Example

Servers 1 2 3
Service Rate µj(t) 5 11 3

Buffers a b c
Waiting Score gi(τ) 4τ 2τ τ
Initial State Wi(0) 5 5 5
Arrival Rate λi(t) 1 1 1+100 ∗ (t− 0.1)+

Reneging Time FC
i (τ) (1− 0.1τ)+

Matching Score L(j, i)

j\i a b c
1 20 30 10
2 20 10 30
3 10 35 40

Figure 3 shows snapshots of the constructed fluid process for this MQ+BQS at the three times

t= 0, t= 0.073, and t= 0.176. In each subfigure, the vertices on the left and right sides represent

the servers and queues, which are indexed by j ∈ J and i∈ I, respectively. An edge connects (j, i)

when server j is sending a positive amount of supply fluid to queue i at that moment. These edges

determine connected components called routing components. Thus each routing component is a

subset of servers and queues such that servers only serve queues in the same routing component.

(a) At t= 0, routing components are

{2, a}, {1, b}, and {3, c}.

(b) At t= 0.073, routing components

are {2,3, a, c} and {1, b}.

(c) At t = 0.176, routing components

are {2, a}, {1, b}, and {3, c}

Figure 3 How routing components evolve over time.

Author: An Overloaded Bipartite Queueing System with Matching Cost
14 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

In our model, the instantaneous service rates r(t) cannot be dynamically controlled by the system

manager. Instead, r(t) endogenously depends on the HOL waiting times W (t) through the LP

characterization in Definition 1. Recall that server j can only send its supply fluid to queues in its

active set A(t, j). Since A(t, j) changes with W (t), the routing components have to change over

time. In our example, the routing components are {1, b}, {2, a}, and {3, c} during interval [0,0.073).

At t= 0.073, the HOL score s2c(t) catches up with s2a(t), which adds queue c to the active set of

server 2. As a result, {2, a} and {3, c} are merged into the new routing component {2,3, a, c} after

t = 0.073. To allow server 2 to simultaneously serve queues a and c, the scores s2a(t) and s2c(t)

must remain tied. Since λa has been increasing since time t = 0.1, in order to maintain this tie

server 2 needs to allocate more and more service capacity to queue a. At t= 0.176, even if server

2 allocates all of its service capacity to queue a, the score s2a(t) still increases faster than s2c(t).

That means the tie has to break. Consequently, after t= 0.176 the routing component {2,3, a, c}

splits into the two components {2, a} and {3, c}, whose scores increase at different speeds.

This example shows that identifying the time intervals where routing components stay the same,

and what the routing components in those time intervals are, is a key step in characterizing the

transient behavior of the fluid process. We call a time where routing components change a switch

time, e.g., in our example the switch times are t= 0.073 and t= 0.176. In fact, we will show that

once the routing components in a time interval are determined, the trajectory of Wi(t) for each

queue i in that interval can be characterized as the unique solution to an ordinary differentiable

equation (ODE) subject to boundary conditions. The boundary conditions specify at which switch

times the routing components change, and consequently how the ODEs have to be formulated.

We can now give a high-level outline of the construction algorithm, Algorithm 1. It has three

main steps, each with its own subroutine. Later we will prove in Theorem 1 that when no buffer

ever becomes empty, Algorithm 1 always returns a unique trajectory {W (t) | t∈ [0, T]}, from which

an associated r(t) (which need not be unique) can be constructed.

We next describe Steps 1–3 in detail.

3.1.1. Step 1: Computing the Minimal Components

For a given state W (t0)> 0, Step 1 identifies the minimal components, from which a piecewise

continuous, score-maximizing r(t0) can be computed.

Routing Graph At a given time t , we construct a routing graph G(t) := (V,E(t)) whose vertex

set V is

V := {S}∪J ∪I ∪ {T}, (15)

where S and T represent an artificial source node and sink node, respectively.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 15

Algorithm 1: Constructing a fluid process when buffers are always non-empty.

Data: T > 0, W (0)> 0

Result: {W (t) | t∈ (0, T]}

Initialize: t0← 0, W (t0)←W (0)

Step 0: if Wi(t0) = 0 for some i∈ I then
Terminate and return “buffers have to be non-empty”

end

Step 1: Use Algorithm 2 (which we will call the GGT Algorithm below) to partition the

network at time t0 into minimal components that are all subsets of routing components.

Step 2: Use Algorithm 3 to merge together minimal components into routing components if

needed.

Step 3: Solve an ODE with boundary constraints on each routing component to determine its

{W (t) | t∈ [t0, t
∗]} from the current t0 up to the next critical switch time t∗, at which the

boundary is hit.

if t∗ <T then
t0← t∗, go to Step 0

else
Terminate and return {W (t) | t∈ (0, T]}.

end

The directed edge set E(t) contains arc (j, i) if and only if i is in the active set of server j. Thus

the set of edges between I and J , Eb(t), is

Eb(t) := {(j, i) | i∈A(t, j)}. (16)

We then link the source node S to all vertices in J , and link all vertices in I to the sink node T .

So the routing graph has the edge set

E(t) := {(S, j) | j ∈J }∪Eb(t)∪{(i, T) | i∈ I}. (17)

Since the active set A(t, j) changes with W (t), the edge set Eb(t) and thus the routing graph G(t)

changes as W (t) evolves. This differs from the FCFS-BQS model where the routing graph has a

fixed edge set. In Step 1, since the time t= t0 is fixed, we will omit t in G(t), E(t), etc. if there is

no ambiguity.

For any (S,T)-flow X := (Xe)e∈E on the routing graph, we define its associated service-rate

matrix r as

rji =

{

Xji if (j, i)∈Eb

0 otherwise.
(18)

We can then easily construct a score-maximizing r using the following Lemma:

Author: An Overloaded Bipartite Queueing System with Matching Cost
16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Lemma 1 If a feasible (S,T)-flow X satisfies XSj = µj for all j ∈ J , then its associated r is

score-maximizing.

Proof. If r is associated with X, then rji > 0 only if (j, i) ∈ Eb. Then the construction of Eb

implies that i is in the active set of server j. Moreover, if XSj = µj for all j ∈ J , then we have
∑

i rji =
∑

iXji =XSj = µj for all j ∈ J . Thus, according to r, server j sends all its supply fluid

to queues in its active set. So r satisfies the score-maximizing condition in Definition 1 in the

non-empty buffer case.

Given the current state W (t0) := (Wi(t0)), it is not difficult to find a score-maximizing r(t0)

using Lemma 1. However, what we eventually need is to construct a piece of trajectory r(t) over

an infinitesimal period [t0, t0 +∆t] for some ∆t > 0, such that r(t) is right-continuous at t0. When

r(t) is right-continuous at t0 we can use (9) to calculate W ′(t0) and to construct the trajectory of

W (t) over the next infinitesimal period.

Unfortunately, not all score-maximizing r(t0) satisfies the right continuity property. Consider

the example given in Table 1. At t0 = 0, we have Wi(0) = 5 for i= a, b, c. The routing graph can

then be constructed as in Figure 4 (a) (The number on each arc represents the flow capacity which

we discuss later in this section). In particular, for server 1 we have

s1a(0) = L(1, a)+ ga(Wa(0)) = 20+4 ∗ 5 = 40 (19)

s1b(0) = L(1, b)+ gb(Wb(0)) = 30+2 ∗ 5 = 40. (20)

Queues a and b have the same HOL score for server 1, thus both of them belong to the active

set of server 1. Consequently, server 1 can split its service capacity between a and b arbitrarily

without violating the score-maximizing condition. For example, the following service rates are

score-maximizing,

r1a(0) = 2, r1b(0) = 3, r2a(0) = 11, r3c(0) = 3, rji(0) = 0 for all other j ∈J , i∈ I. (21)

However, we cannot construct {r(t) | t ∈ [0,∆t]} such that r(t) is score-maximizing for all t and

also right-continuous at 0. To see this, suppose r(t) is right-continuous at t0, so the score change

rates of a and b can be computed using r(t0) as in (9):

s′1a(0) = g′a(Wa(0))W
′
a(0) = 4(1−

r1a(0)+ r2a(0)

λa(0−Wi(0))FC
a (Wa(0))

) = 4(1−
13

0.5
) =−100 (22)

s′1b(0) = g′b(Wb(0))W
′
b(0) = 2(1−

r1b(0)

λb(0−Wi(0))FC
b (Wb(0))

) = 2(1−
3

0.5
) =−10 (23)

Thus, s′1a(0) < s′1b(0). Because s1a(0) = s1b(0), we must have s1a(t) < s1b(t) for t ∈ [0,∆t), where

∆t > 0 can be any sufficiently small number. As a result, after time 0, queue a can no longer stay

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 17

in the active set of server 1; consequently, any score-maximizing service rates will have r1a(t) = 0,

which violates right continuity because r1a(0) = 2. In fact, even if queue a has allocated all service

capacity to queue b, the score increment rate of a is still smaller than queue b, which implies that

the tie between queue a and b has to break and the edge (1, a) has to disappear after time 0.

This shows that in order to construct right-continuous service rates, it is crucial to determine

which subsets of queues keep their scores tied so that they will continue to share service capacity

from the same server. This requires us to identify the minimal components of the routing graph G.

Minimal Components Informally, the minimal components refers to the finest partition

{Gk}k=1,...,K of vertices in I ∪J such that there exists a right-continuous score-maximizing r(t0)

under which queues in the same minimal component Gk exhibit the same score change rate θk,

and where servers can only serve queues in the same minimal component. To formalize this, we

introduce the following notations.

Suppose the aggregate service rate for queue i is zi :=
∑

j∈J rji(t). Then (9) implies that the

HOL score of queue i has the derivative

s′ji(t) = g′i(Wi(t))W
′
i (t)

= g′i(Wi(t))(λi(t−Wi(t))F
C
i (Wi(t)))

−1
(

λi(t−Wi(t))F
C
i (Wi(t))− zi

)

=: ϑWi(t)(zi).

(24)

Thus ϑWi(t)(zi) is the HOL score change rate of queue i when it has an HOL waiting time Wi(t)

and a total service rate zi. Consequently, in order to achieve a score change rate of θ, the total

service rate required by queue i is given by the inverse function of ϑWi(t), i.e.,

ϑ−1
Wi(t)

(θ) := λi(t−Wi(t))F
C
i (Wi(t))

(

1−
θ

g′i(Wi(t))

)

. (25)

Note that the value of ϑ−1
Wi(t)

(θ) decreases linearly with θ and is allowed to take negative values

(that means it requires extra arrival rather than service in order to keep a score change rate as

high as θ).

If all queues in the minimal component Gk have the same score change rate θk(t), then we have

∑

i∈Gk

ϑ−1
Wi(t)

(θk(t)) =
∑

j∈Gk

µj, (26)

where the left-hand-side represents the total amount of service rate required to keep the score

change rate equal to θk(t), and the right-hand-side gives the total service rate for queues in Gk (as

servers can only serve queues in the same component). By plugging (25) into (26), we get

θk(t) =
(

∑

i∈Gk

λi(t−Wi(t))F
C
i (Wi(t))

g′
i
(Wi(t))

)−1(
∑

i∈Gk
λi(t−Wi(t))F

C
i (Wi(t))−

∑

j∈Gk
µj(t)

)

=: Ψ
Gk

W (t).
(27)

Author: An Overloaded Bipartite Queueing System with Matching Cost
18 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

(a) The Parameterized Network with ue(θ) labeled

over each arc e. See (25) for the calculation of uiT

(b) When θ=−∞, the min cut A0 = {S}.

(c) When θ = −84, the min cut shifts from A0 to

A1 = {S,2, a}.

(d) When θ = −18, the min cut shifts from A1 to

A2 = {S,1,2, a, b}.

(e) When θ = −5, the min cut shifts from A2 to

A3 = {S,1,2,3, a, b, c}. Algorithm 2 terminates.

(f) The minimal components {Gk} and the max

flow X∗ at θK returned by Algorithm 2

Figure 4 A Graphical Illustration for Algorithm 2. The numbers inside and outside the parenthesis represent the

max flow Xe and capacity ue, respectively. Bold arcs are saturated by the max flow.

Here the function Ψ
Gk

W (t) represents the score change rate of (queues in) Gk at state W (t) under the

condition that Gk is self-supplied. Without loss of generality, we assume that θ1 ≤ θ2 ≤ . . . ,≤ θK .

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 19

We call a minimal component with a smaller (larger) index k (thus a smaller θk) a slower (faster)

component.

If V is a subset of vertices, we call H (V a closed subset of V if H contains no outgoing arc to a

vertex of V \H. Because of Lemma 1 we associate a flow Xji in the network with rji via Xji = rji.

With these notations, we now provide a formal definition/characterization of minimal components.

Definition 2 Suppose {Gk}k=1...,K is a partition of I ∪J . We refer to {Gk} as minimal compo-

nents if the following conditions are satisfied.

(a) Let θk =Ψ
Gk
W denote the score change rate of Gk. If H is a closed subset of Gk, then

∑

j∈H

µj <
∑

i∈H

ϑ−1
Wi

(θk). (28)

Condition (28) implies that each minimal component Gk is connected by edges in Eb (in the

undirected sense).

(b) Given state W , the following polytope is non-empty (so there is at least one service-rate matrix

r associated with {Gk}):

Γ(W) :=







r≥ 0

∣

∣

∣

∣

∣

∣

∑

i∈Gk
rji = µj, ∀ j ∈Gk, k= 1,2, . . . ,K (29.1)

∑

j∈Gk
rji = ϑ−1

Wi
(θk), ∀ i∈Gk, k= 1,2, . . . ,K (29.2)

rji = 0, if j and i are in different components or (j, i) /∈Eb (29.3)







(29)

In particular, no arc goes from a slower component to a faster one, while every arc from a

faster component to a slower component must carry zero flow for all r ∈ Γ(W).

Intuition for Definition 2: Property (a) is the minimality condition that ensures that each Gk

cannot be further divided into smaller components. Suppose to the contrary that Gk could be split

into smaller components. Let H denote the slowest component among those smaller components,

so that H has a score change rate θH ≤ θk. We thus have

∑

j∈H

µj =
∑

i∈H

ϑ−1
Wi

(θH)≥
∑

i∈H

ϑ−1
Wi

(θk), (30)

where the first equality follows from the same logic as (26), and the inequality follows because

ϑ−1
Wi

(·) is a decreasing function. Because H as the slowest component cannot have any outgoing

arcs to the other (faster) components,H must be a closed subset of Gk. Thus (30) contradicts (28).

This property also implies that Gk is connected. In fact, if Gk can be split into two components

H and HC , then both H and HC are closed subsets. So (28) applies to both H and HC . We thus

have
∑

j∈G

µj =
∑

j∈H

µj +
∑

j∈HC

µj <
∑

i∈H

ϑ−1
Wi

(θk)+
∑

i∈HC

ϑ−1
Wi

(θk) =
∑

i∈G

ϑ−1
Wi

(θk). (31)

Author: An Overloaded Bipartite Queueing System with Matching Cost
20 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Inequality (31) violates (26), and so each Gk must be connected. This implies that queues must

have scores tied if they are connected to the same server.

Property (b) characterizes the associated service rates r for the minimal components. In (29),

the associated service rates rji are subject to three constraints: (29.1) requires the service rates to

satisfy the budget constraint; (29.2) require that queues in the kth component must be supplied with

the appropriate amount of service so that their score change rates are all equal to θk =Ψ
Gk
W ; and

(29.3) constrains all servers to only serve queues in the same component. To meet this constraint,

it suffices to forbid arcs going from a slower components to a faster one. However, we may allow

arcs from a faster component to a slower component, because even with those arcs the faster

component is more desperate for service and would never send service capacity to queues in the

slower component. (Recall that in the example, server 1 will not send any supply fluid to queue a,

because {1, b} is a faster component than {2, a} and the edge (1, a) will break next).

The concept of minimal components provides a way to identify right-continuous service rates.

Specifically, for all r(t0) ∈ Γ(W (t0)) we can construct {(W (t), r(t)) | t ∈ (t0, t0 +∆t)} such that

r(t) is score-maximizing and right continuous at t0. We next provide some intuition towards this

result, while a rigorous proof can be found in Proposition 3 in Step 2. Any r(t0) ∈ Γ(W (t0))

will force queues in Gk to have the common score change rate θk(t0), and so the scores of those

queues will stay tied during [t0, t0+∆t). Thus all edges within Gk will remain in the routing graph

during [t0, t0 +∆t). Therefore, if rji(t0) > 0, then rji(t) can continue to take a positive value for

t∈ [t0, t0 +∆t). Moreover, when |t− t0| → 0, the coefficients in the polytope of Γ(W (t)), including

ϑ−1
Wi(t)

(θk(t)) and µj(t), approach those in Γ(W (t0)) by right-continuity. So we can always find a

r(t)∈ Γ(W (t)) such that ‖r(t)− r(t0)‖→ 0, which supports the right-continuity of r(t) at t0.

Therefore, the polytope Γ(W (t0)) contains all the r(t0)’s that we are looking for. To construct

Γ(W (t0)), we need to compute the minimal components {Gk}. This requires the network flow

machinery that we introduce next. The same tools were used in the concurrent paper Adan and

Weiss (2014) to analyze an FCFS-BQS, but the network we deal with is more complicated due to

the M+W indexing.

Parameterized Network and Nested Min Cuts To compute the minimal components {Gk}

that satisfy the properties (a)–(b) in Definition 2, we construct a family of parameterized networks

based on the routing graph G. For each real number θ ∈ (−∞,+∞), define the following edge

capacities:3

ue(θ) =







µj when e= (S, j);
∞ when e= (j, i)∈Eb;
ϑ−1
Wi

(θ) when e= (i, T);
(32)

3 It can happen that ϑ−1
Wi

(θ)< 0, reflecting that even with zero service rate, the score change rate of queue i is smaller
than the target value θ. This would lead to a negative capacity on

(i, T), which seems strange, but will not change our subsequent analysis.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 21

Figure 4 (a) illustrates the construction of the parameterized network. Notice that we assign

uSj = µj(t0) so that the associated service rates r(t0) satisfy the budget constraint
∑

i rji(t0) =

XSj ≤ µj. The capacity uiT = ϑ−1
Wi

(θ) is a linear decreasing function of θ. The parameter θ can be

interpreted as the target score change rate; while the capacity uiT (θ) can be interpreted as the

total service rate required by queue i to keep a score change rate as low as θ (note that a smaller

HOL score change rate requires a larger service rate). Thus, if arc (i, T) is saturated by a feasible

(S,T)-flow X, then queue i has a score change rate θ under the associated service rates r(t0).

Algorithm 2: Identifying the Minimal Components (GGT Algorithm)

Data: G, ue(θ)

Result: K, {Gk}k=1,...,K , {θ
k}, X∗

Initialize: θ=−∞, A0 = {S}, k= 1,

Step 1: Increase θ and update uiT (θ) correspondingly for all i /∈Ak−1, until there is a min cut

Ak that strictly expands Ak−1. If there are multiple such Ak’s for the same θ, then choose any

minimal one. Record Gk←Ak\Ak−1, θ
k← θ.

Step 2: if Ak 6= V \{T} then
k← k+1; Go to Step 1

else
Terminate the Algorithm; return K← k, {Gk}k=1,...,K , {θ

k}, and X∗ as the max

(S,T)-flow on the final network with θ= θK

end

Algorithm 2 calculates the minimal components. We illustrate the algorithm by applying it to

the example in Table 1 (see Figure 4 for a graphical illustration). We let θ increase from −∞ to

+∞ and observe how the min (S,T) cut changes with θ. Following the traditional notations for

network flow (see e.g. (Ahuja et al. 1993)), an (S,T) cut in this network is a partition (A,B) of V

such that S ∈A and T ∈B. For notational brevity, we refer to an (S,T)-cut (A,B) as just A. If

θ=−∞, then all edges (i, T) have a capacity of +∞, so the min cut for θ=−∞ will be A0 = {S},

see Figure 4 (b). This suggests that all edges (S, j) are bottlenecks (saturated), because there is

not enough service capacity to keep queues at such a low score change rate.

However, when θ is increased some queues receive enough service to keep their score change rate

as low as θ. As depicted in Figure 4 (c), when θ =−84, the service rate for queue a (µ2 = 11) is

sufficiently large to keep its score change rate as low as −84, so the edge (a,T) is saturated by the

flow amount of 11, as ϑ−1
W (0)(−84)= 11. At θ=−84, both {S} and {S,2, a} are min cuts. We then

let A1 = {S,2, a}, and we claim that G1 =A1\A0 = {2, a} is the first (slowest) minimal component

Author: An Overloaded Bipartite Queueing System with Matching Cost
22 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

following Definition 2. This can be informally argued as follows (a rigorous proof is provided in the

proof for Proposition 2). First, server 2 cannot have any outgoing arcs to queues not in A0, because

otherwise such arcs, with capacity +∞, would be included in the cut A0, which contradicts that

A0 is the min cut. Second, there might be arcs from servers outside A0 to queue a, such as (1, a).

However, those arcs must carry zero flow because A0 is the the min cut and cannot receive any

positive flow from the other side.

In the rest of the algorithm, we can simply remove G1 = {2, a} from the routing graph and char-

acterize the other minimal components on the graph. Or equivalently, we will continue increasing

θ and update the capacities uiT (θ) correspondingly for all i /∈G1, but keep uiT ≡ ϑ−1
W (θ1) for i∈G1

so as to keep the flow within G1 unchanged (so the capacity of edges (i, T) will stay invariant

since the edge is saturated by the max (S,T)-flow). We can then find a θ2 at which the min cut

shifts from A1 to a larger subset A2, and a θ3 at which the min cut shifts from A2 to A3

In our example we get min cuts A2 = {S,1,2, a, b} and A3 = {S,1,2,3, a, b, c} at θ =−18 and −5,

respectively (see Figure 4 (d) and (e)). Since A3 contains all vertices except for {T}, we terminate

the algorithm and return the minimal components Gk =Ak\Ak−1 for k= 1,2,3. The final partition

of the minimal components and the associated service rates r(t0) ∈ Γ(W) are shown in Figure 4

(f). Note that Γ(W) is a singleton in this example, but that Γ(W) can contain multiple members

if there is a cycle in the residual network.

Note that the analysis of Algorithm 2 crucially depends on the property that as θ increases, the

min cuts form a nested sequence,

Π= {(Ak,Bk) | {S}=A0 (A1 (. . .(AK = V \{T}}. (33)

Property (33) is true when the parameterized network satisfies the so-called strict source-sink

monotone (S-SSM) property (Gallo et al. 1989, Granot et al. 2012). In our model, the parametric

capacities are strictly decreasing in θ on arcs (i, T) and constant elsewhere, which is a special case

of S-SSM. Thus we get nested min cuts as in (33), and so Algorithm 2 obtains the correct result.

Furthermore, we can use the algorithm proposed by Gallo et al. (1989) to efficiently implement

Algorithm 24.

Proposition 2 Algorithm 2 always terminates. The {Gk}, {θ
k}, and X∗ returned by Algorithm

2 give the minimal components, the score change rates, and the associated service score rates,

respectively.

The intuition for the proof was already discussed above. Appendix EC.3 contains a rigorous

proof.

4 The algorithm in Gallo et al. (1989) is often referred to as “GGT algorithm” after the authors’ initials; our Algorithm
2 is essentially the GGT algorithm for this class of networks.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 23

3.1.2. Step 2: Identifying the Routing Components

The Non-Degenerate Case: We say that W (t0) is a non-degenerate state if different minimal

components have different score change rates, that is,

θ1 < θ2 < . . . < θK. (34)

In the non-degenerate case, the routing components {Ĝk} (i.e., connected components with respect

to edges with a positive flow) during the next infinitesimal period are exactly the minimal com-

ponents {Gk}. So the fluid process can be simply constructed by formulating an ODE for each

minimal component. See the following proposition, where we denote the minimal components with

{Ĝk} as they are also the routing components. We use xk(t) to denote the cumulative amount of

score change of (queues in) Gk from t0 until t.

Proposition 3 Suppose W (t0) is non-degenerate and {Ĝk} are the minimal components at t0.

Then there exists a ∆t > 0 such that {(W (t), r(t) | t∈ (t0, t0 +∆t)} is a fluid process if and only if

W (t) solves the following differential equations:

(ODE)











dxk(t)

dt
= Ψ

Ĝk

W (t) for k=1,2, . . . ,K (ODE.1)

Wi(t) = g−1
i [gi(Wi(t0))+xk(t)] for all i∈ Ĝk, k= 1,2, . . . ,K, (ODE.2)

xk(t0) = 0 for k=1,2, . . . ,K, (ODE.3)

and r(t)∈ Γ(W (t)), where Γ(W (t)) is defined using {Ĝk} in (29).

Intuitively, when different minimal components have different score change rates, the inter-

component edges, i.e., edges connecting different components, such as edge (1, a) in the example,

will all disappear right after t0; while the intra-component edges will remain because queues in the

same component have the same score change rate and will keep their scores tied. As a result,

Eb(t) :=Eb(t0)∩{(j, i) | j, i∈Gk for some k}, for all t∈ (t0, t0 +∆t). (35)

Consequently, the minimal components Gk will be disconnected after t0, and servers only serve

queues in the same component. In this case, all queues in Ĝk have the same score change rate the

Ψ
Ĝk

W (t) at time t, so the trajectory of the score change in each Ĝk can be characterized by (ODE.1).

By the definition of xk(t), we have

xk(t) = gi(Wi(t))− gi(Wi(t0)), ∀ i∈ Ĝk. (36)

Thus Wi(t) can be recovered from xk(t) via (ODE.2). The complete proof for Proposition 3 is

provided in Appendix EC.4.

Author: An Overloaded Bipartite Queueing System with Matching Cost
24 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

The Degenerate Case: We say W (t0) is a degenerate state if at least two minimal compo-

nents, say, Gk and Gk+1, have the same score change rate θk = θk+1. If these two components are

disconnected, it does not raise any issue because within an infinitesimal period [t0, t0 +∆t), the

two components will stay separate, so we can still use {Gk} as the routing components to construct

the fluid process as in the non-degenerate case (see Proposition 3). The tricky case is when Gk and

Gk+1 are connected by at least one arc at t0. Note that arcs can only go from the faster component

Gk+1 to the slower5 component Gk by Property (b) of Definition 2. In that case, since θk = θk+1,

the first-order information is not sufficient to determine the future behavior of these two compo-

nents — Gk and Gk+1 could either stay separate as two independent routing components, or merge

together and form one larger routing component. However, only one scenario would eventually lead

to a valid fluid process.

We use the method of “first move forward, then check back” to determine whether Gk and Gk+1

should merge together or stay separate. We first assume that the two minimal components will stay

separate during [t0, t0 +∆t), which allows us to solve (ODE) in Proposition 3 in an infinitesimal

neighborhood. We choose a sufficiently small real number x > 0, and compare the score change

rate of Gk and Gk+1 when both of their scores are assumed to have changed by an absolute value

of x. Then the HOL waiting time of queues in both Gk and Gk+1 are given by

W x
i := g−1

i (gi(W (t0))+ sign(θk)x), for all i ∈Gk, Gk+1 (37)

where sign(θk)x= xk gives the cumulative score change in Gk. At state W x := (W
|x|
i), we define a

potential function to compare the score change rates of Gk and Gk′ ,

∆Ψ
Gk+1,Gk

Wx := Ψ
Gk+1
Wx −Ψ

Gk
Wx . (38)

A key observation is that ∆Ψ
Gk+1,Gk

Wx is a real analytic function of x≥ 0, so its function value is

the limit of its Taylor series for all x in a small neighborhood of 0 (see the proof for Proposition 4

for a complete argument). Consequently, it has a constant sign over the neighborhood, and must

fall into one of the cases listed below.

Case i: ∆Ψ
Gk+1,Gk

Wx ≥ 0 for all sufficiently small x> 0. The score of Gk+1 increases faster than Gk

after t0. As a result, the edge connecting Gk+1 and Gk has to disappear as the tie can no longer

sustain. Note that this scenario also includes the ∆Ψ
Gk+1,Gk

W (t) ≡ 0 case, in which the arcs connecting

Gk+1 to Gk will remain there, but send zero flow. So the two components can be regarded as

either separate or merged, without affecting the subsequent construction.

5 We sill refer to Gk as a slower component because it has a smaller index (included into a min cut Ak with a smaller
index), even though its score increment rate is actually equal to Gk+1.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 25

Case ii: ∆Ψ
Gk+1,Gk

Wx < 0 for all sufficiently small x > 0. If Gk+1 and Gk had been separate after

t0, then the score of Gk would increase faster. Thus, Gk becomes the faster component after

t0. However, that contradicts that there are arcs going from Gk+1 to Gk. As a result, Gk+1 and

Gk cannot be separate. Instead, Gk+1 will send a positive flow to Gk in order to equalize their

score change rates. Consequently, the merged component Gk ∪Gk+1 becomes the new routing

component during (t0, t0 +∆t).

To illustrate the above classification, in our earlier example at t0 = 0.176 we have minimal

components G1 = {1, b}, G2 = {3, c}, and G3 = {2, a}. Components G2 and G3 have the same

score change rate −0.381, and are connected by arc (2, c). So at t0 = 0.176, the fluid model is

in a degenerate state. We thus use the above method and find out that ∆ΨG3,G2
W (t) = 3.710 at t =

t0+0.001= 0.177. This implies that we are in Case i — G2 and G3 will stay separate after t= 0.176,

as depicted in Figure 3 (c).

This method, however, can only deal with the case of two connected minimal components. If

the number of components is more than two, we need a new technique to determine which subset

of minimal components should be merged. To facilitate the discussion of this new technique, we

introduce the following notations. Suppose at t0 there areK minimal components {G1,G2, . . . ,GK}.

We define a directed graph Ĝ(t0) := (V̂ (t0), Ê(t0)) with vertex set

V̂ (t0) := {1,2, . . . ,K}, (39)

and directed arc set

Ê(t0) := {(k, k
′) | θk(t) = θk

′
(t), and there is at least one outgoing arc

in Eb(t0) from Gk to Gk′}.
(40)

Thus, each vertex in V̂ (t0) represents a minimal component, and each edge (k, k′) in Ê(t0)

represents that Gk and Gk′ have the same score change rate and there are at least one inter-

component edge from Gk to Gk′ in the original routing graph. By this construction, if two vertices

in V̂ are not connected in Ĝ, then they either are disconnected in the original graph G, or have

different score change rates so the ties have to break in the next infinitesimal period. In either

case, the two vertices will stay separate. However, for each arc in Ê(t0), we need to determine

whether the two minimal components connected by the arc will merge or stay separate in the next

infinitesimal period.

As usual, we omit the time index t0 when there is no ambiguity. Figure 5 illustrates the con-

struction of Ĝ based on the original routing graph G. By Proposition 2 Property (c), arcs can

only enter a lower indexed component from a higher indexed component, and (k, k′) ∈ Ê only if

Author: An Overloaded Bipartite Queueing System with Matching Cost
26 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Figure 5 The original routing graph with {Gk}k=1,2,3,4 (left) is represented by Ĝ (right) at a degenerate state.

Note that G1 and G4 are connected in the original graph, but v̂1 and v̂4 are disconnected in Ĝ, because

they have different score change rates and have to stay separate in the next infinitesimal period.

k > k′. That means that the directed graph Ĝ is acyclic. We may also construct a network flow

r̂(t) := {r̂e | e ∈ Ê} on Ĝ from a service-rate matrix r(t) on the original routing graph as follows:

r̂kk′(t) =
∑

j∈Gk ,i∈Gk′

rji(t). (41)

Thus, r̂kk′ can be interpreted as the total amount of flow sent from component Gk to Gk′ on the

original graph. We refer to r̂ := (r̂kk′)k,k′∈V̂ as the inter-component service-rate matrix.

Our purpose is to mark a subset of edges as “merged”, and mark the rest as “separate”. Formally,

we look for a subset ÊM ⊆ Ê such that vertices in the same connected components with respect

to the graph (V̂ , ÊM) will be merged to form new routing components {Ĝk} in an infinitesimal

period. For example, in Figure 5, if EM = {(3,1)}, then the routing components are {1,3} and {2};

if EM = ∅, then each minimal component is a routing component.

If Ê contains a single arc (k, k′), then we can simply mark (k, k′) as “merged” if the potential

function ∆Ψ
Gk,Gk′

Wx < 0 for sufficiently small x> 0 (Case i), or mark it as “separate” otherwise (Case

ii). If Ê contains multiple arcs, then we need to select the corrected edges to merge, so that the

merged components would have their score change rate consistent with the graph configuration.

The next proposition summarizes the criteria that ÊM should satisfy.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 27

Proposition 4 Suppose W is a degenerate state, and Ĝ= (V̂ , Ê) is constructed from the original

routing graph according to (39) and (40). Suppose {Ĝk} are the connected components with respect

to ÊM ⊆ Ê and satisfy the following properties for sufficiently small x,

• Case i: If an inter-component arc in Ê\ÊM goes from Ĝu to Ĝu′, then

∆Ψ
Ĝu,Ĝu′

Wx ≥ 0. (42)

• Case ii: If an intra-component arc in ÊM is a bridge, i.e., it connects two disconnected subsets

of Ĝu, say, Ĝ
+
u and Ĝ−

u , then

∆Ψ
Ĝ+

u ,Ĝ−
u

Wx < 0. (43)

Then {Ĝk} are the routing components over (t0, t0 +∆t) for the fluid process {(W (t), r(t)) | t ∈

(t0, t0 +∆t)} that is constructed from {Ĝk} using the method given by Proposition 3.

The proof of Proposition 4 is in Appendix EC.5. We take the graph Ĝ in Figure 5 as an example

to provide some intuition for the proposition. Suppose in that graph, we have ∆Ψ3,1
W (t) < 0 and

∆Ψ3,2
W (t) < 0. It is then not clear whether (3,1), or (3,2), or both of them should be merged arcs in

ÊM . Suppose we want to evaluate whether {1,3}, {2} is the correct splitting of V̂ . Then we need to

check whether the inter-component arc (3,2) that goes from G1 ∪G3 to G2 satisfies condition 4 in

Case i of the proposition. If ∆ΨG1∪G3,G2
Wx ≥ 0, then the condition (42) is satisfied with Ĝu =G1∪G3

and Ĝu′ = G2. So G1 ∪G3 has a larger score change rate than G2, which means all edges from

G1 ∪G3 to G2 will disappear immediately after t0. This justifies the splitting of {1,3} and {2}.

However, if ∆ΨG1∪G3,G2
Wx ≥ 0, then (42) is violated. Then we need to look for other ways of merging

the minimal components rather than {1,3} and {2}. For example, we may consider merging all

components together into a single component {1,2,3}. Then we need to check the intra-component

edges (3,1) and (3,2). Both edges have to satisfy the condition (43) in Case ii so that {1,2,3} will

be the routing component in the next infinitesimal period after t0.

We next propose an efficient algorithm to calculate ÊM and to find the partition {Ĝ} that

satisfies the properties in Proposition 4. To facilitate the discussion, we use δ+(Ĝu) and δ−(Ĝu)

to denote the set of arcs in Ê that leave and enter Ĝu, respectively. Suppose at time t, the inter-

component service rates are given by r̂, then by abuse of notation we denote the score change rate

of a merged component Ĝu at time t by

ΨĜu

W (t)

(

∑

e∈δ+(Ĝu)

r̂e(t)−
∑

e∈δ−(Ĝu)

r̂e(t)

)

. (44)

Author: An Overloaded Bipartite Queueing System with Matching Cost
28 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Note that ΨĜu

W (t)(0) = ΨĜu

W (t) stands for the score change rate of Ĝu when it is self-supplied. This

allows us to define the potential function associated with inter-component service rates r̂(t) :=

(r̂kk′(t))k,k′∈V̂ as

∆Ψ
Ĝu,Ĝu′

W (t) (r̂(t)) :=ΨGu

W (t)

(

∑

e∈δ+(Gu)

r̂e(t)−
∑

e∈δ−(Gu)

r̂e(t)

)

−Ψ
Gu′

W (t)

(

∑

e∈δ+(Gu′)

r̂e(t)−
∑

e∈δ−(Gk′)

r̂e(t)

)

,

(45)

where ∆Ψ
Ĝu,Ĝu′

W (t) (r̂(t)) stands for the difference in the score change rates between Ĝu and Ĝu′ given

inter-component service rates r̂ at state W (t).

For x> 0, we consider a special type of service-rate vector r̂x := (r̂xkk′)k,k′∈V̂ , such that r̂xkk′ is the

aggregate service rate sent from Gk to Gk′ when the scores in both Gk and Gk′ have changed by

an absolute amount of x. If Gk and Gk′ are separate (so their scores will never change by the same

amount), then we simply assign r̂xkk′ = 0. From this perspective, r̂x is not a valid inter-component

service-rate vector, because in components with different score change rates, r̂x gives the service

rates at different times (when their scores have changed by the same absolute value of x). This

seemingly problematic definition actually serves the purpose of identifying the correct edges to

merge, because the specific value of r̂xkk′ matters only when Gk and Gk′ will be merged. If Gk

and Gk′ have different score change rates, then it suffices for r̂xkk′ to return zero to signify that

those components will be separate. We index r̂ using x instead of t because we can recover the

corresponding state W x directly from x without knowing its trajectory (which is not known before

we determine which edges to merge).

According to this description, if r̂xkk′ > 0, thenGk andGk′ must have the same score trajectory in a

neighborhood of t, so we have ∆Ψ
Gk,Gk′

Wx (r̂x) = 0; if ∆Ψ
Gk,Gk′

Wx (r̂x)> 0, thenGk and Gk′ have different

score change rates and must be separate, which in turn implies r̂xkk′ =0. Thus, (r̂x,∆Ψ·,·
Wx(r̂x)) form

a complementary pair. Since ∆Ψ·,·
Wx(r̂x) is a linear function of r̂x, we derive a linear complementarity

problem (LCP) characterization for r̂x as follows.

(LCP)
r̂xkk′∆Ψ

Gk,Gk′

Wx (r̂x) = 0 ∀ (k, k′)∈ Ê

r̂xkk′ ≥ 0 ∀ (k, k′)∈ Ê

∆Ψ
Gk,Gk′

Wx (r̂x) ≥ 0 ∀ (k, k′)∈ Ê

(46)

Because the coefficient matrix in ∆Ψ·,·
Wx(r̂x) with respect to r̂ is a positive semidefinite matrix (see

the proof of Proposition 5), the LCP (46) always has a solution and can be efficiently solved. Once

the complementary pair (r̂x,∆Ψ·,·
Wx(r̂x)) is obtained, the following edges connect components with

the same score trajectory and thus will be merged,

ÊM = {(k, k′) ∈ Ê |∆Ψ
Gk,Gk′

Wx (r̂x) = 0}. (47)

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 29

Algorithm 3: Identifying the routing components in the generate case

Data: Ĝ, W

Result: ÊM , {Ĝk}k=1,...,K

Step 1: For sufficiently small x, calculate W x from (ODE) and (37).

Step 2: Solve the LCP (46) and obtain a complementary pair (r̂x,∆Ψ·,·
Wx(r̂x)).

Step 3: Find ÊM by (47). Return {Ĝ} as the connected components in the graph (V̂ , ÊM).

We summarize the above procedure in the following algorithm. The next proposition proves that

this algorithm always identifies the correct edges to merge, with its proof provided in Appendix

EC.6.

Proposition 5 Algorithm 3 always returns an ÊM (and thus {Ĝ}) that satisfies the properties in

Proposition 4. Moreover, such an ÊM is unique.

Step 3: Solving the ODE with Boundary Constraints After computing the routing

components {Ĝk}, we can construct the trajectory of HOL waiting times by (ODE) over (t0, t0 +

∆t). The question is how large t0 + ∆t can be. If t0 + ∆t can be as large as T , then (ODE)

would return the entire trajectory of the fluid process. Unfortunately, this is usually not the case.

This construction lasts until it encounters a switch time t∗, at which the routing components may

change. Below we classify the switch points t∗ into three classes.

• Type-1 : A Type-1 switch occurs when queue i catches up with other queues in the active set

of server j at t∗. As a result, arc (j, i) is newly added into the routing graph. In Figure 3 (b),

t=0.073 is a Type-1 switch time, at which a new edge (2, c) is added to the routing graph.

• Type-2 : At a Type-2 switch time, a connected component in the routing graph is split into

two or more sub-components, and some edge(s) have to disappear. When a Type-2 switch occurs,

the routing graph is always degenerate — two minimal components have tied scores and tied score

change rates, and will either be split (Case i in Proposition 4) or stay merged (Case (ii)) from

then on. Figure 3 (c) is a snapshot of a Type-2 switch time: At t= 0.176 the routing component

{2,3, a, c} splits into two components, {2, a} and {3, c}, and the connecting arc {2, c} disappears.

• Type-3 : The discontinuous points of edge capacities {ue(t) | e ∈ E(t)} may also lead to a re-

configuration of the routing components. Since uSj(t) depends on µj(t), and uiT (t) depends on

λi(t−Wi(t)), a Type-3 switch time can happen when t∗ is a point of discontinuity of λi(t−Wi(t))

or µj(t).

Author: An Overloaded Bipartite Queueing System with Matching Cost
30 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Being aware of the possible change of the routing components, we can reformulate the ODE

by including the boundary constraints. We state this result in the next Proposition, which is an

extension of Proposition 3. To facilitate the formulation of the boundary constraints, we define

δji(t) :=max
ℓ∈I

sjℓ(t)− sji(t), (48)

which stands for the gap between the HOL score of queue i and the highest HOL score for server

j. Note that δji is non-negative, and δji =0 only if i ∈A(t, j). We let tλi(t0) and tµj (t0) denote the

next point of discontinuity of function λi(·) and µj(·) after t0, respectively.

Proposition 6 Suppose the routing components {Ĝ} are computed using Algorithm 2 and 3, and

t∗ denotes the first time after t0 at which one of the inequality constraints (B.0)–(B.3b) in (ODE-B)

is binding. Then {(W (t), r(t)) | t in(t0, t
∗)} is a fluid process if {W (t)} solves the (ODE-B)

(ODE-B)































(ODE).1–(ODE.3)
Wi(t)≥ 0 for all i, (B.0)
δji(t)≥ 0 for all (j, i) /∈Eb(t0), (B.1)
∑

j∈H µj(t)≤
∑

i∈H ϑ−1
Wi(t)

(θk(t)), for all closed subset H (Ĝk, k= 1,2, . . . ,K, (B.2)

t−Wi(t)≤ tλi(t0−Wi(t0)), for i (B.3a)
t≤ tµj (t0) for j, (B.3b)

and r(t)∈ Γ(W (t)).

In (ODE-B), (B.0) ensures that the buffers are non-empty, otherwise we have to terminate the

main algorithm (to check the uniqueness condition, which will be covered in Section 3.2). If (B.1)

is binding at t > t0, it suggests that δji = 0. In this case, queue i enters the active set of server

j and a new edge (j, i) is added to the routing graph. (B.2) provides a necessary and sufficient

condition for a Type-2 switch time to occur. Roughly, if a routing component cannot be split, then

it must satisfy the minimality property, i.e. Property (a) in Definition 2. That leads to a strict

inequality in (B.2). Therefore, if (B.2) is binding, then the minimality property is violated so the

component may have to be split (it could happen that after time t at which equality holds for

(B.2), it holds as strict inequality again, suggesting that the split will not actually take place).

Finally, (B.3a) and (B.3b) monitor when it hits the Type-3 switch time, a point of discontinuity

of the arrival or service rate curve. The proof of Proposition 6 simply follows from Proposition 3

and the interpretation of the boundary conditions above. We thus omit it.

If a switch time t∗ does not exist in [0, T], then we have completed the construction of the fluid

process over [0, T]; otherwise, it signals that at t∗ the routing components may change, so we have

to reconfigure the routing components using Algorithms 2 and 3 at t∗. Algorithm 1 then enters

the next iteration where a new (ODE-B) is derived to govern the fluid process in the next interval.

The number of iterations equals to the number of switch times in [0, T] plus one (the initial time

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 31

0). Unfortunately, there is no performance guarantee for Algorithm 1, because (1) the accuracy

of solving (ODE-B) depends on the smoothness of the input functions such as λi(·), µj(·), gi(·),

and FC
i (·); (2) the number of Type-3 switch times depends on the number of discontinuous points

of functions λi(t) and µj(t); and (3) the number of Type-1 and Type-2 switch times depends on

smoothness of gi(·) and FC
i (·).

However, by assuming that gi and FC
i are real analytic functions, we ensure that the potential

function Φ·,·
W between any two components has a constant sign in a sufficiently small time interval.

That prevents the case that two components are repeatedly merged and separated with an infinitely

large frequency. Thus, the number of Type-1 and Type-2 switch times will be finite. The piecewise

continuity of λi(·) and µj(·) also ensures that the number of Type-3 switch times is finite. This is

the main idea for proving the existence of the fluid process in the next theorem. Appendix EC.7

gives the proof of the theorem.

Theorem 1 Given any T > 0 and W (0)≥ 0, if Algorithm 1 does not terminate because of encoun-

tering an empty buffer, then it returns an HOL waiting time process {(W (t) | 0≤ t≤ T}, which is

unique.

3.2. The Case of Empty Buffers

Let B(t0, i) denote all servers that are adjacent to queue i in the routing graph at time t0. When

there is no ambiguity, we use B(i) instead of B(t0, i). We say a queue i is underdemand at time t0

if

Wi =0 and
∑

j∈B(i)

µj >λi. (49)

Intuitively, an underdemand queue is an empty queue whose service rate is potentially larger than

the incoming arrival rate. We use I0(t0)⊆ I to denote the set of underdemand queues at time t0.

In our running example in Table 1, if we let Wa(0) = 0 and λa = 5, and keep all other parameters

unchanged, then queue a is underdemand. Note that if a queue is empty but not underdemand,

then the service rate it receives from each server can be determined as in the non-empty buffer

case, and so it is the underdemand queues that need special treatment.

Figure 6 illustrates how to reduce a routing graph with underdemand queues (Figure 6 (a))

to one without underdemand queues (Figure 6 (b)) that we can deal with using the machinery

introduced in the previous section. We first remove all the vertices that represent underdemand

queues and all edges adjacent to them from the routing graph. We use B(I0) :=∪i∈I0B(i) to denote

the set of servers that are connected to at least one of the vertices in I0. For each server j in B(I0)

we replace its service rate with its residual capacity µr
j , which is the remaining service rate that

Author: An Overloaded Bipartite Queueing System with Matching Cost
32 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

(a) I0 = {a}, B(I0) = {1,2}, Wa =0, Wb =Wc =5, λa =

5<µ1 +µ3 = 5+11

(b) Reduce to the case of non-empty queues but with

undetermined residual capacity for server 1 and 2.

Figure 6 Routing Graph with Undermand Queues.

server j can provide to queues not in I0. The vector of residual capacities µr := (µr
j)j∈B(I0) has to

lie in the polytope

UB(I0) := {µ
r |µr

j = µj −
∑

i∈I0

rji, for some(rji)i∈I0 ≥ 0 such that
∑

j∈B(i)

rji = λi, for all i ∈ I
0}. (50)

Note that the fluid model cannot determine which specific µr ∈UB(I0) should be used by the actual

system. In order to determine the specific values of µr, one need collect extra information by looking

into the behavior of the original stochastic system; see Section 7 in (Talreja and Whitt 2008).

After the reduction step, we obtain a routing graph with no underdemand queues (Figure 6 (b)).

We can then apply Algorithm 1 to that routing graph, being aware that the residual capacity of

queues in B(I0) can take multiple possible values. The crux of the problem is that different values of

µr ∈UB(I0) may lead to different routing components, in which case the HOL waiting time process

is not unique. To illustrate this, consider the running example. After removing queue a from the

original routing graph, we update the service rate of server 1 and 2 to some µr in the polytope

U{1,2} as shown in Figure 6 (b). We consider two extreme points in U{1,2}. The first extreme point

is (µr
1, µ

r
2) = (0,11), coming from the case when all service received by the underdemand queue

a is from server 1. Given this µr, the service rates for queue b and c are given by µr
1 + µ3 = 3,

and µr
2 = 11, respectively. By applying the GGT Algorithm to the parameterized network, we

identify the routing components as {1,3, b} and {2, c} and the edge (3, c) has to disappear after

time 0. However, if we used the extreme point (µr
1, µ

r
2) = (5,6), the GGT Algorithm would return

a single component {1,2,3, b, c}. Since different routing components lead to different formulations

of (ODE-B), the trajectories of HOL waiting times will be non-unique after time 0.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 33

However, if we let λa = 1 in the example, then the GGT Algorithm would return the same

routing component {1,2,3, b, c} for all µr ∈U{1,2}. Furthermore, the routing component {1,2,3, b, c}

contains both servers 1 and 2 that are connected to the underdemand queue a. So the aggregate

service rate for the routing component is

µr
1(t)+µr

2(t)+µ3(t) = µ1(t)+µ2(t)−λa(t), (51)

which does not depend on the specific values of µr
1 and µr

2. Therefore, all µ
r ∈ U{1,2} lead to the

same total service rate for each routing component, and thus lead to the same score change rate for

queues in each routing components. Thus, the HOL waiting time trajectory is unique. Comparison

with the previous case shows that we cannot determine whether the fluid process is unique or

not based solely on the topological structure of the routing graph; instead, the magnitudes of the

parameters matter. That suggests that there might be no simple criterion to determine uniqueness.

Instead, we provide an algorithmic characterization for uniqueness in the next proposition. This

characterization provides a necessary and sufficient condition for the fluid process to have a unique

HOL waiting time trajectory.

Proposition 7 The HOL waiting time trajectory is unique if and only if at all times t, for all

extreme points µr ∈UB(I0), the partition of routing components is the same, and servers connected

to the same underdemand queue (if any) are contained in the same routing component.

Note that Proposition 7 implies Theorem 1 – if there is no underdemand queue, we have I0 = ∅

and the condition in Proposition 7 holds trivially. So there will be a unique HOL waiting time

trajectory. The intuition for Proposition 7 was illustrated in the previous example, and Appendix

EC.8 contains a rigorous proof.

Based on Proposition 7, we propose Algorithm 4, which generalizes Algorithm 1 by covering the

case with empty queues. In particular, this algorithm can always construct a unique HOL waiting

time process, unless the uniqueness condition fails at a certain time t0, in which case the algorithm

will halt at t0 and return the fluid process that has been constructed up to t0. In practice, a

system planner can gather extra information (empirical data, simulation results) to supply to the

algorithm, which would allow it to pick the correct trajectory and proceed further.

The construction of the fluid process enables the social planner to calculate certain performance

metrics based on the fluid process and to evaluate M+W scoring rules. In Appendix EC.9, we

discuss how to evaluate the system performance in the transient periods for efficiency and fairness

metrics that are common in the literature.

As noted in Section 1.1, FCFS-BQS is a special case of M+W-BQS. Therefore, our techniques

for analyzing M+W-BQS can be used to analyze the fluid model in FCFS-BQS. Talreja and Whitt

Author: An Overloaded Bipartite Queueing System with Matching Cost
34 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Algorithm 4: Construct the HOL waiting time process when buffers can be underdemand.

Data: T > 0, W (0)≥ 0

Result: {W (s) | t∈ (0, T]}

Initialize: t0← 0, W (t0)←W (0)

Step 0: if I0 6= ∅ then
Remove all vertices in I0 and the adjacent arcs from the routing graph.

for each extreme point (µr
j)∈UB(I0) do

Update µj(t0)← µr
j for each j ∈B(I0);

Execute Step 1 and Step 2 in Algorithm 1 (identify the routing components).
end

if all extreme point in UB(I0) lead to the same the routing component and B(i) is

contained in the same routing component for each i ∈ I0 then
Execute Step 3 of Algorithm 1 (solve (ODE-B));

Update t0← t∗ and go back to Step 0.
else

Terminate and return {W (s) | t∈ (0, t0]};

Print “non-unique HOL waiting time process detected after t0.”
end

else
Execute Algorithm 1 until I0 6= ∅;

Go back to Step 0.
end

(2008) explored the question of when a BQS is globally FCFS, and derived sufficient conditions

for global FCFS to hold at the steady state, i.e., when the bipartite graph is fully connected or

sparsely connected by Eb. Using the machinery developed in this section, we are able to extend

their result by providing a necessary and sufficient condition for global FCFS on general bipartite

graphs. The detailed results are in Appendix EC.10.

4. Steady State of the Fluid Process

Until now we allowed arrival and service rates to vary with time. In this section, by contrast, in

order to analyze the steady state we assume throughout that the BQS has stationary arrival rates

λi(t)≡ λi (i∈ I) and service rates µj(t)≡ µj (j ∈J). We still assume that
∑

i λi >
∑

j µj, i.e., the

system is overloaded. In Section 4.1 we first define and characterize the steady state, and prove

that the steady state is unique, if it exists. In Section 4.2 we develop a network flow technique

to compute the unique steady state, and Section 4.3 shows convergence to the steady state. In

Section 4.4, we discuss how to select an M+W index to optimize towards a given set of steady-state

performance metrics.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 35

4.1. Definition and Uniqueness of Steady State

An HOL waiting-time vector W ∗ ∈ [0,+∞]I is said to represent a steady state of the fluid process in

an M+W-BQS if and only if, starting with W (0) =W ∗, the HOL waiting time process is uniquely

given by W (t)≡W ∗ for all t≥ 0. Note that this definition allows W ∗
i =+∞. This could happen if

the abandonment time has an infinite support set and queue i at the steady state does not receive

any service. Consequently, the HOL waiting time of queue i can grow infinitely large. We say that

a service-rate matrix r∗ is associated with the steady state W ∗ if {(W (t), r(t))≡ (W ∗, r∗) | t≥ 0}

is a fluid process that satisfies Definition 1. In other words, r∗ has to satisfy the score-maximizing

condition, i.e., (5)–(8), and under this r∗, we have W ′
i (t) = 0 for all i.

At state W ∗, we define arc set E∗ := E(W ∗) in the same way as we defined the arc set in the

transient case, that is,

E∗ := {(S, j) | j ∈J }∪ {(j, i) |L(j, i)+ gi(W
∗
i) =max

ℓ
L(j, ℓ)+ gℓ(W

∗
ℓ)}∪ {(i, T) | i∈ I}. (52)

We say that a queue i is underdemand at state W ∗ if W ∗
i = 0 and

∑

j∈B∗(i) µj > λi, where B
∗(i)

denotes the set of servers connected to queue i with respect to the edge set E∗.

The next lemma states that without underdemand queues, there is a simple characterization for

the steady state, whereas if there are underdemand queues, we can use the techniques developed

in Section 3.2 to determine whether the fluid process starting from W (0) =W ∗ is unique or not.

Lemma 2 Given a non-negative vector W ∗ ∈ R
I , W ∗ is a steady state if it satisfies either condi-

tions (a)–(b), or conditions (c)–(e).

(a) There are no underdemand queues at W ∗.

(b) There exists a service-rate matrix r∗ that satisfies the following conditions,

r∗ji > 0⇒L(j, i)+ gi(W
∗
i) =max

ℓ
L(j, ℓ)+ gℓ(W

∗
ℓ) ∀j ∈J , i∈ I, (53)

∑

i∈I

r∗ji =µj ∀j ∈J , (54)

λiF
C
i (W ∗

i) =
∑

j∈J

r∗ji ∀i∈ I. (55)

(c) There are underdemand queues at W ∗.

(d) There exists a score-maximizing r∗ that satisfies (55).

(e) Algorithm 4 asserts that the fluid process starting from W (0) =W ∗ is unique.

Proof. We first prove that (c)–(e) are sufficient for W ∗ to be a steady state. Under condition

(d), we know that if we let (W (t), r(t)) ≡ (W ∗, r∗) for all t ≥ 0, then r(t) is score-maximizing

and right-continuous, so we can use r(t) = r∗ to compute W ′
i (t) as in (9). Then (55) implies that

Author: An Overloaded Bipartite Queueing System with Matching Cost
36 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

W ′
i (t)≡ 0 for all t≥ 0, which is consistent with W (t)≡W ∗. Therefore, we have verified both the

score-maximizing condition and the expression for W ′
i (i.e., (9)). Thus, (W (t), r(t))≡ (W ∗, r∗) is a

fluid process. We know this fluid process is unique by (e), so W ∗ is a steady state.

Now we prove that when there are no underdemand queues, condition (d) can be reduced to (b),

and (e) is no longer needed. First, when W ∗ contains no underdemand queues, the buffer capacity

constraint (7) is not binding. So the score-maximizing condition reduces to (53) and (54). Second,

when there are no underdemand queues in W ∗, Proposition 7 implies that the HOL waiting time

process is unique, so condition (e) is no longer needed.

Condition (b) is a simplified version of condition (d) when there are no underdemand queues. In

particular, (53) and (54) translate to the score-maximizing property when no queues are underde-

mand, and (55) is a stationarity condition that requires W ′
i (t) = 0 under the given r∗. Regardless

of whether underdemand queues exist or not, condition (d) provides a sufficient condition for

W (t) ≡W ∗ to be a valid fluid process. Nevertheless, for W ∗ to be a steady state, we need also

the uniqueness of the fluid process starting from W (0) =W ∗. Otherwise, the HOL waiting time

could take trajectories other than W (t) ≡W ∗. So we need the extra condition (e) to guarantee

uniqueness of the fluid process when there are underdemand queues. The next proposition shows

that such a steady state is unique, if it exists.

Proposition 8 There is at most one steady state.

Sketch of Proof: Suppose there are two different steady states, W ∗ and W̃ , which both satisfy

(d). If W ∗ 6= W̃ , we can assume that the set {i | W̃i >W ∗
i } is non-empty. Queues in this set are

more competitive at W̃ than at W ∗. So we can prove that the total service received by those

queues at W̃ will be no less than that at W ∗, and then the stationarity condition (55) implies that

the HOL waiting times in those queues at W̃ will be no more than those at W ∗. This contradicts

the assumption that W̃i > W ∗
i . Appendix EC.11 contains a rigorous proof which can deal with

underdemand queues.

4.2. Computing the Steady State from Min Cost Flow

We next introduce a network flow method to efficiently compute r∗ and W ∗. According to Lemma

2, if we can find a W ∗ at which there is no underdemand queue, and an r∗ that satisfies (53)–(55),

then we can claim that W ∗ is the unique steady state. The main idea is to slightly generalize

our routing network to a capacitated (S,T)-network with convex costs on the arcs such that the

min-cost-max-flow X coincides with an r∗ that satisfies the steady-state conditions (53)–(55).

To that end, we define a network G∗ := (V,E,u∗,C) , with V = {S}∪ I ∪J ∪{t}, and

E := {(S, j) | j ∈J }∪ {(j, i) | j ∈J , i∈ I}∪ {(i, T) | i∈ I}. (56)

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 37

Notice that E contains all possible arcs from J to I, whereas the previously defined edge set E∗

contained just the active subset Eb. Capacities u∗
e for each arc e are

u∗
e =







µj if e= (S, j);
∞ if e= (j, i);
λi if e= (i, T).

(57)

Since
∑

i λi >
∑

j µj and the bipartite graph is complete, every max (S,T)-flow saturates all edges

out of S. Thus all r∗ constructed from a max (S,T)-flow (via (18)) automatically satisfy constraint

(54) in Lemma 2. For the other two constraints, (53) and (55), we define the non-linear costs as

follows so that these two constraints are satisfied by a min-cost-max-flow X∗:

Ce(Xe) =







0 if e= (S, j);
−L(j, i)Xe if e= (j, i);

−
∫ Xe

0
gi
(

(FC
i)−1(u

λi
)
)

du if e= (i, T).
(58)

Figure 7 (a) illustrates the construction of the network G∗.

Costs (58) are linear on arcs (S, j) and (j, i), and strictly convex on arcs (i, T) as C ′
iT (XiT) =

−gi((F
C
i)−1(XiT

λi
)) is strictly increasing in XiT by monotonicity of gi(·) and FC

i (·). Thus this is

a convex cost min-cost-max-flow problem. Intuitively, in an optimal flow X∗ a server j chooses

to send an extra unit flow through the path j→ i→ T only if that path minimizes the following

marginal cost

C ′
ji(Xji)+C ′

iT (XiT) =min−L(j, i)− gi

(

(FC
i)−1

(

XiT

λi

))

=−L(j, i)− gi(W
∗
i), (59)

where (FC
i)−1 is well-defined over domain [0,1] by its strict monotonicity, and the last equality

follows from inverting (55), which gives

W ∗
i = (FC

i)−1

(

∑

j∈J r∗ji
λi

)

= (FC
i)−1

(

X∗
iT

λi

)

. (60)

Since a min-cost flow sends positive flow only through paths that minimize the marginal cost given

in (59), we get

X∗
ji > 0⇒L(j, i)+ gi(W

∗
i) =max

ℓ
L(j, ℓ)+ gℓ(W

∗
ℓ), (61)

which is exactly the score-maximizing condition (53) that we want r∗ji =X∗
ji to satisfy. Therefore,

a min-cost-max-flow on this network gives us the service rates r∗ associated with W ∗.

Given X∗, we recover W ∗ using (60). E.g., for the X∗ in Figure 7 (b), we compute W ∗
a as

W ∗
a = (FC

i)−1

(

93/14

10

)

= 10 ∗ (1−
93

140
) =

47

14
, (62)

where FC
i (τ) = 1−0.1τ for τ ≤ 8, so (FC

i)−1(y) = 0.1(1−y) for y ≥ 0.2. The next theorem formally

establishes the connection between the constructed X∗, W ∗ and the steady state.

Author: An Overloaded Bipartite Queueing System with Matching Cost
38 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

(a) Construction of G∗. Numbers on each arc: Ce(x),

(ue)

(b) The min-cost-max-flow X∗. Numbers on each arc:

C′
e(x), X

∗
e (bolded).

(c) When λb is changed to 5, queue b becomes under-

demand. The min-cost-max-flow corresponds to an

extreme point (ur
1, u

r
2) = (0,3) in the polytope U{1,3}.

(d) The other extreme point (ur
1, u

r
2) = (3,0) gives the

same X∗
iT and W ′

i (t), so the fluid process is unique, and

W ∗ is the unique steady state.

Figure 7 Construct a Steady State from a Min-Cost-Max-Flow

Theorem 2 All min-cost-max-flows on G∗ have the same value of {X∗
iT | i ∈ I}. Therefore, the

W ∗ constructed from different min-cost-max-flows using (60) has the same value.

1. If X∗
iT <λi for all i∈ I, then W ∗ is the unique steady state.

2. If X∗
iT = λi for some i, then we apply Algorithm 4 to construct the fluid process starting from

W (0) =W ∗. If condition (e) in Lemma 2 holds, then W ∗ is the unique steady state; otherwise,

this fluid process does not have a steady state.

Sketch of the Proof: We first prove that all min-cost-max-cost flows must have the same value of

X∗
iT due to the strict convexity of the cost functions CiT (·). If we construct r∗ from X∗ using (18),

then r∗ must satisfy (55) as W ∗ was constructed by its inversion (60). Moreover, we show that this

r∗ is score-maximizing at state W ∗. Thus, we have proved that X∗ satisfies condition (d) in Lemma

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 39

2. Then if no queues are underdemand, Lemma 2 and Proposition 8 imply that W ∗ is the unique

steady state. If there are underdemand queues, then either condition (e) holds, in which case W ∗

is the unique steady state; or condition (e) fails, in which case W ∗ satisfies condition (d) but is not

a state state. Then the proof of Proposition 8 implies that no steady state exists. Appendix EC.12

has a detailed proof.

Theorem 2 provides a useful technique to compute the steady state of the fluid process if it

exists. In particular, this method tells whether a steady state exists or not. All we need is to find

one min-cost-max-flow on G∗, which can be computed efficiently using standard algorithms (e.g.,

(Ahuja et al. 1993, 1994)).

We illustrate the application of Theorem 2 using the previous example. We let λi = 10 for all

i = a, b, c, and µ1 = 5, µ2 = 11, and µ3 = 3. All other parameters remain the same as in Table 1.

Figure 7 (b) shows the min-cost-max-flow X∗ on the constructed network, from which we can use

(60) to calculate W ∗ as (47/14,59/14,24/7). Since there are no underdemand queues at this W ∗,

part 1 of Theorem 2 implies that W ∗ is the unique steady state.

To study the case with underdemand queues, we changeWb(0) from 5 to 0, and change λb from 10

to 5. We compute the min-cost-max-flowX∗ under the new parameters, which is displayed in Figure

7 (c). This X∗ corresponds to an HOL waiting time vector W ∗ = (3.2,0,2.8). Since the edge (b,T)

is saturated by X∗, we follow part 2 of Theorem 2 and apply Algorithm 4 to W ∗ to check whether

the fluid process starting from W ∗ is unique or not. The residual polytope U{1,3} contains two

extreme points, (ur
1, u

r
2) = (0,3) and (ur

1, u
r
2) = (3,0). The extreme point (0,3) corresponds to the

min-costX∗ in Figure 7 (c), while the extreme point (3,0) corresponds to another score-maximizing

service-rate matrix (which is not a min-cost-max-flow) displayed in Figure 7 (d). Because both

extreme-point residual capacities lead to the same score change rate, and {1,3} remains in the

same routing component, Proposition 7 implies that the subsequent fluid process is unique. Thus,

condition (e) in Lemma 2 holds at W ∗ and we get that W ∗ is the unique steady state when

Wb(0) = 0 and λb = 5. Nevertheless, if we further decrease λb to 2 and follow the same procedure,

we would find that condition (e) fails and a steady state does not exist.

4.3. Convergence to Steady State

We prove that the fluid process converges to a unique steady state if one exists. This is strong

evidence that the steady state provides an approximation to the long-run average performance of

the fluid process.

Theorem 3 Suppose for all i ∈ I, FC
i (W i) = 0 for some finite W i > 0. Suppose there exists a

finite-valued steady state W ∗ ∈ [0,+∞)I . Then W (t)→W ∗ when t→∞.

Author: An Overloaded Bipartite Queueing System with Matching Cost
40 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

The main idea of the proof is to prove that the quantity ∆g(t) :=maxgi(Wi(t))− gi(W
∗
i) always

decreases by at least a constant rate. To show this, we argue that if a queue has the largest score

difference gi(Wi(t))−gi(W
∗
i), then at Wi(t) it must receive no less service than at W ∗ due to being

more competitive. Given that Wi(t) is also larger than W ∗, we see that the score change rate of

queue i has to be smaller than that at the steady state (zero), and thus has to be negative. A

formal proof is provided in Appendix EC.13.

Note that Theorem 3 allows queues to be underdemand at W ∗. However, it is necessary to

assume that patients renege with probability one after waiting for a finite period W i. In other

words, we cannot allow the HOL waiting time in any queue to approach to infinity. Otherwise, we

believe that the fluid process may not converge to a steady state. Although it is difficult to present

a concrete counter example, we provide some intuition towards why the convergence would fail

in that case. When the domain of waiting time is unbounded, it could take infinitely long for the

HOL waiting time of some queue to approach to infinity. During that infinitely long period, we can

allow the routing graph to change cyclically for infinitely many times by sophisticatedly designing

functions such as FC
i (·) and gi(·). As a result, the HOL waiting time of some queue (other than

the one approaching to infinity) may change cyclically with the evolvement of the routing graph.

So the fluid process never converges to a steady state.

4.4. Searching for an M+W Index that Optimizes the Steady-State Performance

Using the min-cost-max-flow characterization of the steady state, we can derive an explicit form of

an M+W index that optimizes a given set of fairness and efficiency metrics. Given W ∗, we define

the edge set E∗ as in (52). Constraint (53) then simplifies to

r∗ji = 0 if (j, i) /∈E∗. (63)

The set of service-rate matrices associated with W ∗ can be expressed as the polytope

Γ∗(W ∗) := {r∗ ≥ 0 | r∗ satisfies (54), (55), and (63)} . (64)

For a given steady state W ∗ and any r∗ ∈ Γ∗(W ∗), we can measure efficiency (Ef) and fairness

(Fa) of the system according to certain performance metrics, which are usually functions of W ∗

and r∗. The question in this section is to find an M+W index that optimizes the steady-state

performance of the fluid process with respect to these measurements.

Suppose that we have functions EfW∗,r∗ and FaW∗,r∗ which measure the average system efficiency

and fairness at the steady state, respectively. If we use scalar parameter η > 0 to combine these

functions, then we can formulate this question as the multi-objective planning problem

max EfW∗,r∗ + ηFaW∗,r∗

s.t. W ∗ is the steady state under a certain M+W index
r∗ is the unique service-rate matrix associated with W ∗.

(65)

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 41

In general, there can be multiple service-rate matrices associated with the steady stateW ∗. Thus,

(65) asks us to search for a particular M+W index under which Γ∗(W ∗) is a singleton, which has

to maximize the objective in (65). Otherwise, sub-optimal service-rate matrices might be picked

by the nature.

For general functional forms of EfW∗,r∗ and FaW∗,r∗, problem (65) is likely to be intractable.

However, for a special class of functions EfW∗,r∗ and FaW∗,r∗, a closed-form M+W index can be

derived under which (W ∗, r∗) solves the optimization problem (65). Specifically, we consider the

following efficiency and fairness measures, where EfW∗,r∗ solely depends on r∗ and FaW∗,r∗ solely

depends on W ∗:
Efr∗ :=

∑

j∈J , i∈I U(j, i)r∗ji

FaW∗ :=−
∑

i∈I
λi

λ

(

FC
i (W ∗

i)−
µ
λ

)2
(66)

In (66) function Efr∗ calculates the average matching utility at the steady state, and FaW∗ measures

the variance in the likelihood of getting service before abandoning the queue, in which λ
µ
represents

the mean likelihood of getting service. Under the performance metrics (66) we solve the multi-

objective planning problem (65) in two steps. For tractability, the optimization problem only

searches for steady states at which there are no underdemand queues.

Step 1. Solve an auxiliary problem: If we relax the second constraint in (65) by allowing multiple

feasible service-rate vectors at the steady state, we obtain an auxiliary problem

max Efr∗ + ηFaW∗

s.t. W ∗ is the steady state under a certain M+W index
r∗ ∈ Γ∗(W ∗).

(67)

The following Proposition derives a closed-form M+W index at which W ∗ and r∗ solve the

auxiliary problem (67). The main idea of the proof is to formulate (67) as a min-cost-max-flow

problem by expressing W ∗ using r∗. A key observation is that the min-cost-max-flow problem

converted from (67) is equivalent to the min-cost-max-flow problem on the network G∗ constructed

using the M+W index given in (68). Therefore, the r∗ that optimizes (67) is given by the service-

rate matrix associated with the steady state under the M+W index in (68). Its proof is in Appendix

EC.14.

Proposition 9 Let W ∗ and r∗ denote the steady state and the associated service-rate matrix of

the fluid process under the following M+W index

scoreji(τ) =U(j, i)+ η
2

λ
Fi(τ). (68)

If there are no underdemand queues at W ∗, then (W ∗, r∗) solves (67).

Author: An Overloaded Bipartite Queueing System with Matching Cost
42 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Step 2. Removing Sub-optimal r∗’s: Using the M+W index (68), one may obtain steady state

W ∗ and a solution rmfs ∈ Γ∗(W ∗) which solves the auxiliary problem (67). However, Γ∗(W ∗) may

contain multiple feasible service-rate matrices, some of which might be sub-optimal in maximizing

Efr∗ . The selection of r∗ depends on the stochastic nature of the system (see discussions in Talreja

and Whitt (2008)), so it is not guaranteed that the optimal matching rates rmfs would be picked

by the fluid process.

To address this issue, we modify the M+W index formula (68) so that under the revised M+W

index, Γ∗(W ∗) contains only the optimal service-rate matrix rmfs. To do that, we first solve rmfs

from the optimization problem (67). We then construct a J by I perturbation matrix ∆ with

∆(j, i) =

{

−ǫ if rmfs
ji = 0 and (j, i)∈E∗

0 otherwise
(69)

where ǫ is a small positive constant. After changing the matching-score matrix from U to U +∆,

the score of queue i with respect to server j has decreased by ǫ. So any arc (j, i) that is not used

by rmfs has to be removed. By doing this we ensure that Γ∗(W ∗) contains a single member rmfs.

Proposition 10 Suppose W ∗ is the steady state of the fluid process under the M+W index (68)

and rmfs denotes an extreme point of Γ∗(W ∗). Suppose there are no underdemand queues in W ∗.

Define ∆ via (69) and define the new M+W index

score∗ji(τ) =U(j, i)+∆(j, i)+ η
2

λ
Fi(τ). (70)

Then (W ∗, rmfs) are the unique steady-state HOL waiting-time and service-rate vectors under M+W

index (70), and thus solve the multi-objective planning problem (65).

The main idea of the proof is to show that by removing edges not used by rmfs, the only feasible

member of the polytope Γ∗(W ∗) will be rmfs itself. Appendix EC.15 has the formal proof. .

5. Discussions

In this paper we propose a mechanism for allocating scarce resources, namely the M+W indexing

policy, which generalizes several well-known ranking policies, such as FCFS, static priority, and

dynamic priority. M+W indexing policies are particularly well-suited to contexts where public

goods are allocated to several types of customers, and there are not enough resources supplied to

meet all demand. The ranking criteria used by an M+W index are restricted to waiting time and

the degree of matching, because the use of other factors such as queue length could be criticized as

being unfair for public goods. An example is that waiting time and blood/tissue type compatibility

are the main criteria being used in the current policy for allocating cadaver kidneys. Given that

M+W indices represent an important class of priority mechanisms, we believe that they deserves

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 43

more attention from researchers in queueing and applied probability. The fluid model presented in

this paper is a first step in investigating this policy.

The analysis of the fluid model is complicated by both the combinatorial and dynamic nature of

the BQS. A key observation is that the fluid process can be characterized as solutions to ODEs in

time intervals where the routing components remain invariant. To identify the routing components,

we utilize two classical combinatorial results: the nested-cut structure of parametric min cut with

S-SSM capacities, and the existence of a solution to an LCP. The latter was used to resolve the

case when multiple minimal components have the same score-increment rates.

To extend our model to cover other practical applications, we intend to consider the following

extensions in the future: (1) an overloaded BQS in which each candidate has the autonomy to

accept or reject a resource when it is offered; (2) a double-ended BQS in which each queue has

either excess demand fluid or excess supply fluid; (3) a BQS in which different server-customer

combinations lead to different service speeds instead of utility; and (4) a many-server version of

the BQS, in which each vertex represent a pool of many servers.

Regarding (1), Moulin and Sethuraman (2013) and Luss (1999) have studied the resource

rationing problem in a single period in presence of customer choice. However, we are not aware

of any literature that has discussed a similar problem in the queueing context. In fact, modeling

customers’ dynamic choices can be challenging. In reference to (2), when the priority rule is FCFS

Adan and Weiss (2012) proved that the steady-state distribution of the Markovian process has

a product form, and Afèche et al. (2014) derived closed-form results for a double-ended FCFS

queue with batch arrivals. It is not clear whether the closed-form results in these works can be

generalized to the M+W case. Model (3) is usually discussed in the context of skill-based routing

in a call center (Wallace and Whitt 2005, Gurvich and Ward 2014). Although mathematically it

is tempting to study the application of an M+W index to systems as described in (3), it is not

clear whether the M+W index is appealing to call-center managers given that it is less flexible but

more transparent than a dynamic routing policy. We believe (4) is a challenging research question,

but it worthwhile to explore as many service systems are better modeled as a many-server queues

rather than matching queues.

Acknowledgments

This paper has benefited from the many helpful, deep, and insightful comments from the Department Editor,

the anonymous Associate Editor and two anonymous referees, and we thank them for their efforts. We

would like to extend our sincere appreciation to Peter Glynn and Stefanos Zenios for their many insightful

comments and enormous help with this project. We thank Professor Yunan Liu and Professor Yehua Wei

for their helpful suggestions and comments. The research of all three authors is partially supported by their

respective NSERC Discovery Grants.

Author: An Overloaded Bipartite Queueing System with Matching Cost
44 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

References

Adan, Ivo, Gideon Weiss. 2012. Exact FCFS matching rates for two infinite multitype sequences. Operations

Research 60(2) 475–489. doi:10.1287/opre.1110.1027.

Adan, Ivo, Gideon Weiss. 2014. A skill based parallel service system under FCFS-ALIS-steady state, over-

loads, and abandonments. Stochastic Systems 4(1) 250–299.

Afèche, Philipp, Adam Diamant, Joseph Milner. 2014. Double-sided batch queues with abandonment: Mod-

eling crossing networks. Operations Research 62(5) 1179–1201. doi:10.1287/opre.2014.1300.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications .

Prentice-Hall, Englewood Cliffs.

Ahuja, R.K., J.B. Orlin, C. Stein, R.E. Tarjan. 1994. Improved algorithms for bipartite network flow. SIAM

Journal on Computing 23(5) 906–933.

Ata, Baris, Yichuan Ding, Stefanos Zenios. 2017. An achievable-region-based method for kidney allocation

policy design with endogenous patient choice. working paper URL http://blogs.ubc.ca/ycding/

files/2018/08/ddssJuly16_revision.pdf.

Atar, Rami, Chanit Giat, Nahum Shimkin. 2010. The cµ/θ rule for many-server queues with abandonment.

Operations Research 58(5) 1427–1439.

Caldentey, René, Kaplan Edward H, Weiss Gideon. 2009. FCFS infinite bipartite matching of servers and

customers. Advances in Applied Probability 41(3) 695–730.

Caldentey, René A, Edward H Kaplan. 2007. A heavy traffic approximation for queues with restricted

customer-server matchings. working paper .

Chen, Xi, Jiawei Zhang, Yuan Zhou. 2015. Optimal sparse designs for process flexibility via probabilistic

expanders. Operations Research 63(5) 1159–1176.

Committee, The OPTN/UNOS Kidney Transplantation. 2011. Concepts for Kidney

Allocations. open resource URL http://www.unos.org/SharedContentDocuments/

KidneyAllocationSystem--RequestForInformation.pdf.

Cottle, Richard W. 1964. Note on a fundamental theorem in quadratic programming. Journal of the Society

for Industrial & Applied Mathematics 12(3) 663–665.

Dai, JG, Tolga Tezcan. 2008. Optimal control of parallel server systems with many servers in heavy traffic.

Queueing Systems 59(2) 95–134.

Désir, Antoine, Vineet Goyal, Yehua Wei, Jiawei Zhang. 2016. Sparse process flexibility designs: is the long

chain really optimal? Operations Research 64(2) 416–431.

Ding, Yichuan, Thomas McCormick, Mahesh Nagarajan. 2018. Public housing assignment in pittsburgh: A

case study. working paper URL http://blogs.ubc.ca/ycding/files/2018/08/housingcase.pdf.

Author: An Overloaded Bipartite Queueing System with Matching Cost
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 45

Gallo, G., M. D. Grigoriadis, R. E. Tarjan. 1989. A fast parametric maximum flow algorithm and applications.

SIAM J. Comput. 18(1) 30–55. doi:10.1137/0218003. URL http://dx.doi.org/10.1137/0218003.

Ghamami, Samim, Amy R Ward. 2013. Dynamic scheduling of a two-server parallel server system with

complete resource pooling and reneging in heavy traffic: Asymptotic optimality of a two-threshold

policy. Mathematics of Operations Research 38(4) 761–824.

Granot, F., S. T. McCormick, M. Queyranne, F. Tardella. 2012. Structural and algorithmic properties for

parametric minimum cuts. Math. Prog. 135(1-2) 337–367.

Grindlay, Andrew A. 1965. Tandem queues with dynamic priorities. OR 16(4) pp. 439–451. URL http:

//www.jstor.org/stable/3006711.

Gurvich, Itai, Amy Ward. 2014. On the dynamic control of matching queues. Stochastic Systems 4(2)

479–523.

Gurvich, Itay, Ward Whitt. 2009. Scheduling flexible servers with convex delay costs in many-server service

systems. Manufacturing & Service Operations Management 11(2) 237–253.

Jackson, James R. 1960. Some problems in queueing with dynamic priorities. Naval Research Logis-

tics Quarterly 7(3) 235–249. doi:10.1002/nav.3800070304. URL http://dx.doi.org/10.1002/nav.

3800070304.

Kaplan, Edward H. 1988. A public housing queue with reneging. Decision Sciences 19(2) 383–391.

Kleinrock, Leonard, Roy P. Finkelstein. 1967. Time dependent priority queues. Operations Research 15(1)

pp. 104–116. URL http://www.jstor.org/stable/168514.

Larrañaga, Maialen, Urtzi Ayesta, Ina Maria Verloop. 2014. Index policies for a multi-class queue with

convex holding cost and abandonments. ACM SIGMETRICS Performance Evaluation Review , vol. 42.

ACM, 125–137.

Lemke, Carlton E. 1965. Bimatrix equilibrium points and mathematical programming. Management science

11(7) 681–689.

Liu, Yunan, Ward Whitt. 2011. Large-time asymptotics for the gt/mt/st+gi many-server fluid queue with

abandonment. Queueing systems 67(2) 145–182.

Liu, Yunan, Ward Whitt. 2012a. The gt/gi/st+gi many-server fluid queue. Queueing Systems 71(4) 405–444.

Liu, Yunan, Ward Whitt. 2012b. Stabilizing customer abandonment in many-server queues with time-varying

arrivals. Operations research 60(6) 1551–1564.

Luss, Hanan. 1999. On equitable resource allocation problems: A lexicographic minimax approach. Operations

Research 47(3) 361–378.

Mandelbaum, Avishai, Alexander L Stolyar. 2004. Scheduling flexible servers with convex delay costs: Heavy-

traffic optimality of the generalized cµ-rule. Operations Research 52(6) 836–855.

Author: An Overloaded Bipartite Queueing System with Matching Cost
46 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Moulin, Herve, Jay Sethuraman. 2013. The bipartite rationing problem. Operations Research 61(5) 1087–

1100.

Nelson, Randolph D. 1990. Heavy traffic response times for a priority queue with linear priorities. Operations

Research 38(3) pp. 560–563. URL http://www.jstor.org/stable/171370.

Netterman, A., I. Adiri. 1979. A dynamic priority queue with general concave priority functions. Operations

Research 27(6) pp. 1088–1100. URL http://www.jstor.org/stable/172085.

Nocedal, Jorge, Stephen Wright. 2006. Numerical optimization. Springer Science & Business Media.

OPTN/UNOS. 2008. Kidney Allocation Concepts: Request for Information. open resource .

OPTN/UNOS. 2015. OPTN/UNOS online Data Report. open resource URL https://optn.transplant.

hrsa.gov/data/.

Schwartz, Benjamin L. 1974. Queuing models with lane selection: a new class of problems. Operations

Research 22(2) 331–339.

Shi, Cong, Yehua Wei, Yuan Zhong. 2018. Process flexibility for multi-period production systems. Operations

Research, forthcoming .

Stolyar, Alexander L, Tolga Tezcan. 2011. Shadow-routing based control of flexible multiserver pools in

overload. Operations Research 59(6) 1427–1444.

Talreja, Rishi, Ward Whitt. 2008. Fluid models for overloaded multiclass many-server queueing systems with

first-come, first-served routing. Management Science 54(8) 1513–1527. doi:10.1287/mnsc.1080.0868.

URL http://mansci.journal.informs.org/content/54/8/1513.abstract.

Van Mieghem, Jan A. 1995. Dynamic scheduling with convex delay costs: The generalized c— mu rule. The

Annals of Applied Probability 809–833.

Visschers, Jeremy, Ivo Adan, Gideon Weiss. 2012. A product form solution to a system with multi-type jobs

and multi-type servers. Queueing Systems 70(3) 269–298.

Wallace, Rodney B, Ward Whitt. 2005. A staffing algorithm for call centers with skill-based routing. Man-

ufacturing & Service Operations Management 7(4) 276–294.

Wang, Xuan, Jiawei Zhang. 2015. Process flexibility: A distribution-free bound on the performance of k-chain.

Operations Research 63(3) 555–571.

Ward, Amy R, Mor Armony. 2013. Blind fair routing in large-scale service systems with heterogeneous

customers and servers. Operations Research 61(1) 228–243.

Yan, Zhenzhen, Sarah Yini Gao, Chung Piaw Teo. 2017. On the design of sparse but efficient structures in

operations. Management Science .

Zenios, Stefanos A., Glenn M. Chertow, Lawrence M. Wein. 2000. Dynamic allocation of kidneys to candi-

dates on the transplant waiting list. Oper. Res. 48(4) 549–569. doi:http://dx.doi.org/10.1287/opre.48.

4.549.12418.

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec1

Appendices

EC.1. Derivation of Equation (9)

Let Qi(t) denote the amount of fluid in buffer i at time t, or simply, the queue length in buffer i.

For all t≥ 0, we have

Qi(t) =

∫ t

0

(

λi(u)−
∑

j∈J

rji(u)−

∫ u

u−Wi(u)

λi(s)fi(u− s)ds
)

du, (EC.1)

where
∫ u

u−Wi(u)
λi(s)fi(u− s)ds gives the aggregate abandonment rate in queue i at time u. Since

λi(·) and rji(·) are both right-continuous, (EC.1) implies that the right derivative of Qi(t) always

exists and is

Q′
i(t) = λi(t)−

∑

j∈J

rji(t)−

∫ t

t−Wi(t)

λi(s)fi(t− s)ds. (EC.2)

Note that t−Wi(t) could take negative values, in which case the buffer i is non-empty at time

0 so we need to know the historical arrival rate before time zero in order to determine the total

reneging rate at the current time.

We can derive an alternative expression for Qi(t) from the fact that the cohorts in buffer i follow

the natural distribution. Specifically, at time t, cohort t− s has a density λi(s)F
C
i (t− s), and thus

Qi(t) =

∫ t

t−Wi(t)

λi(s)F
C
i (t− s)ds. (EC.3)

Taking the derivative of (EC.3) on both sides leads to

Q′
i(t) = λi(t)−λi(t−Wi(t))F

C
i (Wi(t))(1−W ′

i(t))−

∫ t

t−Wi(t)

λi(s)fi(t− s)ds. (EC.4)

Equations (EC.2) and (EC.4) imply the expression for W ′
i (t) in (9).

EC.2. Proof of Proposition 1

Proof. To get a contradiction, suppose that Wi(t) = 0 for some t > 0. Then if i∈A(j, t), we have

Wi(t)+L(j, i) = 0+L(j, i)≥Wk(t)+L(j, k)≥L(j, k), for all k ∈ I, (EC.5)

which implies i∈A0(j). Thus A(j, t)⊆A0(j). Therefore, (14) implies that

∑

j: i∈A(j,t)

µj ≤
∑

j: i∈A0(j)

µj <λi for each i∈ I. (EC.6)

Now (EC.6) implies that the arrival rate is strictly larger than the service rate in each queue.

When Wi(t) is sufficiently small, the total abandonment rate of queue i is negligible. So in queue

i, the input rate must be larger than the departure rate, which is the sum of the service rate and

abandonment rate. As a result, we have W ′
i (t) > 0. Thus once Wi(t) is sufficiently small, it will

strictly increase. This proves that W (t)> 0 for all t > 0.

ec2 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

EC.3. Proof of Proposition 2

To facilitate the proof, we introduce the following notations and lemma. For cut A, δ+(A) is the

subset of arcs with their tail but not head in A (“exiting A”), and δ−(A) is the subset of arcs with

their head but not tail in A (“entering A”).

Lemma EC.1. Let X∗ be the max (S,T)-flow returned by Algorithm 2. Let Ak−1 and Ak denote

the min cuts at θ= θk.

1. δ+(Ak−1)∩E
b = δ+(Ak)∩E

b = ∅;

2. X∗
e = 0 for all e∈ δ−(Ak−1 ∩E

b);

3. X∗
Sj = µj for all j ∈Gk;

4. X∗
iT = uiT (θ

k) = ϑ−1
Wi

(θk) for all i∈Gk; and

Proof. 1: Follows because ue =∞ for e∈Eb and no infinite-capacity arc can exit a min cut.

2. Follows because all arcs entering a min cut must have flow 0 in any max flow.

3. For j ∈Gk =Ak\Ak−1 it follows because then (S, j)∈ δ+(Ak−1) and so (S, j) must be saturated

by Xk. Note that this is true even for k=1 since A0 = {S} (since θ0 =−∞).

4. Follows because all arcs exiting a min cut must be saturated.

Proof of Proposition 2: Algorithm 2 always completes because of the nested min-cut structure,

which follows from the S-SSM property of our parameterized network (Gallo et al. 1989, Granot

et al. 2012). We next verify that the partition {Gk} returned by Algorithm 2 satisfies Properties

(a)–(b) in Definition 2 for minimal components.

We prove Property (a) by contradiction. If some Gk is not connected, then we can split Gk into

multiple sub-components. Without loss of generality, let H be the slowest sub-component. When

θ=ΨH
W (the score change rate of H if its queues are all supplied by the servers in H itself), then

we have
∑

j∈H

uSj =
∑

j∈H

µj =
∑

i∈H

ϑ−1
W (ΨH

W) =
∑

i∈H

ujT (Ψ
H
W). (EC.7)

This implies Ak−1 and Ak−1 ∪H are both min cuts at θ = ΨH
W . This leads to a contradiction,

because according to Algorithm 2, Ak−1 ∪Gk is the next min cut that expands Ak−1 in the nested

cut sequence.

To prove Property (b), we show that for any max (S,T)-flow X∗ returned by Algorithm 2, its

associated r as constructed in (18) must belong to Γ(W). In fact, the first and the second equality

constraint in Γ(W) follows from Lemma EC.1 parts 3 and part 4, respectively. The last constraint

follows from Lemma EC.1 parts 1 and 2.

EC.4. Proof of Proposition 3

Proof.

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec3

“only if”: We first claim that for sufficiently small ∆t > 0, for all fluid processes, the edge set

Eb(t) must only contains edges inside each minimal component for all t ∈ [t0, t0 +∆t). We first

prove the following subclaims:

(a) Eb(t)⊆Eb(t0), that is, no new arcs can be added to Eb(t).

Suppose j ∈ J , i ∈ I, but (j, i) /∈ Eb(t0). According to our construction of Eb(t0), we have

δji(t0)> 0, where δji(t0) denotes the difference at time t0 between the highest score for server j

and the score for queue i being served by j (see (48)). Because all scores sji(t) are continuous

in t, δji(t) is continuous in t. Therefore, by choosing ∆t sufficiently small we have δji(t)> 0 for

[t0, t0 +∆t), and thus (j, i) will continue to stay outside Eb(t) for t ∈ [t0, t0 +∆t). Note that

this argument actually proves that Eb(t) (and E(t)) is upper hemicontinuous6 at all t.

(b) All intra-component arcs in Eb(t0) remain in Eb(t).

To get a contradiction, suppose that there is a sequence of time points {tℓ} approaching t0

such that at each of those time points, at least one arc (j, i) ∈ Eb(t0) disappears. Whenever

this happens, the minimal component containing (j, i) will be split into disconnected sub-

components G1, G2, . . . (if the component is still connected, our argument at the beginning

of the proof of Proposition 3 shows that all queues in that component will keep their scores

changing by the same amount, but then arc (j, i) cannot disappear). Therefore, at each tℓ, we

obtain a sequence of sub-components. For each sub-component, we calculate the score change

from t0 until tℓ, which is gi(tℓ)− gi(t0), with queue i in that sub-component. Let G1ℓ denote the

sub-component with the smallest score change. Because G1ℓ only has a finite number of possible

choices, there must be a subsequence {tℓu} such that G1ℓ ≡:H at all of those time points, where

H must be the sub-component of one of the minimal components, say, Gk without loss of

generality.

We claim that H must be a closed subset of Gk with respect to Eb(t0). Otherwise, there

would be an arc e ∈ Eb(t0) that goes from H to other parts of Gk. By our construction of

H, queues in the other sub-components of Gk must have their scores increasing faster than H

during the interval (t0, tℓu), so this edge e has to remain in Eb(tℓu) for all u=1,2, However,

if e∈Eb(tℓu), then H must be connected to other parts of Gk at tℓu , which contradicts that H

is disconnected from other parts of Gk. Therefore, we get that Eb(t0) contains no arcs from H

to other parts of Gk, and H thus has to be a closed subset of Gk at t0.

For u = 1,2, . . ., let θ(tℓu) denote the score change rate of all queues i ∈H at tℓu . By our

previous definition of ϑ−1
Wi(tℓu)(·), the following equality holds at all times tℓu

∑

j∈H

µj(tℓu) =
∑

i∈H

ϑ−1
Wi(tℓu)(θ(tℓu))→

∑

i∈H

ϑ−1
Wi(t0)

(θ̃), when u→∞, (EC.8)

6 Suppose B is a discrete set. A correspondence E : [0,∞) → B is upper hemicontinuous at t if there exists a
neighborhood A of t such that for all t′ ∈A, E(t′)⊆E(t).

ec4 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

where θ̃ ∈ [−∞,+∞] denotes the limit of θ(tℓu), which exists by right continuity. We know that

θ̃ must be no more than θk because otherwise, in a sufficiently small interval of t0 the score

change rate of H would be strictly larger than θk, which contradicts that H is the slowest

component at time points tℓu→ t0. Thus, we get that θ̃≤ θk and consequently,
∑

j∈H

µj(t0) =
∑

i∈H

ϑ−1
Wi(t0)

(θ̃)≥
∑

i∈H

ϑ−1
Wi(t0)

(θk), (EC.9)

where the equality follows from (EC.8), and the inequality follows from that ϑ−1
Wi(t0)

(θ) is

decreasing in θ. Inequality (EC.9) then contradicts Property (a) in Proposition 2.

These subclaims show that queues will be served by servers in the same component. Then the

score change rate in each component Gk at time t is given by Ψ
Gk

W (t). This leads to the first equation

in the ODE, which characterizes the cumulative score change of Gk, x
k(t). We can then recover

Wi(t) for each i ∈ Gk from xk(t) using (36). That establishes the ODE characterization for the

HOL waiting time trajectory {W (t) | t∈ [t0, t0+∆t)}. Since during [t0, t0+∆t) all components Gk

are disconnected, any score-maximizing r(t) must saturate both edges (T, j) and (S, i), and thus

belongs to the polytope Γ(W (t)) by its definition. This finishes the proof of the “only if” part.

“if”: We first argue that the ODE always admits a unique solutionW (t). Notice that the function

Ψ
Ĝk

W (t) is continuous in t and W (t), except when t−Wi(t) is a discontinuity point of λi(·). Since

W ′
i (t) ≤ 1 (the HOL waiting time of a queue increases at rate one when it receives no service,

which is the maximum possible W ′
i (t)), t−Wi(t) is non-decreasing. Therefore, as λi(t) is piecewise

continuous and Wi(t) is continuous in t, we see that λi(t−Wi(t)) is also piecewise continuous in

t. Thus, function Ψ
Ĝk

W (t) only has a finite number of discontinuities and is therefore continuous in

[t0, t0 +∆t) for sufficiently small ∆t. By substituting the expression for Wi(t) in (ODE.2) into

the RHS of its first equation, we obtain an ODE of the basic form dxk(t)

dt
= f(xk(t)), where f is

continuous. This ODE always has a unique solution {xk(t) | t ∈ [t0, t0 +∆t)} under the boundary

condition xk(0) = 0. After solving for xk(t), W (t) can be uniquely determined using (ODE.2) for

all t∈ [t0, t0 +∆t).

Next, we show that if r(t) ∈ Γ(W (t)) for each t ∈ [t0, t0 +∆t) and r(t) is right continuous, then

r(t) must be score-maximizing and solves (9) for the W (t) derived from the ODE. First, because

the coefficients in the polytope Γ(W (t)) are right-continuous, we can always find a r(t)∈ Γ(W (t))

for each t∈ [t0, t0+∆t), such that r(t) is right-continuous. Second, if r(t)∈ Γ(W (t)), then the first

equality in the expression for Γ(W (t)) ensures that the corresponding (S,T)-flow saturates edges

in (i, T), and thus r(t) is score-maximizing by Lemma 1; the second equality in the expression for

Γ(W (t)) ensures that r(t) provide the required service rates for each queue in Ĝk to keep a score

change rate Ψ
Ĝk

W (t) = dxk/dt at time t, that is,

∑

j∈Ĝk

rji(t) = ϑ−1
Wi(t)

(

dxk

dt

)

= ϑ−1
Wi(t)

(gi(Wi(t))W
′
i (t)). (EC.10)

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec5

Plugging the expression for ϑ−1
Wi(t)

(gi(Wi(t))W
′
i(t)) into (EC.10) leads to (9). This proves that

{(W (t), r(t)) | t∈ [t0, t0 +∆t)} satisfies Definition 1 for a fluid process.

EC.5. Proof of Proposition 4

Proof. We first prove that if (42) holds for some x> 0, then there exists a ∆t > 0 such that for

all t ∈ (t0, t0 +∆t), xĜu(t)> xĜu′ (t), where xĜu(t) represents the cumulative score change rate of

Ĝu at time t, with the HOL waiting times solved from {Ĝu} according to the ODE. In other words,

we want to prove that the sign of the potential function ∆Ψ
Ĝu,Ĝu′

Wx determines which component,

Gu or Gu′ , has a larger score change rate.

Because Ĝu and Ĝu′ are connected at t0, they must have the same score change rate at t0.

Without loss of generality, we assume that dxĜu (t0)

dt
= dx

Ĝ
u′ (t0)

dt
> 0. Then both xĜu(t) and xĜu′ (t)

are strictly increasing in [t0, t0+∆t) for sufficiently small ∆t > 0, and their inverse functions, tu(·)

and tu
′
(·), must both exist in a neighborhood of 0.

The fact that dxĜu(t)

dt
> 0 implies the existence of the derivative dtu(xĜu)

dxĜu
in a neighborhood of 0.

We thus have
dtu(x)

dx
− dtu

′
(x)

dx
= (dx

Ĝu(t)

dt
|
xĜu=x

)−1− (dx
Ĝ
u′ (t)

dt
|
x
Ĝ
u′=x

)−1

= (ΨĜu
Wx)−1− (Ψ

Ĝu′

Wx)−1

≤ 0,

(EC.11)

where the last inequality follows from (42). The expression for ΨĜu
W , shows that the functions gi(·),

FC
i (·), λi(·), and µj(·) are all real analytic. Therefore, (ΨĜu

Wx)−1 is real analytic, so dtu(x)

dx
− dtu

′
(x)

dx

is also real analytic. That implies that its value can be expressed as the limit of Taylor series in a

neighborhood of x= 0. Consequently, its sign has to stay invariant in a neighborhood of 0, and so

(EC.11) holds for all x in a neighborhood of 0. Then integrating both sides of (EC.11) leads to

tu(x)≤ tu
′

(x)≤ 0 (EC.12)

for all sufficiently small x > 0. Then (EC.12) shows that it always takes no more time for Ĝu to

reach a cumulative increment of x than Ĝu′ . So the score of Ĝu always increases faster than that

of Ĝu′ in (t0, t0 +∆t), or equivalently, xĜu(t) ≥ xĜu′ (t) for sufficiently small ∆t > 0. A similar

argument shows that xĜ+
u (t) < xĜ−

u (t) when an intra-component edge from Ĝ+
u to Ĝ−

u satisfies

inequality (43).

We next prove that if {Ĝ} satisfy Properties (i) and (ii) and {(W (t), r(t)) | t∈ [t0, t0 +∆t)} are

constructed using the method given in Proposition 3, then {Ĝ} are the routing components.

Since W (t) are the solution to the ODE that is formulated based on {Ĝ}, all queues in the same

Ĝu have the same score change rate. So all arcs inside the same Ĝu will remain there. Thus, each

Ĝu stays connected. Moreover, all edges within the same minimal component Gk ⊆ Ĝu must carry a

ec6 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

positive flow, as otherwise we can split Gk further which would violate Property (a) of Definition 2

for a minimal component. All edges outside a minimal component, which are the inter-component

edges that have been merged, must satisfy condition (43). Such an edge connects two subsets of Ĝu,

i.e., G+
u and G−

u , where the latter has a faster score change rate (if they go separately). However,

since G+
u and G−

u are in the same Ĝu, they must have the same score change rate. That requires a

positive amount of flow sent from G+
u to G−

u , which equalizes the score change rate in G+
u and G−

u .

Therefore, each Ĝu is connected by edges that carry a positive flow. For all edges that connect Ĝu

and Ĝu′ , condition (42) requires that they have to be kept separate and no flow can be sent from

one to the other. Thus, we have proved {Ĝ} are exactly the connected components with respect

to the edges that carry a positive flow, i.e., they are the routing components that we are looking

for.

EC.6. Proof of Proposition 5

Proof.

“Existence”: It suffices to show that for each sufficiently small x, the LCP has a solution. For

any given x> 0, Ψ
Gk
Wx(r̂x) can be expressed as an affine function of r̂x as

Ψ
Gk
Wx(r̂x)

=
(

∑

i∈Gk

λi(t−Wx
i)FC

i (Wx
i)

g′
i
(Wx

i
)

)−1

(
∑

i∈Gk
λi(t−W x

i)F
C
i (W x

i)−
∑

j∈Gk
µj(t)

+
∑

e∈δ+(Gk)
r̂xe −

∑

e∈δ−(Gk)
r̂xe)

= ΨGk
Wx +(

∑

e∈δ+(Gk)
r̂xe −

∑

e∈δ−(Gk)
r̂xe)Φ

Gk
Wx , for k= 1, . . . ,K,

(EC.13)

where

Ψ
Gk
Wx =

(

∑

i∈Gk

λi(t−Wx
i)FC

i (Wx
i)

g′
i
(Wx

i
)

)−1

(
∑

i∈Gk
(λi(t−W x

i)F
C
i (W x

i)−
∑

j∈Gk
µj(t)), and

Φ
Gk
Wx :=

(

∑

i∈Gk

λi(t−Wx
i)FC

i (Wx
i)

g′
i
(Wx

i
)

)−1

.
(EC.14)

Define the vectors ΨWx(r̂x) := {ΨGk
Wx(r̂x)}k=1,...,K , ΨWx := {ΨGk

Wx}k=1,...,K , and ΦWx :=

{ΦGk
Wx}k=1,...,K . Let P denote the vertex-arc incidence matrix of the directed graph Ĝ, and let

Diag (ΦWx) denote the K × K diagonal matrix with diagonal ΦWx . Equation (EC.13) can be

expressed in vectorized form as

ΨWx(r̂x) =Diag (ΦWx)P r̂x+ΨWx . (EC.15)

The potential-function vector, defined as ∆ΨWx(r̂x) := {Ψ
Gk,Gk′

Wx (r̂x)}(k,k′)∈Ê, can then be expressed

as

∆ΨWx(r̂x) =P TΨWx(r̂x) =P TDiag (ΦWx)P r̂x+P TΨWx . (EC.16)

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec7

Using (EC.16), the LCP can be expressed in the vectorized form

(r̂x)T (P TDiag (ΦWx)P r̂x+P TΨWx) = 0
r̂x ≥ 0

P TDiag (ΦWx)P r̂x+P TΨWx ≥ 0,
(EC.17)

According to classical results on LCP (Cottle 1964, Lemke 1965), the LCP has a solution if (a)

the Hessian matrix P TDiag (ΦWx)P is symmetric positive-semidefinite; and (b) there is a pair of

vectors r̂x and ∆ΨWx(r̂x) which are both non-negative (not necessarily complementary). Condition

(a) is straightforward by the non-negativity of ΦWx . Condition (b) can be proved by constructing

r̂x in the following way: We first set r̂xe = 0 for all e∈ Ê(t0). We check if there is any arc (k0, k1)∈ Ê

corresponding to a negative potential ∆Ψ
Gk0

,Gk1
Wx (r̂x) < 0. If such an arc exists, we then push a

positive flow along a directed path (k0, k1, . . . , kℓ) with kℓ being a leaf node (having no outgoing

arcs). Such a path always exists because Ĝ(t0) contains no directed cycle. Pushing such a positive

flow increases the score change rate of Gk0 , decreases that of Gkℓ , and keeps the score change rates

for components indexed by k1, k2, . . . , kℓ−1 in the middle of the path the same as their net inflow

rates have not changed. As a result, pushing this positive flow along this path increases the potential

on arc (k0, k1) while keeping the potentials on all other arcs non-decreasing. Pushing a sufficiently

large amount of flow along the path makes ∆Ψ
Gk0

,Gk1
Wx (r̂x)≥ 0. We then repeat the procedure until

all arcs have a non-negative potential value, which then leads to a pair of nonnegative vectors, r̂x

and ∆Ψ
Gk0

,Gk1
Wx (r̂x).

“Uniqueness”: At each x, the LCP may have multiple complementary pairs, each of which is

non-negative and minimizes (r̂x)T (P TDiag (ΦWx)P r̂x+P TΨWx). Since P TDiag (ΦWx)P is positive

semi-definite, a feasible solution has to take the form r̂x+∆r̂x, where r̂x is any feasible solution, and

∆r̂x lies in the null space of P TDiag (ΦWx)P , or equivalently the null space of P , which means ∆r̂

has to be a circulation on the underlying undirected graph of Ĝ. Since Diag (ΦWx)P∆rx = 0, all r̂x

feasible to the LCP will lead to the same vector of potential functions, ∆ΨWx =Diag (ΦWx)P r̂x+

ΨWx . Therefore, the arc set ÊM constructed based on the values of ∆ΨWx must be unique for all

sufficiently small x> 0.

EC.7. Proof of Theorem 1

Proof.

Existence: It suffices to show that there are finitely many switch points over a finite horizon

[0, T]. Then in a finite number of iterations, Algorithm 1 completes the construction over [0, T].

To get a contradiction, suppose that there is an infinite number of switch times in [0, T]. Then

there must be a sequence of switch points tℓ. We do not need to consider the Type-3 switch times

because the number of discontinuous points for λi(t) and µj(t) is finite by piecewise continuity.

ec8 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

Note that if tℓ is a Type-1 switch time, an arc is added to E(tℓ); if tℓ is a Type-2 switch time,

an arc is removed from E(t+ℓ). Since there are finitely many arcs to add (or remove), at least one

arc (j, i) must have been repeatedly added and removed to the arc set infinitely many times. As

[0, T] is compact, those Type-1 and Type-2 switch times must have a subsequence that converges

to some time T ∗ ∈ [0, T]. Because the arc set E(tℓu) has finite size, this convergent subsequence

must contain two subsequences of switch times {tvℓu | u= 1,2, . . .} (v = 1,2) such that E(tvℓu)≡Ev

(v=1,2), and (j, i)∈E1 but (j, i) /∈E2

The proof of Proposition 3 showed that the arc set E(t) is upper hemicontinuous at all T ∗, so

that (j, i) ∈ E1 ⊆ E(T ∗). If (j, i) is an intra-component edge, it must remain in a neighborhood

of T ∗ by case (b) in the proof of Proposition 3. Otherwise, (j, i) is an inter-component edge.

According to the proof of Proposition 4, an inter-component edge either remains in the graph,

or disappears in a neighborhood of t0 (by using the property that all gi(·) and FC
i (·) (i ∈ I) are

analytic functions), which contradicts that (j, i) appears at time points E(t1ℓu) and disappears at

E(t2ℓu) infinitely many times in the time sequences {tvℓu} (v = 1,2). So we have proved that such

a limiting point of switch times T ∗ never exists, and therefore there are only finitely many switch

times over any finite horizon.

Uniqueness: Suppose {W (t) | t ∈ [0, T]} and {W̃ (t) | t ∈ [0, T]} are two different fluid processes

and W (0) = W̃ (0). Let t0 := inf{t |W (t) 6= W̃ (t)}. We claim that W (t0) = W̃ (t0). Otherwise, con-

tinuity of W (t) implies that W (t0−∆t) 6= W̃ (t0 −∆t) for some sufficiently small ∆t, which con-

tradicts the definition of t0. Then by Propositions 3–5, the partition of routing components, and

thus the fluid process, is unique over an infinitesimal period (t0, t0 +∆t). Thus W (t)≡ W̃ (t) for

t∈ [t0, t+∆t), which then contradicts the definition of t0. Thus the fluid process must be unique.

EC.8. Proof for Proposition 7

Proof.

“Sufficiency”: All µr in UB(I0) must satisfy the budget constraint

∑

j∈B(i)

µr
j(t) =

∑

j∈B(i)

µj(t)−λi(t) for all i∈ I
0(t) and all t. (EC.18)

Thus, if each B(i) is contained in the same routing component, then the total service rate supplied

from servers with residual capacity is
∑

j∈B(i) µj(t)−λi(t). Since the formulation of (ODE-B) only

depends on the aggregate service rate for each routing component, different µr’s will lead to the

same expression for (ODE-B), and therefore the same solution (the HOL waiting time trajectory).

We next prove that if all extreme points lead to the same partition of routing components, then

so do the other points in UB(I0). Suppose µr,∗ ∈ UB(I0) is not an extreme point, so it is a convex

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec9

combination of multiple extreme points in UB(I0). By classical results on network flow, each max

flow under residual capacities µr,∗ can also be expressed as a convex combinations of max flows

under the extreme-point residual capacities in UB(I0). Note that all max flows under extreme-point

service capacities lead to the same routing components, and thus have the same supporting edge

set {(j, i) |Xji > 0}. Therefore, their convex combination X∗ also has the same supporting edge

set, and thus the same routing components.

“Uniqueness”: If different µr lead to different routing components, then the fluid process must

be non-unique. If they lead to the same routing component, but two servers that connect to the

same underdemand queue, say µr
1 and µr

2, are in two different routing components, then different

ways to split the residual capacity between µr
1 and µr

2 will lead to different total service rates for

these two routing components, and thus lead to different expressions for the (ODE-B) and different

solutions. The fluid process cannot be unique.

EC.9. Calculating Performance Metrics in a Transient Period

In the setting of scarce resource allocation, we assume that the system designer is concerned with

two major objectives: efficiency (Ef) and fairness (Fa). In this section, we assume that the system

designer is only interested in the performance of the BQS over a finite horizon [0, T]. The fluid

process we constructed earlier can then be used to predict the system performance of a particular

M+W indexing policy over that horizon.

There is no universal consensus in the literature on a measure of fairness (Fa). We propose that

one reasonable way to measure fairness is by using the variance of the likelihood of getting service

across all customers. To calculate this variance, we first note that the average likelihood of getting

service is simply the ratio of supply versus demand, that is,

P (T) =

∫ T

0

∑

j∈J µj(t)dt
∫ T

0

∑

i∈I λi(t)dt
. (EC.19)

Thus the variance can be computed as

Fa(T) :=−
∑

i∈I

∫ T

0
λi(t)dt

∫ T

0

∑

i∈I λi(t)dt

(

∫ T

0

∑

j∈J rji(t)dt
∫ T

0
λi(t)dt

−P (T)

)2

. (EC.20)

Alternatively, one could measure fairness by the variance in waiting times (Zenios et al. 2000),

or by the minimum likelihood of getting service among all types of customers. Most of those

fairness metrics can be represented as functions of Wi(t) and
∑

j∈J rji(t). The latter represents the

aggregate service rate for each queue and has a one-to-one mapping with W ′
i (t) by (9). Therefore,

the performance of the system under these fairness metrics can be determined by the fluid process

{W (t) | t∈ [0, T]}.

ec10 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

Compared to the measurements of fairness, there is more agreement on measuring efficiency (Ef)

as the expected utility for all resource-customer matches over [0, T]:

Ef(T) :=

∫ T

0

∑

i∈I, j∈J U(j, i)rji(t)dt
∫ T

0

∑

j∈J µj(t)dt
. (EC.21)

Given a fluid process {W (t) | t ∈ [0, T]}, the corresponding service process rates r(t) do not have

to be unique. In fact, at each W (t), the set of feasible routing rates is a polytope Γ(W (t)) which

is characterized in Proposition 2 Property (b). In the proof of Proposition 3, we showed that by

specifying a certain lexicographic order over different routing-rate vectors, we can always pick the

maximum rmax(t) with respect to that order, and rmax(t) is right-continuous.

If we define the lexicographic order according to the entries of the utility matrix U (ties are

broken by a fixed order) as

(j, i)≻ (j′, i′) iff U(j, i)>U(j′, i′), (EC.22)

then the lex-max rmax(t) is also the solution to the following problem

max
r(t)∈Γ(W (t))

∑

j,i

rji(t)U(j, i). (EC.23)

Thus, the expected utility in the fluid model is maximized by choosing the maximum routing

rates rmax(t) with respect to the lexicographic order (EC.22). Similarly, the expected utility is

minimized at routing rates rmin(t) which is the minimal routing rate-vector with respect to that

order. Using rmax(t) and rmin(t), we can derive the best- and worst-case bounds for the efficiency

level for the BQS fluid model that can be achieved by a given M+W index.

Corollary 1 The efficiency (Ef) of an M+W-BQS fluid model, if measured by (EC.21), has the

range in (EC.24), whereas the fairness (Fa) given by (EC.20) is a deterministic number.

Ef(T)∈

[

∑

i∈I, j∈J

∫ T

0
U(j, i)rmin

ji (t)dt
∫ T

0

∑

j∈J µj(t)dt
,

∑

i∈I, j∈J

∫ T

0
U(j, i)rmax

ji (t)dt
∫ T

0

∑

j∈J µj(t)dt

]

. (EC.24)

Proof. We have argued that both rmin(t) and rmax(t) are right-continuous on [0, T]. Thus, the

lower and upper bounds are both attainable by rmin(t) and rmax(t), respectively. If we define the

convex combination of rmin and rmin as

rc(t) := c rmin(t)+ (1− c) rmax(t),

then the mean-value theorem implies that any value between the upper and lower bounds can

be attained by rc(t) for some c∈ [0,1]. Finally, we know rc ∈ Γ(W (t)) by the convexity of Γ(W (t)),

and is right-continuous over [0, T], so {rc(t) | t ∈ [0, T]} satisfies the criteria for being the service

rates of a valid fluid process.

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec11

EC.10. An Application to an Overloaded FCFS-BQS

An FCFS-BQS is a special case of an M+W-BQS with the score formula

gi(τ) = τ, L(j, i) =

{

0 if (j, i)∈Eb

−∞ if (j, i) /∈Eb , (EC.25)

where Eb denotes the set of compatible server-customer pairs in the FCFS-BQS. Unlike in a general

M+W-BQS where Eb(t) can depend on time, the edge set in this special model is fixed to be Eb.

The fluid process in an FCFS-BQS can be defined in the same way as in an M+W BQS (see

(Talreja and Whitt 2008) for more details). According to their Lemma 1, a fluid process in an

FCFS-BQS is said to be globally FCFS if all queues have equal HOL waiting times at all times,

i.e.,

Globally FCFS: Wi(t)≡W1(t) for all i∈ I and all t. (EC.26)

When the globally FCFS condition holds, all queues have the same score change rate θ(t), so

we can consider all queues to be in the component I ∪ J . Then their score change rate can be

calculated as

θ(t) =ΨI∪J
W (t) = 1−

∑

j∈J µj(t)
∑

i∈I λi(t)F
C
i (Wi(t))

, (EC.27)

where the second equality follows from g′i(τ) = τ . In order to keep such a score change rate, each

queue i demands a service rate of ϑ−1
Wi(t)

(θ(t))= (1− θ)(λi(t)F
C
i (Wi(t))), while the service rate for

queue i is capped by the total service rate supplied by servers in B(t, i) (set of servers connected

to queue i). This argument leads to

(1− θ)(λi(t)F
C
i (Wi(t)))≤

∑

j∈B(t,i)

µj, for all i ∈ I. (EC.28)

In fact, this argument applies to all subsets A⊆I, which leads to the more general condition

CRP:
∑

i∈A

(1− θ)(λi(t)F
C
i (Wi(t)))≤

∑

j∈B(t,A)

µj(t), for all A⊆I. (EC.29)

Condition (EC.29) can be regarded as the complete resource pooling (CRP) condition (see (Adan

and Weiss 2014)) in an FCFS BQS with service rate µj(t) and arrival rate λ̃j(t), where

λ̃i(t) := (1− θ)(λi(t)F
C
i (Wi(t))). (EC.30)

We next present our main result, which provides a necessary and sufficient condition for globally

FCFS. Since our model considers customer reneging and time-varying arrival rates, our result

complements Theorem 3.3 in (Adan andWeiss 2014), which suggests that CRP provides a necessary

and sufficient condition for globally FCFS in an overloaded BQS without customer reneging. The

proof of the result exploits the structure of the network computed by Algorithm 2.

ec12 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

Proposition 11 Suppose a fluid process in FCFS-BQS has initial state Wi(0) =W1(0) for all i ∈ I

and
∑

i λi(t)>
∑

j µj(t) at all t. Then the globally FCFS property (EC.26) holds if and only if for

all t, the CRP condition (EC.29) holds in an FCFS-BQS with arrival and service rates λ̃i(t) and

µj(t), respectively.

Proof.

“If”: At any time t, when Algorithm 2 finishes, it returns a network in which each edge (i, T)

has been assigned a capacity uiT = ϑ−1
Wi(t)

(θ) = λ̃i(t), where θ and λ̃i(t) are given by (EC.27) and

(EC.30), respectively. The CRP condition implies that on such a network, A= V \{T} is a min cut.

Therefore, any max flow has to saturate all edges in {(i, T) | i∈ I}. Proposition 2 implies that any

max flow on this network corresponds to a score-maximizing right-continuous r(t). Thus, we have

∑

j

rji = ϑ−1
Wi(t)

(θ), for all i∈ I. (EC.31)

This means that queue i receives the right amount of service to allows its score change rate to

equal θ. Thus, all queues have the same HOL score trajectory, and thus the same HOL waiting

time trajectory.

“Only If”: For the network returned by Algorithm 2, we know the max flow has a total value of
∑

i∈I λ̃i. For all A⊆I, the (S,T)-cut {S}∪(J \B(A))∪(I\A) has capacity
∑

j∈B(A) uSj+
∑

i/∈A uiT .

Since the max flow value is upper bounded by the capacity of any (S,T)-cut, we have

∑

i∈I

λ̃i ≤
∑

j∈B(A)

uSj +
∑

i/∈A

uiT =
∑

j∈B(A)

µj +
∑

i/∈A

λ̃i. (EC.32)

Equality (EC.32) leads to the CRP condition in (EC.29).

EC.11. Proof of Proposition 8

Proof. Here we prove a slightly stronger result than the conclusion of Proposition 8, so that

this result can be used later in the proof of Theorem 2. We show that if W ∗ is a steady state, then

there cannot be another state W̃ that satisfies properties (d) in Lemma 2. This result is stronger

than Proposition 8, because W̃ does not have to satisfy (e) and may not be a steady state.

Suppose there is another state W̃ that satisfies condition (d). Let I+ := {i|W̃i >W ∗
i } denote the

set of queues with a larger HOL waiting time at W̃ than at W ∗. We next prove that I+ = ∅. An

(omitted) symmetric argument shows that I− = {i|W̃i <W ∗
i }= ∅. These will prove that W̃ =W ∗.

To get a contradiction, assume I+ 6= ∅, and let B∗(I+) denote the set of servers that are connected

to queues in I+ at W ∗, and let C̃(I+) denote the set of servers which are only connected to queues

in I+ at state W̃ . We next prove that

B∗(I+)⊆ C̃(I+). (EC.33)

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec13

Suppose j ∈B∗(I+). Then at least one queue i ∈ I+ is in the active set of server j at state W ∗.

This implies

L(j, i)+ gi(W
∗
i)≥max

ℓ/∈I+
L(j, ℓ)+ gℓ(W

∗
ℓ). (EC.34)

Then we have

L(j, i)+ gi(W̃i) > L(j, i)+ gi(W
∗
i) (EC.35)

≥ max
ℓ/∈I+

L(j, ℓ)+ gℓ(W
∗
ℓ) (EC.36)

≥ maxL(j, ℓ)+ gℓ(W̃ℓ). (EC.37)

Inequality (EC.35) follows from W̃i > W ∗
i and strict monotonicity of gi(·), (EC.36) follows from

(EC.34), and (EC.37) follows from W ∗
ℓ ≥ W̃ℓ as ℓ /∈ I

+. Inequalities (EC.35)–(EC.37) imply that at

W ∗, the score of queue i is strictly larger than all queues not in I+. Thus, the active set of server

j only contains queues in I+, so j ∈ C̃(I+) by the definition of C̃(I+). This proves (EC.33).

If there are no underdemand queues at W ∗, then the service received by queues in I+ are all from

servers in B∗(I+). So the total service rate received by queues in I+ is capped by
∑

j∈B∗(I+) µj,

which is further capped by
∑

j∈C̃(I+) µj due to (EC.33). Note that for all queues in I
+, W̃i >W ∗

i ≥ 0.

So all buffers in I0 are non-empty at W̃ and thus have an infinitely large capacity. Since servers

in C̃(I+) are dedicated to queues in I+, the total service received by queues in I+ at W̃ is at least
∑

j∈C̃(I+) µj. Therefore, the total service rate received by queues in I+ at W̃ is no less than that

at W ∗.

We next prove that the same statement holds when there are underdemand queues at W ∗. The

underdemand queues cause a problem when servers not in B∗(I+) have residual service capacity

after serving the underdemand queues at W ∗. In that case, the residual service capacity may be

allocated to queues in I+, and thus the total service rate for queues in I+ would no longer be

capped by
∑

j∈B∗(I+)µj. To capture the residual capacity, we redefine B∗(I+) by including all

servers which have a residual service capacity and are connected to at least one queue in I+ at

W ∗. Following the previous argument, we can still prove inequality (EC.33) for the new B∗(I+)

and C̃(I+), which includes servers that have residual capacity and are dedicated to queues in I+

at W̃ . It remains to show that for all possible residual capacity, the total service rate provided by

B∗(I+) at W ∗ is no more than that by C̃(I+) at W̃ .

Let I0 denote the set of underdemand queues that are connected to servers in the new B∗(I+).

If a queue i∈ I0 is connected to multiple servers, then either all of them are not in B∗(I+), or all

of them belong to the set B∗(I+); otherwise, different residual capacities on servers that connect

to queue i have to result in different total service rate for queues in I+, which violates that W ∗

is a steady state. Since any queue in I0 is connected to at least one server in B∗(I+), it has to

ec14 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

be the case that B∗(I+) contains all servers that are connected to queue i∈ I0. Consequently, the

total service rate supplied by B∗(I+), regardless of the split of residual service capacity, is given

by
∑

j∈B∗(I+) µj −
∑

i∈I0 λi.

Because queues in I0 are not in I+, we have 0 = W ∗
i ≥ W̃i, so W̃i = 0. Consequently, queues

in I0 will remain empty at state W̃ . Therefore, at W̃ , the total service rate supplied by servers

in set B∗(I+) is
∑

j∈B∗(I+) µj −
∑

i∈I0 λi. Since B∗(I+) is contained in C̃∗(I+), and servers in

C̃∗(I+) are dedicated to queues in I+, the total service rate received by queues in I+ is at least
∑

j∈B∗(I+) µj −
∑

i∈I0 λi. We thus proved that the total service rate for queues in I+ at W̃ is no

less than that at W ∗, even if there are underdemand queues at W ∗.

Consequently, for at least one queue i ∈ I+, its service rate at W̃ is no less than that at W ∗.

Then by (55) we have W̃i ≤W ∗
i , which contradicts that i∈ I+. This proves that I+ = ∅.

EC.12. Proof of Theorem 2

Proof.

We first prove that all min-cost-max-flows X∗ have the same value of
∑

j∈J X∗
ji = X∗

iT for all

i∈ I. To get a contradiction, suppose that X1 and X2 are two optimal min-convex-cost flows with,

say, X1
iT <X2

iT . To get flow conservation at all nodes, we consider the extended network with arc

(T,S) that carries the total flow through the network. Network flow theory then says that there

is a cycle D in the extended network containing (i, T) forward such that X1
e <X2

e for all forward

arcs of D, and X1
e >X2

e for all backward arcs of D, and some α > 0 such that X1 + βχ(D) is an

optimal flow for all 0≤ β ≤α, implying that

C(X1 +βχ(D))= 0 for all 0≤ β ≤ α, (EC.38)

where χ(D) represents a unit flow (circulation) along the cycle D. Cycle D includes exactly two

arcs incident to T . One such arc is (i, T). The other arc cannot be (T,S) as a forward arc, since both

X1 and X2 are max flows due to primal feasibility in (EC.40). Thus D must include an arc (k,T)

as a backward arc. Then all arcs in D other than (i, T) and (k,T) have linear cost. This would

imply from (EC.38) that −CiT (X
1
iT +β)−CkT (X

1
kT −β) equals

∑

{e∈D|e6=(i,T),(k,T)} ce(X
1
e +βχ(D)e)

for all 0 ≤ β ≤ α, i.e., that CiT (X
1
iT + β) + CkT (X

1
kT − β) is linear in this interval, contradicting

that CiT (XiT) and CkT (XkT) are strictly convex. Thus all min-cost-max-flows must indeed have

the same value for X∗
iT for all i∈ I.

We next prove that if r∗ is constructed fromX∗ using (18), then r∗ must satisfy (55) and be score-

maximizing. Therefore W ∗ satisfies condition (d) in Lemma 2. Satisfying (55) is straightforward

because W ∗ was constructed using its inversion (60) from r∗. We next prove that r∗ is score-

maximizing by first discussing the no-underdemand-queue case.

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec15

To do that, we first characterize a min-cost-max-flow via KKT points (i.e., points that satisfy the

KKT conditions below). We formulate the min-convex-cost flow problem as the following convex

program where we drop the constraints
∑

j Xji ≤ λi (i∈ I) as they are non-binding when there are

no underdemand queues.

min
∑

i∈I,j∈J −L(j, i)Xji−
∫

∑
j∈J Xji

0
gi
(

(FC
i)−1(u

λi
)
)

du

s.t.
∑

i∈I Xji = µj

Xji ≥ 0.

(EC.39)

Let sj and νji denote the dual variables that correspond to constraints
∑

i∈I Xji = µj and Xji ≥

0, respectively. Then a solution to problem (EC.39) must satisfy the following KKT necessary

conditions (Nocedal and Wright 2006):

νji = sj −
(

L(j, i)+ gi
(

(FC
i)−1(

∑
j∈J Xji

λi
)
))

, ∀j ∈J , i ∈ I first order condition (FOC)
∑

i∈I Xji = µj, ∀j ∈J , Xji ≥ 0, ∀i∈ I, j ∈J primal feasibility
νji ≥ 0, ∀j ∈J , i∈ I dual feasibility
Xji > 0⇒ νji =0, ∀j ∈ J , i∈ I complementary slackness.

(EC.40)

In particular, sj can be interpreted as maxℓ∈I L(j, ℓ)+ gℓ(W
∗
ℓ), the highest HOL score with respect

to server j at the steady state.

If we define W ∗ from (60), then the KKT conditions (EC.40) are equivalent to conditions (54)

and (53). Specifically, primary feasibility is equivalent to the budget constraint (54); the FOC, dual

feasibility, and complementary slackness are equivalent to condition (53). Thus, any KKT point

corresponds to an r∗ that satisfies (54) and (53), which are exactly the score-maximizing condition

in the no-underdemand-queue case. Then Lemma 2 and Proposition 8 imply that W ∗ is a steady

state.

We now prove that when there are underdemand queues, r∗ is score-maximizing, i.e., it satisfies

(5)–(8) in Definition 1. In this case, some edges (i, T) must be saturated by the min-cost-max-flow.

Thus, in a min-cost-max-flow X∗, server j either sends flows to queues with the lowest cost (so

the highest score) L(j, i) + gi(W
∗
i), or to queues with the second lowest cost if those with the

lowest cost have no extra room to accommodate the supply fluid from server j. In either case,

the corresponding r∗ satisfies constraint (7) and maximizes the objective (5). Also, since X∗ is a

max-flow it saturates all edges (S, j), so the corresponding r∗ satisfies condition (6). Finally, r∗ is

nonnegative and satisfies (8). Thus r∗ satisfies the LP characterization (5)–(8) and thus is score-

maximizing. Therefore conditions (c) and (d) in Lemma 2 both hold. If (e) further holds, then W ∗

is the unique steady state by Lemma 2 and Proposition 8; otherwise, we have obtained an HOL

waiting time vector that satisfies condition (d) in Lemma 2. By the proof of Proposition 8, there

cannot be another steady state W ∗. So failure of condition (e) implies that the steady state does

not exist.

ec16 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

EC.13. Proof for Theorem 3

Proof.

We define ∆gi(t) := gi(Wi(t))−gi(W
∗
i) as the difference in the scores of queue i between at time t

and at the steady stateW ∗. Define I(t) := argmax{∆gi(t) | i ∈ I}, and ∆g(t) :=max{∆gi(t) | i∈ I};

similarly, define I := argmin{∆gi(t) | i ∈ I}, and ∆g(t) := min{∆gi(t) | i ∈ I}. We want to show

that for any ǫ > 0, there exists a T > 0 such that for all t≥ T , ∆g(t)≤ ǫ (or ∆g(t)≥−ǫ).

We next prove the ∆g(t)≤ ǫ case. The main idea is to show that the supply fluid that flows into

any queue in I(t) at time t will be no less than that at the steady state, because queues in I(t)

has the largest score difference compared to their scores at the steady state. Since queues in I(t)

also has a larger HOL waiting time at time t than that at the steady state, the score change rate

of queues in I(t) will be smaller than that at the steady state even if they have the same service

rate.

We next prove that for any queue i∗ ∈ I(t), its score change rate decreases by at least a constant

rate. Consider a connected component A(t) at time t (with respect to E(t)) that contains queue i∗.

Let B∗(A(t)∩I(t)) denote the set of servers connected to queues in A(t)∩I(t) at the steady state,

and let C(A(t)∩I(t)) denote the set of servers that are dedicated to serving queues in A(t)∩I(t) at

time t. In the case with underdemand queues, we redefine the routing graph by first removing the

underdemand queues in I0 and updating the capacity of servers connected to those queues with

their residual capacity. We then define B∗(A(t)∩I(t)) and C(A(t)∩I(t)) on the updated routing

graph correspondingly. Using the argument in the proof of Proposition 8 (by replacing W̃ and I+

by W (t) and A(t)∩ I(t)), we get that the total service rates received by queues in A(t)∩ I(t) at

time t cannot be smaller than what they receive at the steady state W ∗, that is,

∑

i∈A(t)∩I(t)

∑

j∈J

rji(t)≥
∑

j∈C(A(t)∩I(t))

µj ≥
∑

j∈B∗(A(t)∩I(t))

µj ≥
∑

i∈A(t)∩I(t)

∑

j∈J

r∗ji. (EC.41)

Since all queues in A(t)∩ I(t) have the same score change rate at time t (because they are in

the same component A(t)), we can derive the following lower bound for θi∗(t),

θi∗(t) =
(

∑

i∈A(t)∩I(t)

λiF
C
i (Wi(t))

g′
i
(Wi(t))

)−1 (
∑

i∈A(t)∩I(t) (λiF
C
i (Wi(t))−

∑

j∈J rji(t))
)

≤
(

∑

i∈A(t)∩I(t)

λiF
C
i (Wi(t))

g′
i
(Wi(t))

)−1 (
∑

i∈A(t)∩I(t) (λiF
C
i (Wi(t))−

∑

j∈J r∗ji(t))
)

=
(

∑

i∈A(t)∩I(t)

λiF
C
i (Wi(t))

g′
i
(Wi(t))

)−1 (
∑

i∈A(t)∩I(t) (λiF
C
i (Wi(t))−λiF

C
i (W ∗

i (t)))
)

(EC.42)

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec17

where the inequality follows from (EC.41), and the last equality follows from the stationarity

condition (55). SinceW ∗
i <Wi(t)≤W i, and by our assumption that abandonment time has positive

density everywhere in [0, W̄i], we have f
i
:= inf{fi(x) | x∈ [0,W i]}> 0. Therefore,

∑

i∈A(t)∩I(t) (λiF
C
i (Wi(t))−λiF

C
i (W ∗

i (t)))

<
∑

i∈A(t)∩I(t) λi(F
C
i (Wi(t))−FC

i (W ∗
i))

(

=−λi

∫Wi(t)

W∗
i

fi(τ)dτ
)

< −
∑

i∈A(t)∩I(t) λi(Wi(t)−W ∗
i)f i

< −λi∗(Wi∗(t)−W ∗
i∗)f i∗

(EC.43)

Since gi is strictly increasing over its compact domain [0,W i] for each i ∈ I, we can find c, c > 0

such that

c≤ g′i(τ)≤ c, for all i∈ I, τ ∈ [0,W i]. (EC.44)

Consequently, the term
(

∑

i∈A(t)∩I(t)

λiF
C
i (Wi(t))

g′
i
(Wi(t))

)−1

can be lower bounded by

c
(

∑

i∈A(t)∩I(t) λiF
C
i (Wi(t))

)−1

. When ∆g(t) = gi∗(Wi∗(t)) − gi∗(W
∗
i∗) ≥ ǫ, (EC.42) and (EC.43)

imply that

θi∗(t) <
(

∑

i∈A(t)∩I(t)

λiF
C
i (Wi(t))

g′
i
(Wi(t))

)−1 (
∑

i∈A(t)∩I(t) (λiF
C
i (Wi(t))−λiF

C
i (W ∗

i (t)))
)

< −c
(

∑

i∈A(t)∩I(t) λiF
C
i (Wi(t))

)−1

λi∗(Wi∗(t)−W ∗
i∗)f i∗

< −c
(

∑

i∈A(t)∩I(t) λiF
C
i (Wi(t))

)−1

λi∗
gi(Wi∗ (t))−gi(W

∗
i∗)

c
f
i∗

= −C(gi∗(Wi∗(t))− gi∗(W
∗
i∗))

< −Cǫ

(EC.45)

for some constant C > 0 which does not depend on t nor the choice of i∗ ∈ I(t). Thus, ∆g′i∗(t) =

θi∗(t)≤ −ǫ for all t and all i∗ ∈ I(t) when ∆g(t)≥ ǫ, and consequently ∆g′(t)≤max{∆g′i(t) | i ∈

I(t)}<−Cǫ. Therefore, ∆g(t) is always decreasing at a rate of at least Cǫ when ∆g(t)≥ ǫ. Thus,

for sufficiently large t, we have

∆g(t) =∆g(0)+

∫ t

0

∆g′(t)dt< ǫ, (EC.46)

which proves that ∆g(t)→ 0 when t→∞. An analogous argument can be used to prove that

∆g(t)→ 0. Therefore, we have shown ∆gi(t)→ 0 for all i∈ I, which lead to Wi(t)→W ∗
i by strict

monotonicity of gi(·) and compactness of Wi(t).

EC.14. Proof of Proposition 9

Proof. We establish an equivalence between the auxiliary problem (67) and the min-convex-cost

flow problem on G∗ so that we can apply Theorem 2 to construct a steady-state service-rate matrix

which solves the auxiliary problem.

ec18 e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost

If (W ∗, r∗) represent a steady state, it must satisfy condition (55). Plugging (55) into the expres-

sion for FaW∗ in (66) leads to

Fa(W ∗) = −
∑

i∈I
λi

λ

(∑
j∈J r∗ji
λi

− µ
λ

)2

= −
∑

i∈I

(
∑

j∈J r∗ji)
2

λλi
+(µ

λ
)2.

(EC.47)

Removing the constant term (µ
λ
)2 from the objective function of (67) will not change the optimal

solution. Thus, solving the optimization problem (67) is equivalent to solving

max
∑

j∈J ,i∈I r
∗
jiUji−

∑

i∈I

(
∑

j∈J r∗ji)
2

λλi

s.t. r∗ satisfies (54), (55), and (63).
(EC.48)

Condition (55) holds trivially because we have plugged (55) into the objective (EC.48) to make it

a function of r∗. By removing constraint (63), we obtain the following relaxation of (EC.48) that

only includes constraint (54) (the budget constraint):

max
∑

j∈J ,i∈I r
∗
jiUji−

∑

i∈I

(
∑

j∈J r∗ji)
2

λλi

s.t.
∑

i∈I r
∗
ji = µj, ∀ j ∈J .

(EC.49)

If we define CSj = 0, Cji = −Uji and CiT (x) =
x2

λλi
for all j ∈ J , i ∈ I, then solving (EC.49) is

equivalent to solving a min-cost-max-flow on networkG∗(V,E,u∗,C), where V , E, and u are defined

by (15), (56), and (57).

Note that for all i∈ I, by defining g̃i(τ) =−
2
λ
FC

i (τ), then CiT (x) has the alternate expression

CiT (x) =
x2

λλi

=−

∫ x

0

(

−
2

λ

)

u

λi

du=−

∫ x

0

g̃i

(

(FC
i)−1

(

u

λi

))

du, (EC.50)

which coincides with the cost function we defined in (58). Then by invoking Theorem 2, the min-

cost-max-flow on G∗ gives a feasible service rate vector r∗ associated with some steady state W ∗

under the following M+W index

L(j, i)+ ηg̃i(τ) =L(j, i)− η
2

λ
FC

i (τ). (EC.51)

Note that M+W index (EC.51) is equivalent to the M+W index (68) because the two M+W indices

differ by the constant 1. We propose to use (68) instead of (EC.51) to comply with the assumption

that gi(0) = 0.

Thus we have proved that (i) a min-convex-cost flow on G∗ provides an optimal solution to the

relaxed problem (EC.49); and (ii) the min-convex-cost flow corresponds to a steady-state service-

rate vector r∗ under the M+W index (70). Therefore r∗ maximizes the problem (EC.49), which is

a relaxation of (EC.48). From (2), we further see that r∗ is feasible solution to problem (EC.48).

Thus, r∗ must be the optimal solution to problem (EC.48), and the equivalent optimization problem

(67).

e-companion to Author: An Overloaded Bipartite Queueing System with Matching Cost ec19

EC.15. Proof of Proposition 10

Proof. Since W ∗ is the steady state under the M+W index (68) and rmfs is the associated

service-rate matrix that maximizes the objective in (67), by Proposition 9 they must solve the

auxiliary problem (67), which is a relaxation of the original problem (65). We next show that

(W ∗, rmfs) is feasible to (65), and thus must also solve (65).

We first show that (W ∗, rmfs) represent a steady state under the M+W index (68). Suppose

rmfs
ji > 0, which implies that i is in the active set of server j. For all other i′ 6= i in the active set of

server j, their index given by score∗j,i′(τ) can only decrease after using the matching score U +∆

rather than U . Thus, if rmfs
ji > 0, then queue i has to remain in the active set of server j under the

new index. Thus, rmfs and W ∗ still satisfy condition (53), which says server j only serves queues in

its active set. Since the values of rmfs are not changed, conditions (54) and (55) remain valid. Thus

rmfs satisfies conditions (53)–(55), and the corresponding W ∗ gives a steady-state by Lemma 2.

It remains to show that rmfs is the unique steady-state service-rate vector under the new index

(70). First, the new arc set under the revised M+W index (70) is

Ẽ∗ :=E∗\{(j, i) ∈E∗ | rmfs
ji = 0}. (EC.52)

Suppose rmfs +∆r is another service-rate matrix in Γ∗(W ∗) for some ∆r := (∆rji)j∈J ,i∈I 6= 0. If

rmfs
ji = 0 for some (j, i), then we know (j, i) /∈ Ẽ∗ (has be removed under the new M+W index), so

∆rji = 0. If rmfs
ji = µj, then rmfs

ji′ = 0 for all i′ 6= i, and thus (j, i′) /∈ Ẽ∗. Thus, (j, i) is the only arc

in Ẽ∗ leaving j. Thus, if rmfs
ji = µj, we must have rmfs

ji +∆rji = µj, which implies that ∆rji = 0.

Thus, all inequalities that are binding for rmfs will still be binding for rmfs + t∆, so rmfs + t∆ is

on the minimal face of the polytope Γ∗(W ∗) which contains rmfs. Because rmfs is an extreme point

of Γ∗(W ∗), the minimal face that contains rmfs is exactly itself. This proves that such a different

service-rate matrix rmfs+∆r does not exist.

