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Problem definition. The deceased-donor kidney transplant candidates in the US are ranked according to

characteristics of both the donor and the recipient. We seek the ranking policy that optimizes the efficiency-

equity tradeoff among all such policies, taking into account patients’ strategic choices.

Relevance. Our approach considers a broad class of ranking policies, which provides approximations

to the previously and currently used policies in practice. It also subsumes other policies proposed in the

literature previously. As such it facilitates a unified way of characterizing good policies.

Methodology. We use a fluid model to approximate the transplant waitlist. Modeling patients as rational

decision makers, we compute the resulting equilibria under a broad class of ranking policies, namely the

achievable region. We then develop an algorithm that optimizes the system performance over the achievable

region.

Results. We show analytically that it suffices to restrict attention to priority scores that are affine in

the patient’s waiting time. We also show through a numerical study that the total QALYs can be increased

substantially by allowing patient rankings to depend on the kidney quality. Lastly, we observe that there is

almost no improvement if only the healthier patients are prioritized for certain kidney types.

Managerial Implications. Our results verify that ranking patients differently for kidneys of different

quality can reduce the survival mismatch and the kidney wastage significantly. Consequently, the policy

change in 2014, that implemented prioritizing the healthiest patients when allocating the highest 20% quality

organs, is a step in the right direction. For further improvement, one may consider revising the current policy

by also prioritizing the least healthy patients on the waitlist for the lowest-quality organs.
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1. Introduction

Although patients with end-stage renal disease (ESRD) can sustain their renal function on dialysis

for several years, the desired therapy for ESRD is transplantation. Unfortunately, the supply of

kidneys for transplantation is far fewer than the demand for them. Thus, patients with ESRD join
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a waitlist managed by the United Network of Organ Sharing (UNOS). In 2017, there were 35,587

new patients who registered to the kidney waitlist, but only 14,038 kidneys from deceased donors

were transplanted during the same year. As of June 5, 2018, the number of candidates awaiting

transplantation is 95,1021. The waiting time to receive a transplant can vary from several months

to decade, or even longer. Therefore, the ranking of patients on the transplant waitlist is a key

factor determining who lives and who dies.

Given the limited supply of kidneys for transplantation, any allocation mechanism would

inevitably favor certain patients over others. Although it is hard to pick a single performance

metric for choosing an allocation scheme among a set of alternatives, a desirable allocation pol-

icy should strike a balance between efficiency and equity (OIG, 1991; Zenios et al., 2000; Akan

et al., 2012). An allocation scheme is efficient if it maximizes the total quality-adjusted-life-years

(QALY) of all patients, and is equitable if patients in different categories have equal access to

kidneys (Zenios et al., 2000). Unfortunately, efficiency and equity cannot be optimized at the same

time. For example, offering kidneys to younger patients may contribute a larger margin in QALYs,

but can increase inequity across different age groups. Therefore, the policy maker should strive to

balance efficiency and equity.

As alluded to above, the UNOS is responsible for formulating a nation-wide ranking policy

that governs the allocation of deceased-donor kidneys in the US. The current policy has been

implemented since December, 2014. The previous policy had been in place for more than twenty

years without major changes. Under the previous policy, each patient on the kidney waitlist is

assigned a score, which is a sum of the patient’s cumulative waiting time since starting dialysis

(in years), and a certain number of bonus points for being pediatric (Age < 14), highly sensitized

(CPRA2> 80%), or well matched with the donor’s Human Leukocyte Antigen (HLA) type. The

score, however, does not depend on the quality of the kidney, which is measured by kidney donor

profile index (KDPI); see (Rao et al., 2009). Kidneys with lower KDPI are associated with better

post-transplant survival.

Kenneth Andreoni, the former chair of the UNOS Kidney Transplantation Committee, com-

mented that the old allocation policy “was based on good science, but it was at a different time”

(Faherty, 2009). Critics objected to the previous allocation policy because it is responsible for

two unintended consequences. First, the post-transplant survival time between a recipient and his

donor are not well matched. Under the previous policy, it often happens that a high-quality kid-

ney is transplanted to a senior recipient, who may then die with a well-functioning kidney, or a

1 https://optn.transplant.hrsa.gov/data/.

2 The Calculated Panel Reactive Antibodies (CPRA) calculates the probability that a recipient is HLA-incompatible
with a randomly selected donor.
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low-quality kidney, after being transplanted to a young patient, stops functioning and the patient

needs another transplant (Committee, 2011). Both cases lead to welfare loss. Second, kidneys are

frequently turned down by patients. If a kidney cannot find a recipient within its cold ischemia

time, which is typically 24-48 hours, it loses its function and has to be discarded. Sung et al. (2008)

reported that about 11% of medically qualified kidneys were eventually discarded in year 2006.

These unintended consequences were due in part3 to the fact that the previous allocation policy

was “donor-blind”, i.e., the score of a patient for a given organ did not depend on the KDPI of

the organ (OPTN/UNOS, 2008). Under the new policy that was implemented in 2014, kidneys of

the highest quality (KDPI < 20%) are first offered to candidates with estimated post-transplant

survival time in the top 20th percentile, and then to the rest of the patients; whereas the rest

kidneys (KDPI ≥ 20%) will be offered to the entire patient population by each patient’s score from

high to low4(Israni et al., 2014). Therefore, the new policy is not donor-blind.

The previous and current policies have some common features. For example, under both policies,

a patient’s score increases with his waiting time. Consequently, all else being equal, a patient who

has waited longer will have a higher priority and be served first. In what follows, we refer to this

feature as (serving from the) head-of-line. Moreover, under both policies, patients can turn down

kidney offers without a penalty. In practice, a kidney can easily be turned down hundreds of times

(Wolfe et al., 2007). Therefore, the final allocation depends on both the ranking policy and the

patient choice (Su and Zenios, 2006). Despite these similarities, the new policy differs from the

previous one in that the healthiest patients are provided extra priority for kidneys with KDPI

≤ 20%; whereas all patients are ranked by the same order for all kidneys under the previous policy.

Besides that, one may consider other ways to revising the current policy and further improving its

performance. For example, given that the current policy has strived to increase survival matching

by offering high-quality kidneys first to healthier patients, would offering the low-quality kidneys

first to less healthy patients further improve the survival matching?

To systematically evaluate and compare different allocation policies, below we define three policy

classes, all of which use health score and waiting time as the two major criteria to rank the patients

on the waitlist. The head-of-line-matching (HL-M) policies rank patients differently according to

the quality (measured by the KDPI) of the organ, which covers a wide range of ranking policies

that could potentially be implemented in the near future. The head-of-line-healthier-first (HL-HF)

3 Another attributor to survive mismatching is the previous policy’s overemphasis on HLA matching. Because the
significance of HLA matching in affecting post-transplant survival has been diminishing recently due to improvements
in anti-rejection medication (Su et al., 2004a), the new score formula has decreased the weight of HLA matching.

4 The allocation policy is further embedded in a geographically-tiered structure. We suppress how the policy depends
on geography for simplicity; see (Israni et al., 2014) for those details. Also see (Ata et al., 2016) for a study of the
issues stemming from the geographic structure.
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policies, depending on the kidney quality, assign healthier patients with equal or higher priority

over less healthy patients. Clearly, the HL-HF policies are a subclass of the HL-M policies, and both

policy classes cover the current policy. The head-of-line-donor-blind (HL-DB) policies rank all the

patients in the same order irrespective of the kidney quality. The HL-DB policies are also a subclass

of the HL-M policies, and the previous policy is close to an HL-DB policy. Formal definitions of the

HL-DB, HL-HF, and HL-M policies are provided in Section 2.2. Studying these policies provides

important policy implications. For example, by showing that HL-M policies improves over HL-DB

policies in reducing survival mismatch and the kidney wastage, it sheds some light on the benefits

of the recent policy change in 2014; while identifying the gap between the HL-M and the HL-HF

policies explores the potential value of making further revisions to the current policy.

In both the previous and current policies, the cumulative waiting time (years) is added to a

patient’s total score. However, the potential use of a nonlinear score has been explored in the

literature. For example, with a data-driven optimization method, Bertsimas et al. (2013) search

for a scoring function which maximizes the total life years from transplant over a six-month period

subject to equity constraints. The optimal score function they derived is a piecewise linear function

of a patient’s cumulative waiting time. Their optimal score has incorporated the donor attributes,

which also justifies the advantage of using donor-dependent ranking. In a similar fluid queueing

system without patient choice, Ding et al. (2016) derive a score that optimizes the allocation

outcome under a certain fairness constraint, and show that this score increases nonlinearly with a

patient’s waiting time. However, we prove that a simple scoring rule that is affine in the patient’s

waiting time can recover the entire achievable region of the HL-M policy, supporting that the way

of incorporating the waiting time in the current policy is effective.

Transplant researchers often resort to simulation experiments to evaluate a kidney allocation

policy and glean insights, see for example, (Israni et al., 2014; Schold and Reese, 2014). Indeed,

the Scientific Registration of Transplant Research (SRTR) has developed a simulation software

called the kidney-pancreas simulated allocation model (KPSAM) for researcher use. The KPSAM

is advantageous in capturing complex features of the kidney allocation policies in practice, such

as geographical factors, previous transplants, etc. Nevertheless, it suffers from three limitations.

First, the KPSAM can only be used to evaluate a specific policy, rather than to derive general

insights for a set of policies which share common features, such as the three policy classes defined

in this paper. Second, it is computationally costly to simulate a single policy, and the result is

usually noisy. Lastly, the KPSAM assumes that the patients’ accept/reject decision patterns follow

the historical data, and thus according to Israni et al. (2014), it “cannot account changes in organ

acceptance behavior. Therefore, if the new policy results in dramatic changes in organ acceptance

behavior, the estimates of number of transplants from the simulations will differ from reality”.
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Given these challenges, we take a modeling-based approach to investigate the waitlist system.

Our model takes into account the impact of both kidney quality and waiting time on a patient’s

acceptance/rejection decision and attempts to model the patient’s strategic behavior in response to

the policy changes. For analytical tractability, we use a fluid model to approximate the dynamics of

the transplant waitlist, in which patients and kidneys are regarded as continuous fluid that arrive

at the system according to a deterministic process. We show that under the fluid approximation,

the kidney waitlist system admits a unique equilibrium, in which all patients decide on whether

to accept a kidney rationally based on their belief regarding the waiting times for the various

kidney offers they may receive, and the resulting waiting times are consistent with their beliefs.

The equilibrium can be characterized as a solution to a nonlinear complementarity problem (NCP).

We assume that the social planner seeks a ranking policy to optimize a given (steady-state) per-

formance metric. We refer to the set of (performance metrics associated with) achievable equilibria

as the achievable region for a certain policy class. In queueing systems without strategic customer

behavior, the achievable region is usually characterized as a polytope with conservation-law-type

constraints; whereas in our setting, each equilibrium is the unique solution to a NCP, therefore the

achievable region is non-convex. Consequently, optimization over the achievable region is more chal-

lenging in our setting. However, by exploiting the special structure of our policies, we express the

achievable region as a union of subregions and derive a closed-form expression for each subregion

that facilitates computation.

To summarize, below are the main contributions of this paper.

• We develop a novel fluid model for the kidney transplant waitlist. This model captures a

patient’s health state change as well as his acceptance/rejection strategy in response to a given

allocation policy. We prove that there exists a unique equilibrium and characterize it as a solution to

an NCP. To the best of our knowledge, such types of fluid models have not been previously studied,

and our equilibrium analysis of this complex fluid model makes a methodological contribution to

the related literature.

• The HL-M policy studied in this paper covers a broad set of policies, including those proposed

in the extant literature, as well as the previous and the current policies used by the UNOS. The

achievable-region method proposed in this paper allows the policy makers to compute the efficiency-

equity Pareto frontier for all HL-M (or HL-HF, HL-DB) policies. As such, our numerical results,

which use kidney transplant data, yield useful policy implications. Specifically, when the policy

maker aims to maximize the total QALYs as well as to minimize disparity in transplantation

likelihood across different patient classes, the Pareto frontier of the HL-M policies improves over

the HL-DB policies by 10% to 26% in total QALYs, suggesting a great potential of incorporating

kidney quality into the ranking mechanism. Therefore, the new policy, which allocates the top 20%
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and the rest kidneys using different ranking mechanisms, moves the needle in the right direction,

i.e., from HL-DB to HL-M. Nevertheless, a possibly counter-intuitive result is that the HL-HF

policies have comparable performance with the HL-DB policies. That means, the new policy, as an

HL-HF policy, has not explored the full capability of the HL-M policy. In order to do that, future

policy revisions might consider allocating low-quality kidneys to less healthy patients first.

• We prove that for HL-M or HL-HF policies, it suffices to use a linear waiting time score (as

opposed to a more general function of the waiting time) in order to optimize the steady-state

performance. However, for HL-DB policies, we show that a linear score may not recover the entire

achievable region, and more sophisticated functional forms are needed in order to ensure optimality.

We conclude this section with a roadmap for the paper. In Section 1.1, we review the related

literature and a set of representative policies that have been studied in the literature. In Section

2, we formally introduce our model setup, including definitions of the HL-M, HL-HF, and HL-

DB policies, the calculation of the patient’s post-transplant life time, etc. We also present the

equilibrium analysis of the fluid model in Section 2, which provides the theoretical basis for the

achievable region approach. Section 3 provides the mathematical formulation of the achievable

region, and proves that the achievable region of HL-M policies can be achieved by a score function

that is linear in the patient’s waiting time. Section 4 discusses how to use the achievable-region

approach to optimize certain efficiency metrics subject to equity constraints, and provides practical

methods of solving the resulting optimization problem. Section 5 provides a numerical example of

applying the achievable-region approach. Section 6 concludes the paper and summarizes the main

policy implications derived in this paper.

Readers primarily interested in the practical/policy implications of our work can ship ahead

to Section 5 before reading the earlier sections. Moreover, the derivations in Section 2 can be

omitted by such readers on a first reading. However, Sections 3 and 4 are essential to understanding

the crux of our approach, the achievable-region method. Similarly, Sections 2 and 3 are essential

to understanding the mathematical foundations of our work; and the readers interested in the

underlying mathematical development are encouraged to study those in detail as we expect that

our approach to carry over to other settings.

1.1. Literature Review

One of the earliest models of organ allocation is the sequential stochastic assignment model studied

by Derman et al. (1972). In this model, n resources are assigned to n candidates, with a payoff

cφ if the resource has value φ and the candidate has value c. Because of the product form of

the reward function, the well-known Hardy’s theorem implies that the optimal situation would

be an exact high-high match, i.e., the ith highest resource should be assigned to the candidate
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of the ith highest value. This principle, when applied to the kidney allocation problem, suggests

that it maximizes total life years when there is a high degree of survival matching. The sequential

stochastic assignment problem was later studied by Albright (1974), David and Yechiali (1995),

and Righter (1989).

Zenios et al. (2000) considers the resource allocation problem in the context of the deceased-donor

kidney allocation, where an important performance metric is equity across different patient groups.

Zenios et al. (2000) proposes a multi-objective function which includes three criteria: quality-

adjusted life years, inequity in waiting time, and inequity in the likelihood of transplantation. A

dynamic allocation policy is proposed to approximately optimize this multi-objective function. In

reality, however, it is not always practical to include queue length as one of the ranking criteria,

as in this case a patient’s rank may depend on future arrivals of his queue.

To address this issue, Su and Zenios (2005, 2006); Su et al. (2004b) propose two versions of

partition-based policies which will not dynamically allocate kidneys depending on queue length

information. In their first version (hereafter referred to as Par1 ), candidates and kidneys are

partitioned into exclusive groups according to their survival expectancy, and high-survival kidneys

are allocated to high-survival candidates (Su and Zenios, 2005). Because the allocation depends on

both the kidney and the patient types, Par1 is a special form of an HL-M policy. Because Par1

matches the kidneys to recipients based on their health scores rather than waiting times, a patient

cannot get a better kidney by waiting longer. Consequently, patients have no incentive to turn

down kidneys. Thus, Par1 addresses an important shortcoming of the previous policy. Moreover,

Par 1 requires that different patient classes have equitable probabilities of getting a kidney offer.

Par1 achieves equitable allocation probabilities, in part, by restricting the access of high-survival

patients to medium- or low-quality organs. This is not the case for both the previous and the

current allocation policies.

In Su and Zenios’ second partition-based policy (Par2 ), kidneys are also partitioned by their

survival expectancy, but patients can specify a range of KDPIs of interest when they join the

waitlist. The waitlist is therefore partitioned into multiple queues, each of which is waiting for

kidneys whose KDPIs fall into a specific range. Although our paper takes a similar approach by

modeling the recipient choice, the ranking policies considered in our model, i.e., HL-M (or HL-HF,

HL-DB), are more general than the priority rule of Par2, which requires all patients to be served

on a first-come-first-served basis regardless of their health scores. Moreover, while Su and Zenios

(2006) has focused on the impact of patient choice on allocation outcomes, the focus of our paper

is on searching for the optimal priority rule in the presence of patient choice.

Many researchers have used simulation models or computational methods to compare different

policies, e.g., (Abellán et al., 2004; Wujciak, 1997; Wujciak T, 1993; Gaston et al., 1993; Opelz and

Wujciak, 1995; Bertsimas et al., 2013).
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A few recent papers have discussed some emerging issues related to organ allocation. For exam-

ple, Segev et al. (2007); Dai et al. (2017) studied the impact of allocation rules on the likelihood of

live donation; Kong et al. (2010); Gentry et al. (2015) studied the region design issue for the sake

of minimizing geographic disparity and maximizing efficiency; Ata et al. (2016) considered the use

of jet services to overcome geographical disparities; whereas Arıkan et al. (2017) studied how to

increase the decreased-donor procurement rate, hence, the supply of organs, through geographic

sharing. Sandıkçı et al. (2013); Proon et al. (2017) studied the tradeoffs in releasing partial infor-

mation to patients on the liver waitlist; whereas Akan et al. (2012) considered optimizing the liver

allocation policy. Arora and Subramanian (2015) studied the incentive alignment problem in the

organ donation value chain, that is, between the social planner, organ-procurement-organization,

and the trauma center. We refer the reader to Friedewald et al. (2014) and Ata et al. (2018) for

further overviews of the deceased-donor transplant system.

2. Fluid Model for the Transplant Waitlist
2.1. Model Setup

This section advances a fluid model to study the deceased-donor transplant waitlist of a moderate-

to-large donor service area5 for a certain blood type (A, B, O, or AB). This modeling choice not

only simplifies the analysis, which is otherwise intractable, but also is based on two empirical

facts: First, a great majority of kidneys are transplanted within the same donor service area where

it was procured6. Second, as of 1991, 93% of kidney transplantations in the U.S. were between

identical blood types (Port et al., 1991), and this fraction has increased to 94.05% during 2005-2010

according to our data. In addition, we exclude highly sensitized patients7 because their waiting

times exhibit high variation due to HLA incompatibility, which has been suppressed in our fluid

model for tractability.

Various patient- and donor-related factors can influence a patient’s post-transplant survival

expectancy (PTSE). The SRTR developed a proportional hazard model to predict a patient’s

PTSE, which leads to the following expression (Su and Zenios, 2006; SRTR, 2007)

PTSE= cφ, (1)

where c and φ represent aggregate contributions of patient- and donor-related covariates to the

PTSE, respectively; see, for example, (Su and Zenios, 2006) for a derivation of (1). In what follows,

5 The U.S. has been divided into 58 donor service areas.

6 http://surgery.ucsf.edu/conditions–procedures/kidney-transplantation.aspx.

7 Our numerical study excludes patients with CPRA ≥ 80% (and the kidneys transplanted to those patients ) that
corresponds to about fifteen percent of the waitlist population as of 03/31/2010 (six months after adoption of CPRA)
(Cecka et al., 2011).
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we refer to c as a patient’s health score and refer to φ as kidney quality. The PTSE function, due

to its product form, is supermodular in c and φ, implying that the benefit is larger when higher-

quality kidneys are matched to younger and healthier patients than when they are matched to

the older and unhealthier ones. This is consistent with the prevailing belief that survival matching

improves total life years.

We let c(t; ξ) denote the patient’s health score at time t conditional on his health score being

ξ when he joins the waitlist, i.e., c(0; ξ) = ξ. We assume that c(t; ξ) is continuously differentiable

and strictly decreasing. We further assume that the future evolution of the patient’s health score

depends only on his current health score, i.e., it is (deterministically) Markovian. Using this prop-

erty, one can show that

c(t; ξ) =H−1(t+H(ξ)), (2)

where H is a strictly decreasing, continuously differentiable function and H−1 is its inverse. In our

numerical study, we estimate the function c(·; ξ̄) using the formula provided by Israni et al. (2014)

(also see (Clayton et al., 2014) and (Rao et al., 2009)), and plot c(·; ξ̄) in Figure 1.
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Figure 1 Health Score Curve (estimated from data)

The upper curve represents the evolution of a patient’s health

score with an initial value of ξ̄. Once his health score degrades

to ξ, the rest of the curve coincides with that of the patient

whose initial health score is ξ. That is, shifting the lower

curve to the right yields precisely the relevant part of the

upper curve. A patient dies with a state-dependent hazard

rate h(c), with limc↓ξ h(c) =+∞.
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Figure 2 The Evolution of a Patient’s Score

The score L(c(τ ; ξ), j, τ ) is continuous and strictly

increasing in τ except at finitely many points in K.

This figure (and the labels on the X- and Y-axis) will

be used in Appendix E to illustrate the discontinuity

of τj(ξ) in Sj .

Patients may die as they wait for a transplant. We assume that the pre-transplant survival time

has a hazard rate h(c) which continuously decreases with the patient’s current health score c.

This generalizes the common assumption in the literature that pre-transplant survival time has

constant hazard rate (e.g., Su and Zenios (2006), Zenios et al. (2000), Akan et al. (2012), and Ata
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et al. (2016)). Since a patient’s health score c(t; ξ) changes with his cumulative waiting time, we

can compute the cumulative distribution function (cdf) of the pre-transplant survival time for a

patient with initial health score ξ as Fξ(t) := 1− exp(−
∫ t

0
h(c(s; ξ))ds). We let F̄ξ(t) := 1−Fξ(t) =

exp(−
∫ t

0
h(c(s; ξ))ds) denote the complementary cdf of the pre-transplant survival time. We assume

that the patient dies with probability one when his health score drops to ξ. That is, h(c)→∞ as

c→ ξ. Consequently, the pre-transplant survival time of a patient with initial health score ξ has

an upper limit τ̄ξ := c−1(ξ; ξ), where c−1(·; ξ) denotes the inverse function of c(·; ξ).

We assume that there are J types of kidneys. Kidneys of type j have quality φj (j = 1, . . . , J),

where φ1 < φ2 < . . . < φJ . That is, lower-indexed kidneys correspond to lower quality. The kidney

transplant waitlist is mathematically equivalent to a multi-server queueing system with abandon-

ments (i.e. deaths). The J different types of kidneys are modeled as J heterogeneous servers, with

the service times corresponding to the inter-arrival times of kidneys. Also, we assume

1

h(c)
< cφ1 for all c > 0, (3)

In Equation (3), 1/h(c) provides an upper bound for the survival expectancy of a patient of health

score c on dialysis. It is an upper bound because in reality the patient’s hazard rate increases with

time. Indeed, the constant hazard rate would have resulted in a life expectancy of 1/h(c). On the

other hand, cφ1 gives the PTSE for a patient of health score c who has been transplanted the

lowest-quality kidney. The preceding inequality then implies that the patient could live longer by

transplanting even the lowest-quality kidney compared to staying on dialysis. In what follows, this

assumption will be used to show that patients prefer receiving a transplant to staying on dialysis

and that they prefer to receive a transplant sooner than later; see Lemma 1.

In our fluid model, patients and kidneys are modeled as continuous fluid which arrive at the

waitlist system according to a fixed rate. We assume that the total arrival rates of kidneys and

patients are given by µ and λ, respectively. We assume λ>µ to model the realistic situation that

the total supply of kidneys cannot meet the total demand. To be more specific, the kidneys of type j

arrive at a constant rate µj for j = 1, . . . , J . Note that µ=
∑J

j=1 µj. We also assume that the initial

health score of patients ξ admits a continuous distribution over the interval [ξ, ξ̄] with pdf ρ(·). In

particular, the arrival rate of patients with initial health score ξ ∈A is given by λ
∫

ξ∈A
ρ(ξ)dξ.

When a deceased-donor kidney is procured, patients on the waitlist are ranked by a specific

allocation policy. A more detailed discussion of the allocation policy will be provided in the next

subsection. The kidney is then sequentially offered to the patients according to their rank from

highest to lowest. When the kidney is offered to a patient, he has to decide whether to accept or

reject it. By accepting the kidney offer, the patient departs the waitlist; otherwise, the kidney will
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be offered to the next highest ranked patient, the third, and so on. The patient seeks to maximize

his expected QALYs. Without loss of generality, we normalize the quality-of-life coefficient after

transplantation to one, but allow the quality-of-life coefficient before transplantation, denoted by

η, to vary from patient to patient. According to the existing literature (e.g., (Valderrábano et al.,

2001; Moreno et al., 1996)), η depends on the patient’s socioeconomic status as well as a few health-

related attributes, mainly gender and comorbidities (particularly diabetes). Because the latter are

correlated with the patient’s initial health score ξ, we assume that the distribution of η varies

according to ξ. For analytical tractability, we assume that η is time-stationary during a patient’s

wait8 and that it has a continuous distribution with cdf Gξ(·) among patients with initial health

score ξ. We assume that for all ξ, Gξ(·) have a common support of [0,1]. The reader can find the

estimates of the model quantities, such as h(·), Gξ(·), ρ(·) in Section 5

2.2. Allocation Policies

Given the above model setup, we next formally define the three policy classes introduced in Section

1. The head-of-line matching (HL-M) policy uses the following formula to calculate a patient’s

kidney allocation score:

Score under an HL-M = L(c(τ ; ξ), j, τ), (4)

where τ denotes the patient’s cumulative waiting time. A deceased-donor kidney is offered sequen-

tially to the candidates on the waitlist in the order of their scores. We assume L(c(τ ; ξ), j, τ) satisfies

the following properties: (1) its partial derivative ∂L/∂τ exists and is continuous and positive

everywhere; (2) Letting K = {c1, c2, . . . , cD} denote a finite set of cutoff values, we allow L(·, j, τ)

to be discontinuous at c∈K for all fixed j, τ . We also assume that for c /∈K, the partial derivative

∂L/∂c exists, is continuous and satisfies the following property:

HL property:
dL(c(τ ; ξ), j, τ)

dτ
=

∂L

∂τ
+

∂L

∂c
c′(τ ; ξ)> 0 for τ, ξ with c(τ ; ξ) /∈K and all j. (5)

We refer to this inequality as the “Head-of-Line” (HL) property of the HL-M policy, because except

at cutoff values in K, a patient’s score increases as he waits. The term “matching” refers to that

the score depends on both patient health score c and kidney type j. Note that a patient’s score

can have an upward or downward jump at the cutoff values in K. We allow those jumps so that

the class of HL-M policies subsumes the current policy, in which a patient can lose his priority

for the top 20% kidneys once his health score c drops below the 20-percentile cutoff value. For

technical convenience, we further assume that L(c, j, τ) is left-continuous with right limits (LCRL)

8 The impact of aging on η is mixed (Kimmel et al., 1995a,b; Valderrábano et al., 2001) – senior patients tends to
have lower functional capacity but higher satisfaction with life. Therefore, quantifying the aging effect on can be
challenging. Also, the time that a patient stays on dialysis is usually much shorter before the change of his age would
impact significantly on η.
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in c, and thus L(c(τ ; ξ), j, τ) is right-continuous with left limits (RCLL) in τ . Figure 2 displays an

illustrative example of how a patient’s score changes over time.

The class of HL-M policies subsumes a wide range of policies, including the aforementioned

partition-based policy Par1. Specifically, we define a partition function that maps each health

score c to a specific patient class j(c) : [0,+∞)→{1,2, . . . , J}, and then let L(c, j, τ) =−M |j(c)−

j|+ τ for some constant M > 0. Then a patient would suffer from a penalty when he attempts

to transplant a kidney whose quality is not matched to his health score, which is similar to the

mechanism of Par1.

In addition to the aforementioned assumptions made for the HL-M policies, one can further

require the score L(c, j, τ) to be non-decreasing in c everywhere, i.e., healthier patients receive an

equal or higher priority for all kidney types. Including this extra constraint leads to the head-of-line

healthier-first (HL-HF) policies mentioned in Section 1. Note that the current policy is similar to

an HL-HF policy except for the geographical and tissue type matching constraints.

Another important subclass of HL-M policies is the class of head-of-line donor-blind (HL-DB)

policies, in which the patient’s score does not depend on the kidney type. So the score can be

expressed as a function L(c, τ). As discussed above, the previous policy largely reassembles an HL-

DB policy except for the expanded donor criteria (ECD) donors9. However, the current allocation

policy is not donor-blind, because it offers kidneys with KDPI < 20% first to patients with health

score among the top 20%.

The three classes of policies, HL-M, HL-HF, and HL-DB, all require the patient’s score to

monotonically increase with patient’s waiting time possibly except at c∈K. A more general policy

would relax the HL assumption by allowing the allocation score to either decrease with waiting

time, e.g., last-come-first-serve (LCFS), or not to depend on the waiting time at all, e.g., a lottery.

In section 4, we propose methods to compute the optimal allocation outcome under HL-M policies

and the more general policies; and in Section 5, we numerically show that the more general policies

achieves an improvement of up to 37% in total QALYs compared to the HL-M policies, a result that

is consistent with the existing literature, e.g., Su and Zenios (2004). Despite this limitation, the

main idea of the HL-M policies, i.e., using waiting time as a major criterion to rank the patients on

the waitlist, is far more practical for implementation than other policies such as LCFS or a lottery.

Therefore, we develop a modeling framework that facilitates the analysis of HL-M policies (thus

also the HL-HF and HL-DB policies). To this end, we prove that there exists a unique equilibrium

of the fluid model under HL-M policies, and characterize it as the unique solution to a nonlinear

complementarity problem.

9 Since 1992, the UNOS implemented a new policy that partitions kidneys into two classes as standard criterion
donors and expanded criterion donors (kidneys from donors with age larger than sixty or with other comorbidities
which adversely affect the post-transplant survival time). Only those patients who are willing to consider ECD kidney
offers received them under the previous policy.
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2.3. The Fluid Model Equilibrium

The state of the fluid model can be fully captured by the distribution of the waitlist population

in terms of the parameters c, τ , and η. Because patients arrive continuously over time, the joint

distributions of τ , c= c(τ ; ξ), and η have a density function, denoted by π(c, τ, η). Note that π(c, τ, η)

has a similar interpretation to the probability density function, except that
∫∫∫

π(c, τ, η)dcdτdη

gives the total mass of patients on the waitlist rather than one. The equilibrium (or steady state)

of the fluid model can be represented by a density function Π = π(·, ·, ·). In particular, starting

from Π, the population distribution remains invariant at Π despite various dynamic events in the

fluid model.

The dynamic events on the transplant waitlist include kidney and patient arrivals, patient deaths,

and the matching process, which results in transplants. The kidney and patient arrival processes

are exogenous and independent of Π. The reneging process can be solely determined by Π. The

matching process depends on every patient’ acceptance/rejection decision. Suppose a patient with

parameters (ξ, η) is offered a kidney offer j after staying in the waitlist for t time units. According

to the PTSE formula (1), by accepting that kidney, the patient receives expected QALYs of UA :=

c(t; ξ)φj; otherwise, the patient will stay on dialysis, and receive expected QALYs of UR, which is a

function of t, ξ, η, Π, and the other patients’ strategies. We assume that the patient has complete

information. In particular, he knows his parameters ξ and η, his cumulative waiting time t, and the

population distribution Π at the equilibrium. So the patient’s strategy profile at the equilibrium

can be represented by a function a(·, ·|ξ, η), which maps a combination of offer time and offered

kidney type (t, j) to a binary response, Accept (A) or Reject(R). If the patient can compute UR,

then his optimal strategy at the equilibrium is

a(t, j|ξ, η) =

{

A if UA ≥UR,
R if UA <UR.

(6)

This assumes that a patient will accept the offered kidney whenever UA =UR, which only happens

to patients with a particular η (because UR includes a proportion of the pre-transplant life time and

thus strictly increases in η). The measure of such patients is zero among the waitlist population,

thus the way we break the tie will have no impact on the system dynamics.

However, in order to compute UR, the patient needs to know his waiting time for kidneys of higher

types than the current offer. Moreover, the patient needs to know who else will accept kidneys

of those types. Thus, the patient’s UR and consequently his optimal strategy depends on other

patients’ strategies. We therefore consider the Nash equilibrium at the steady state. Interestingly,

for this problem, we can find the unique Nash equilibrium by iteratively eliminating every patient’s

strictly dominated strategies10.

10 Note that we regard two Nash equilibria as the same if the equilibrium strategies differ for a set of patients that
has measure zero.
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Proposition 1 There is a unique Nash equilibrium under the HL-M policy, at which a patient

with initial health score ξ will first receive a type-j kidney offer after waiting for τj(ξ) time units,

where

τj(ξ) := inf{τ ≥ 0 : L(c(τ ; ξ), j, τ)≥ Sj} (7)

with the convention that inf ∅=+∞, and Sj is a constant threshold (j = 1, . . . , J). Furthermore, if

τj(ξ)<+∞, then

L(c(τj(ξ); ξ), j, τj(ξ))≥ Sj, (8)

and the inequality is strict only if c(τj(ξ); ξ)∈K (the set of discontinuity points of L(·, j, τ)).

The proof of Proposition 1 builds on the following important lemma.

Lemma 1 A patient always receives larger expected QALYs by accepting a kidney (of any type)

than by staying on dialysis forever. Moreover, he receives larger QALYs by accepting a kidney offer

immediately, than by accepting an equal or lower quality organ at a later time.

Lemma 1 can be proved directly by analyzing a patient’s expected QALYs. According to Lemma

1, the best kidneys (i.e., type J) will always be accepted immediately when offered to any patient.

Therefore, we can leverage the properties of the fluid model and prove that there is a constant

threshold SJ such that a patient receives a kidney if and only if his score is equal to or larger than

SJ . We can then compute each individual patient’s expected waiting time for type-J kidneys. That

will allow every patient to calculate his expected utility if he would turn down kidneys of the second

best type J − 1. So one can figure out every patient’s acceptance/rejection decision whenever he

receives a type J−1 kidney. Iteratively repeating this procedure leads to a unique Nash equilibrium

at which kidneys of type j have a score threshold Sj (for j =1, . . . , J) that satisfies the properties

stated in Proposition 1. Formal proofs for Proposition 1 and Lemma 1 are provided in Appendices

A and B, respectively.

We refer to (τj(ξ)) defined in Proposition 1 as the allocation times. An important property of

the allocation time τj(ξ) is that all patients of initial health score ξ will be first offered a type-j

kidney at the allocation time τj(ξ). This characterization, however, crucially uses the HL property

of the HL-M policies; see Appendix A for an example that the characterization of allocation times

fails when the HL property was violated.

The next Lemma summarizes some important properties of τj(ξ) as a function of Sj.

Lemma 2 Viewing τj(ξ) as a function of Sj for given ξ and j in light of Equation (7), it satisfies

the following:

(a) τj(ξ) is a non-decreasing, right-continuous function of Sj with left limits.
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(b) In a neighborhood of a given Sj > 0, τj(ξ) changes continuously with Sj for a.e. ξ.

Lemma 2 can be proved by leveraging the properties of L(c(τ ; ξ), j, τ) and c(τ ; ξ); see Appendix

E. Although τj(ξ) is right-continuous as a function of Sj, it may not be left-continuous in Sj due

to the non-monotonicity of L(c(τ ; ξ), j, τ) with respect to τ at points in K; see Figure 2 for such

an example of L(c(τ ; ξ), j, τ).

The allocation times facilitate a simple characterization of a patient’s optimal strategy at the

Nash equilibrium. Consider a patient with parameters (ξ, η), who faces an allocation time τj(ξ) for

the type-j kidneys. Kidney type j′ is said to dominate kidney class j if j′ > j and τj′(ξ)≤ τj(ξ),

that is, the higher-quality kidney type requires a shorter waiting time. Clearly, a patient will never

accept a kidney type that is dominated by other kidney types. By eliminating those dominated

kidney types, suppose there are m kidney types left, i.e., j1 < j2 < . . . < jm with the corresponding

allocation times τj1(ξ)≤ τj2(ξ)≤ . . .≤ τjm(ξ). Let {ak|k = 1,2, . . . ,m} denote a sequence of binary

decisions such that ak =A(R) if the patient accepts (rejects) the kidney offer of type jk at time

τjk(ξ), conditional on not accepting any previous offers. The patient’s optimal strategy is char-

acterized by the decision sequence {ak|k = 1,2, . . . ,m}, because we show below that the patient

would never change his acceptance/rejection decision for the same kidney type since it was first

offered. Thus, after τj(ξ), the patient can be considered oblivious to all future type-j kidney offers,

though the patient may keep receiving them as long as his score stays above Sj.

We next derive the patient’s optimal decision sequence {ak|k= 1,2, . . . ,m} by solving a sequential

decision problem. Let UA,k and UR,k denote the expected QALYs after the patient accepts or rejects

kidney type jk, respectively, and let Vk denote the optimal expected future QALYs that the patient

could gain starting at time τjk . We first note that UA,k = ξg(τjk(ξ))φjk for all k. We also note that

am =A, that is, if the patient is still on the waitlist at time τjm(ξ), then he must accept the kidney

offer of type jm immediately. Because otherwise, he has to wait further without the possibility of

getting a better kidney, which is suboptimal by Lemma 1. The patient’s earlier decisions can be

characterized with the help of the following recursive formulas:

Vm =UA,m, (9)

UR,k =η

(

∫ τjk+1
(ξ)

τjk
(ξ)

(t− τjk(ξ))
fξ(t)

F̄ξ(τjk(ξ))
dt+

F̄ξ(τjk+1
(ξ))

F̄ξ(τjk(ξ))
(τjk+1

(ξ)− τjk(ξ))

)

+
F̄ξ(τjk+1

(ξ))

F̄ξ(τjk(ξ))
Vk+1, k= 1, . . . ,m− 1, (10)

Vk = max{UA,k, UR,k}, k= 1, . . . ,m− 1. (11)

The first term on the right-hand side of Equation (10) computes the expected QALYs that the

patient could gain from time τjk(ξ) until time τjk+1
(ξ), taking into account that the patient may
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die while he waits for the offer of type jk+1 kidney which will be offered at time τjk+1
(ξ). The last

term on the right-hand side of Equation (10) is the expected future QALYs that the patient can

gain starting at time τjk+1
(ξ), which is the maximum QALYs of either accepting the offer of type

jk+1(ξ) at time τjk+1
(ξ) or waiting further for a future offer as reflected in Equation (11).

By recursively solving UR,k and Vk for k=m,m−1, . . . ,1, we obtain the optimal decision sequence

{ak} by Equation (6). Let j∗(η, ξ) denote the kidney type that is matched to a patient with

parameters (η, ξ) ex ante who anticipates kidney offers of type j1, . . . , jm at times τj1 , . . . , τjm . The

following proposition characterizes j∗(η, ξ) and shows that it enjoys a monotonicity property with

respect to η; see Appendix C for its proof.

Proposition 2 Once a patient turns down a kidney offer, he would never accept a kidney of the

same (or lower) type at a later time. Therefore, his choice throughout his wait is consistent with

that upon joining the transplant waitlist, which is given by

j∗(η, ξ) :=min{jk |k= 1,2, . . . ,m, ak =A}. (12)

Moreover, j∗(η, ξ) is non-decreasing in η.

Once we computed j∗(η, ξ), we can use (τj(ξ)) to recover the steady-state distribution Π :=

(πc,τ,η); see Appendix C. Thus, the equilibrium can be described using (τj(ξ)) instead of Π.

It follows from Proposition 2 that there exist thresholds Γj(ξ) for j = 1, . . . , J − 1 such that

Γ0(ξ)≤ Γ1(ξ)≤ Γ2(ξ)≤ · · · ≤ ΓJ−1(ξ)≤ ΓJ(ξ), (13)

where Γ0(ξ) := 0 and ΓJ(ξ) := 1 and that

j∗(η, ξ) = j if η ∈ (Γj−1(ξ),Γj(ξ)], j = 1, . . . , J. (14)

In particular, if Γj−1(ξ) = Γj(ξ), no patient with initial health score ξ chooses kidney type j. The

proportion of patients with initial health score ξ who choose kidney type j is given by

Qj(ξ) :=Gξ(Γj(ξ))−Gξ(Γj−1(ξ)). (15)

In what follows, we say that j∗(η, ξ), (Γj(ξ)), and (Qj(ξ)) are associated with (τj(ξ)) if they are

computed from (τj(ξ)) using the above procedure, cf. Equations (6), (9)-(11),(12), (14) and (15).

According to Proposition 2, a patient with parameters (ξ, η) will eventually transplant a kidney

type j∗(ξ, η) if he survives until then. Thus, the kidney waitlist can be partitioned into J exclusive

virtual queues according to the values of j∗(ξ, η). Patients in the jth virtual queue, despite having

different parameters (ξ, η), will all accept and transplant kidneys of type j, conditional on being
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alive until their allocation time. Since a proportion Qj(ξ) of patients with initial health score

ξ will have j∗(ξ, η) = j, the aggregate patient arrival rate to the jth virtual queue is given by

λ
∫

ξ
Qj(ξ)ρ(ξ)dξ, and the service rate is given by µj. This characterization allows us to develop a

compact characterization of the equilibrium that is based on (τj(ξ)) as done in the next proposition;

see Appendix D for its proof.

Proposition 3 Under an HL-M policy, (τj(ξ)) forms the allocation times in equilibrium if and only

if (τj(ξ)) are given by (7) for some HL-M score function L(c, j, τ), and (τj(ξ)) and the associated

(Qj(ξ)) and (Γj(ξ)) solve the following (NCP): For j = 1, . . . , J ,

yj := µj −λ
∫ ξ̄

ξ
Qj(ξ)F̄ξ(τj(ξ))ρ(ξ)dξ ≥ 0,

zj := supξ∈[ξ, ξ̄] τj(ξ) ≥ 0,

yj zj = 0.

(16)

Intuitively, in equilibrium, either a virtual queue is empty, which is the case of zj =0; or a virtual

queue has its supply rate µj balanced with the reneging rate and patient arrival rate, which is the

case of yj =0. This leads to the NCP characterization. It is proved in Appendix F.

The next result establishes the existence and uniqueness of the equilibrium.

Theorem 1 There exists a unique equilibrium under every HL-M policy.

To prove the existence of the equilibrium, we need to construct a mapping Ψ(·), which maps a

score-threshold vector S := (Sj) to the domain of S itself. This mapping must satisfy the following

property: S =Ψ(S) if and only if the (Qj(ξ), τj(ξ)) associated with S solves the NCP (16). The

existence of such a fixed point thus leads to the existence of the equilibrium. To prove that the

mapping Ψ(·) is well-defined and continuous, we exploit the special structure of the model, such

as continuous density of ξ and properties of τj(ξ) as a function of Sj (Lemma 2). The uniqueness

of the equilibrium builds on the intuition that when a subset of kidney types have a smaller score

threshold (so a shorter waiting time for each patient) in one equilibrium than the other, then those

queues will attract more customers, which, however, contradicts that those queues end up with a

shorter waiting time.

One property we can deduce for the equilibrium allocation times (τj(ξ)) is that if patients with

initial health score ξ have accepted kidney types j1 < j2 < . . . < jm, then τj1(ξ) ≤ τj2(ξ) ≤ · · · ≤

τjm(ξ). Because otherwise, the lower kidney type will not be accepted by any of those patients as

a result of Proposition 2.

Clearly, different scoring formulas lead to different equilibria. Next, we focus on searching for the

scoring rules to optimize certain efficiency and equity metrics. To do that, one needs to characterize

what equilibria are achievable by a certain HL-M policy (or HL-HF, HL-DB), i.e., a characterization

of the achievable set of equilibria.
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3. Achievable Region of Equilibria

In the literature of queueing theory, the achievable region is defined as the space of performance

vectors such as average queue lengths that can be achieved under certain priority rules (Coffman

and Mitrani, 1980; Federgruen and Groenevelt, 1988; Bertsimas, 1995; Chen and Yao, 2001). In

a typical queueing system, the achievable region can be represented as a polytope, whose facets

are derived from the conservation law dictated by the capacity constraints. In our setting, the

ex-post allocation of kidneys to patients depends not only on the allocation mechanism but also

on the patients’ choices. Therefore, our definition of the achievable region differs significantly from

its usual definition. For brevity, we will use the term “achievable region”, but the reader should

interpret it as the “achievable region of equilibria”.

As we previously argued, the equilibrium can be described by the collection of allocation times

τ := (τj(ξ)). For technical convenience, we only consider allocation times that are piecewise con-

tinuously differentiable (p.c.d.), that is, τj(ξ) has continuous partial derivatives with respect to ξ

except at finitely many points. Therefore, we define the achievable region of HL-M policies as

AHL−M := {(τj(ξ)) | (τj(ξ)) are p.c.d. equilibrium allocation times under an HL-M policy}. (17)

The achievable regions for the HL-HF policies and the HL-DB policies, i.e., AHL−HF , and AHL−DB,

are defined similarly. We next derive a closed-form representation ofAHL−M . For notational brevity,

we let Qj(ξ;τ ) denote the choice probabilities associated with the allocation times τ ; and let pj(ξ)

be a density function such that for all ξ ≤ ξ1 < ξ2 ≤ ξ,
∫ ξ2

ξ1
pj(ξ)dξ denotes the fraction of type-j

kidneys that are transplanted to patients of initial health scores on [ξ1, ξ2]. Note that type-j kidneys

are fully utilized if
∫ ξ̄

ξ
pj(ξ)dξ= 1.

To facilitate the statement of the following theorem, for k=1, . . . , J , define the following sets:

Pk :=
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pj(ξ) =
1
µj
λQj(ξ;τ )ρ(ξ)F̄ξ(τj(ξ)) for all j, ξ (C.1)

∫

ξ
pj(ξ)dξ= 1 for j > k (C.2)

∫

ξ
pk(ξ)dξ≤ 1 (C.3)

Qj(ξ;τ ) = 0 for j < k, ξ ∈ [ξ, ξ̄] (C.4)

τj(ξ) = 0, for j ≤ k, ξ ∈ [ξ, ξ̄] (C.5)

0≤ τj(ξ)≤ τ̄ξ for j > k, ξ ∈ [ξ, ξ̄] (C.6)























































. (18)

Also, we define

PM :=
{

p.c.d. functions τ | c(τj(ξ); ξ)≥ c(τj(ξ
′); ξ′) for ξ > ξ′ (C.M)

}

.

Given an equilibrium allocation-time vector (τj(ξ)), we also define the following function

γj(ξ) := c(τj(ξ); ξ), (19)
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which corresponds to the health score of the patient (with initial health score ξ) at the time of

receiving a type-j kidney transplant.

Let Cj denote the range of the function γj(·), i.e., Cj := {γj(ξ)|ξ ∈ [ξ, ξ̄]}. The following lemma

establishes useful properties of the function γj(·) and its inverse γ−1
j (·); see Appendix G for its

proof.

Lemma 3 Suppose τ are equilibrium allocation times under an HL-M policy. Then for j = 1, . . . , J ,

the function γj(·) is non-decreasing, left continuous and with right limits (LCRL). Furthermore,

for all c /∈K, γ−1
j (c) := {ξ|γj(ξ) = c} is a singleton.

We use Lemma 3 to prove the following theorem that characterizes the AHL−M ; see Appendix H

for its proof.

Theorem 2 We have that

AHL-M=∪J
k=0Pk ∩PM . (20)

Moreover, every equilibrium in AHL-M can be achieved by a score function L(c, j, τ) with the

following parametric form

L(c, j, τ) =M(c, j)+ τ, (21)

where

M(c, j) =

{

− inf{τj(ξ) | ξ ∈ γ−1
j (c)} if c∈ Cj,

−τ̄ξ̄ if c /∈ Cj.
(22)

Furthermore, the score L(c, j, τ) =M(c, j)+ τ satisfies all assumptions of an HL-M policy.

We next provide some intuition towards the statements and the proof for the above Theorem.

To derive the expression of the achievable region in Equation (18), we first partition the achievable

region into sub-regions Pk for k = 0,1, . . . , J , where k represents the minimum acceptable level of

kidney class. Formally,

k :=

{

max{j = 1, . . . , J | supξ τj(ξ) = 0} if the set is nonempty,
0 otherwise.

(23)

Intuitively, k denotes the highest type of kidneys that do not require any waiting. Given that,

all patients prefer to accept a kidney of type k rather than those of type j < k by Lemma 1.

Thus, kidneys of type 1,2, . . . , k− 1 are completely wasted. Note that k= 0 represents the desired

case when all kidneys are fully utilized, though in practice low-quality kidneys are usually wasted

because of the externality introduced by the head-of-line discipline (see (Su and Zenios, 2004)).

The set Pk consists of equilibria at which the lowest type of kidney transplanted is k. In the

expression of Pk, condition (C.1) calculates the density function pj(ξ); condition (C.2) requires all
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kidneys of types j > k to be fully utilized; condition (C.3) states that kidneys of type k can be

partially utilized or even fully utilized; condition (C.4) states that no patient would choose kidney

types lower than k. This is because type-k kidneys require no waiting, and hence dominate kidneys

of type 1, . . . , k− 1. Condition (C.5) is implied by the definition of the minimum acceptable level;

condition (C.6) gives the lower and upper bound for each τj(ξ) for j > k. Recall from Equation

(7) that if a patient’s health score can never reach the threshold Sj, his allocation time for kidney

type j is +∞. However, because a patient with initial health score ξ can live at most τ̄ξ time units,

we impose the upper bound τj(ξ)≤ τ̄ξ in condition (C.6) without excluding any feasible equilibria.

Finally, condition (C.M) considers patients receiving the same type of kidney offers, say type j,

and requires that their health scores c(τj(ξ); ξ) at the time τj(ξ) of the offer are non-decreasing in

their health scores. This constraint results from the HL property of the HL-M policy.

Not only does Theorem 2 provide an explicit expression of the achievable region for the HL-M

policy, but also it shows that every equilibrium can be achieved by a scoring rule of the form

(21). In fact, both the previous and current kidney allocation policies have used Equation (21) to

calculate a patients’ score – a patient receives an extra point of score for each additional year he

spends on the waitlist. Theorem 2 states that there is no need to use further sophisticated formulae

for a patient’s waiting score. The policy maker only needs to solve the allocation times and then

set M(c, j) accordingly by Equation (22). To prove this result, the main idea is to show that the

nonlinear curvature of the function τj(ξ) can be fully captured by the function M(c(τj(ξ); ξ), j)

with respect to ξ. The proof leverages two important facts. First, the policy is not donor-blind,

so the curvature of M(c(τj(ξ); ξ), j) can vary for different kidney type j. In fact, we will later

show that the same conclusion may not hold under the HL-DB policies. Second, constraint (C.M.)

ensures monotonicity of c(ξ; τj(ξ)) in ξ. This property allows us to design the M(c, j) in a way

that a patient with initial health score ξ cannot receive a kidney before his allocation time (see

Appendix H for further details).

Using a similar logic, we characterize the achievable region AHL-HF for the class of HL-HF

policies in the next proposition. To facilitate this characterization, let

PHF :=
{

p.c.d. functions τ | τj(ξ)≤ τj(ξ
′) for all ξ > ξ′ (C.HF).

}

Proposition 4 We have that

AHL-HF =∪J
k=0Pk ∩PHF . (24)

Moreover, every equilibrium in AHL-HF can be achieved by a score L(c, j, τ) of the form given in

Equation (21), where M(c, j) is defined in Equation (22). Furthermore, M(c, j) is non-decreasing

in c and L(c, j, τ) =M(c, j)+ τ satisfies all assumptions of an HL-HF policy.
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The characterization of AHL-HF differs from that of AHL-M. Namely, the constraint (C.M) used

to characterize AHL-M is replaced with the stronger constraint (C.HF) in characterizing AHL-HF.

Constraint (C.HF) requires that a patient with a larger initial health score does not wait longer

than a patient with a lower initial health score. This constraint is directly implied by the additional

property of the HL-HF policy compared to the HL-M policy that a healthier patient always receives

a higher priority and thus waits less. The p.c.d. function M(c, j) is constructed in exactly the same

way as the function M(c, j) is constructed for the HL-M policy. The expression of M(c, j), which

is identical to that of M(c, j) in Equation (22), implies that M(c, j) is non-decreasing in c. The

proof of Proposition 4 is similar to that of Theorem 2 and is omitted.

In the characterizations of both PHL-M and PHL-HF, we have not imposed any constraints on

the scoring function L(c, τ, j). Instead, we proved that as long as (τj(ξ)) satisfies condition (C.M)

or (C.HF), a score function L(c, τ, j) is guaranteed to exist such that (τj(ξ)) gives the allocation

time under L(c, τ, j). However, under the HL-DB policy, we need to ensure that the allocation

times (τj(ξ)) for different kidney types are associated with the same score function L(c, τ) that is

independent of j. This can be achieved by imposing the following condition in place of (C.M) or

(C.HF).

PDB :=















p.c.d. functions τ

∣

∣

∣

∣

∣

∣

∣

∣

τj(ξ) :=min{τ̄ξ,min{τ ≥ 0 |L(c(τ ; ξ), τ)≥ Sj}} for some L(c, τ)

such that dL(c, τ)/dτ > 0 for all c /∈K, τ,

∂L(c, τ)/∂τ > 0 for all c /∈K, τ,

(C.DB)















If the score of a patient (with initial health score ξ) can never reach Sj, we let τj(ξ) = τ̄ξ (rather

than +∞ to have a bounded achievable region). Otherwise, τj(ξ) will be the first time at which the

score of the patient reaches Sj, and the minimum is always attained by Proposition 1. We require

that L(c, τ) has positive derivatives so it satisfies the assumptions of the HL-DB policy, which

are essential to guarantee the allocation-times to exist at the equilibrium. The next proposition

provides an expression for PHL-DB. We omit its proof as it is straightforward.

Proposition 5 We have that

AHL-DB=∪J
k=0Pk ∩PDB. (25)

For HL-M policies, Theorem 2 states that it suffices to consider scores in the form of M(c, j)+ τ .

One may wonder if the same result holds in the HL-DB case, that is, whether we can achieve all

equilibria in PHL-DB using a score in the form of M̃(c) + τ for some univariate function M̃(c).

Unfortunately, the following example suggests that this might not be the case. Therefore, to design

an HL-DB scoring policy, one has to explore more general functional forms.
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Example 3.1 Suppose two patients with initial health scores ξ1 and ξ2 satisfy c(τ1(ξ
1); ξ1) =

c(τ2(ξ
2); ξ2) /∈ K, that is, the first patient, when being offered a kidney of type 1, has exactly the

same health score as that of the second patient when being offered a kidney of type 2. We further

assume that there are two other patients with initial health scores ξ3 and ξ4 such that c(τ1(ξ
3); ξ3) =

c(τ2(ξ
4); ξ4) /∈K. Then if the HL-DB score has a form M̃(c)+ τ , then by Proposition 1 we have

S1 = M̃(c(τ1(ξ
1); ξ1))+ τ1(ξ

1) = M̃(c(τ1(ξ
3); ξ3))+ τ1(ξ

3)

S2 = M̃(c(τ2(ξ
2); ξ2))+ τ1(ξ

2) = M̃(c(τ2(ξ
4); ξ4))+ τ2(ξ

4),
(26)

As c(τ1(ξ
1); ξ1) = c(τ2(ξ

2); ξ2), c(τ1(ξ
3); ξ3) = c(τ2(ξ

4); ξ4), we have the following equality

τ1(ξ
1)− τ1(ξ

3) = τ1(ξ
2)− τ1(ξ

4). (27)

The above equality is not implied by any constraints in the expression of PHL-DB. That means, if

we assume the HL-DB score to take the special form of M̃(c)+ τ , then we have implicitly imposed

an extra equality constraint (27). Thus, any allocation time that violates equality (27) cannot be

achieved by the score M̃(c)+ τ , though it could always be achieved by a HL-DB score in its general

form. In fact, the above example also suggests that other special forms such as L(c, τ) = M̃(c) +

M̂(τ) or L(c, τ) = M̃(c)M̂(τ) cannot recover the entire achievable region for similar reasons.

4. Optimization over the Achievable Region
4.1. Performance Metrics

Having characterized the achievable region, we formulate the policy design problem as one of

finding an allocation time τ ∈PHL-M which optimizes a certain performance metric. A standard

efficiency measure in the kidney allocation literature is the QALY (Zenios et al., 2000). To calculate

the QALYs, we follow the medical literature (Axelrod et al., 2018; Wyld et al., 2012) and assume

the quality-of-life coefficient to be 0.69 and 1 before and after kidney transplantation, respectively.

Then if a patient with initial health score ξ chooses to wait for a type-j kidney which has an

allocation time τj, then the patient’s expected QALYs since starting dialysis are given by

QALY(ξ, j, τ) = 0.69(

∫ τj(ξ)

0

tfξ(t)dt+ F̄ξ(τj(ξ))τj(ξ))+ F̄ξ(τj(ξ))c(τj(ξ); ξ)φj, (28)

where the two terms on the right-hand-side represent the patient’s QALYs before and after trans-

plantation, respectively. The efficiency of the system, which is measured by the average QALYs of

all patients since arrival (starting dialysis), is expressed as

Eff(τ ) :=

∫ ξ

ξ

J
∑

j=1

Qj(ξ)QALY(ξ, j, τ)ρ(ξ)dξ. (29)

We use the notation Eff(τ ) and to signify that it is essentially a function of τ (because Qj(ξ) is a

also function of τ ).
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Unlike efficiency, there has not been consensus on the measure of inequity. For example, as in

max-min fairness, one can measure inequity by the difference between the average probability of

transplantation for the entire patient population and the smallest probability of transplantation

among all patient types, that is,

Ineq1(τ ) :=
1

λ

J
∑

j=1

∫ ξ̄

ξ

µjpj(ξ)dξ− inf
ξ

1

λρ(ξ)

J
∑

j=1

µjpj(ξ), (30)

Alternatively, Zenios et al. (2000) proposed to measure inequity by the variance of the likelihood

of transplantation across different patient classes. We use the standard deviation instead of the

variance to keep its scale consistent with Ineq1. We name this inequity metric as Ineq2. Formally,

Ineq2(τ ) :=

(

∫ ξ

ξ

(

∑J

j=1 µjpj(ξ)

λρ(ξ)
)2ρ(ξ)dξ− (

1

λ

J
∑

j=1

∫ ξ

ξ

µjpj(ξ)dξ)
2

)1/2

. (31)

In the rest of the paper, we will simply denote the inequity metric with Ineq(τ ), which can refer

to Ineq1, Ineq2, or other inequity metrics that can be represented as a function of τ .

With the efficiency and inequity measures defined in Equations (29) and (30) (or (31)), the policy

maker’s problem is formulated as a constrained optimization problem:

νHL-M(̺)
(

νHL-HF(̺), νHL-DB(̺)
)

:= max Eff(τ )
s.t. Ineq(τ )≤ ̺,

τ ∈AHL-M(AHL-HF,AHL-DB),
(32)

where the parameter ̺ represents the maximum inequity level with which the policy maker can

tolerate. The larger the ̺ is, the more emphasis has been put on efficiency optimization (over

equity). The optimal objective value νHL-M(̺) (νHL-HF(̺), νHL-DB(̺)) represents the maximal

efficiency that can be achieved by a certain HL-M (HL-HF, HL-DB) subject to the inequality

constraint11. Note that (32) is an infinite-dimensional optimization problem and the achievable

region contains infinitely many constraints (indexed by ξ). To facilitate computation, we thus

develop a finite-dimensional approximation of the optimization problem; see Appendix I.

4.2. General Policies that Allow a Lottery

We have shown that patients with identical initial health scores must receive kidneys of the same

type at the same time under an HL-M policy. If we can use policies more general than the HL-M

policies, we can use a lottery instead of waiting time to break ties among patients of the same

type. That is, every patient will either receive a kidney of type j at time τ , or never receive any

kidney offer. As a result, the patient has to accept whatever kidney offered to him as he has no

other option. The equilibrium allocation outcome can then be characterized by a density function

11 If (32) is infeasible for a given ̺, we let νHL-M(̺) =−∞ by convention.
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p̃j(ξ, τ) for j = 1, . . . , J . Here p̃j(ξ, τ) has a similar definition as pj(ξ): for all ξ ≤ ξ1 < ξ2 ≤ ξ and

all 0 ≤ τ1 < τ2,
∫ τ2

τ1

∫ ξ2

ξ1
pj(ξ)dξdτ denotes the fraction of type-j kidneys that are transplanted to

patients of initial health scores on [ξ1, ξ2] with cumulative waiting times in [τ1, τ2].

The efficiency and inequity metrics that we derived in the previous section can be expressed as

a function of p̃ := (p̃j(·, ·)). For example,

Eff(p̃) :=
∑J

j=1

∫ ξ̄

ξ

∫ τ̄ξ
0

p̃j(ξ,τ)µj

λF̄ξ(τ)
QALY(ξ, j, τ)dτ dξ,

(33)

where the ratio p̃j(ξ, τ)µj/(λF̄ξ(τ)) stands for the proportion of patients who have an initial health

score ξ and will receive a kidney of type j at time τ among all patients, and the expression of

QALY(ξ, j, τ) is given in (28). The inequity metrics Ineq1 and Ineq2 can be calculated using the

same formulae (i.e., (30) and (31)) using pj(ξ) =
∫ τ̄ξ
0

p̃j(ξ, τ)dτ .

We then formulate the policy design problem as follows:

νG(̺) := max Eff(p̃) (34)

s.t. Ineq(p̃)≤ ̺ (35)
∫ τ̄ξ

0

J
∑

j=1

p̃j(ξ, τ)µj

λρ(ξ)F̄ξ(τ)
≤ 1 for all ξ ∈ [ξ, ξ] (36)

∫ ξ̄

ξ

∫ τ̄ξ

0

p̃j(ξ, τ)dτ dξ ≤ 1, j =1, . . . , J (37)

To elaborate on the above formulation, the subscript G stands for general policies, which allows

the use of a lottery. Constraint (36) requires that the likelihood of receiving a kidney transplant

is not greater than one for all patients; Constraint (37) requires that the total fraction of kidneys

transplanted to patients is not greater than one.

Although a lottery-based policy is controversial to be implemented in practice, the optimal value

of the above problem provides an upper bound for the kidney allocation problem. In Section 5, we

will use νG(̺) as a benchmark for comparison with other policies in the HL-M category.

5. Numerical Study

This section conducts a numerical experiment using recent transplant data to investigate how the

four policy classes, i.e., the general, HL-M, HL-HF, and HL-DB, perform towards maximizing the

system efficiency subject to certain equity constraints. Investigating the allocation outcomes under

different policies provides important insights into potential policy revisions.
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5.1. Parameter Estimation

Our data covers kidney transplantation related information in all the 58 donor service areas (DSA)

in the study period from 07/01/2005 through 09/01/2010. For each kidney procured during that

period, the data records the donor’s age, blood type, cause of death, comorbidities, race, height,

weight, serum creatinine, and other related attributes; for each patient that has registered on the

waitlist, the data records the patient’s age upon starting the dialysis, any prior organ transplants,

and comordbidities. Using the above covariates, we calculate each kidney’s quality φ and each

patient’s initial health score ξ using the formulas in Israni et al. (2014). As done in the current

kidney allocation policy (Israni et al., 2014), we classify kidneys into J = 4 equal-sized types

according to their estimated values of φ, and record the cutoff values for each type. We also derive

ρ(ξ) as the probability density function from the empirical distribution of ξ. To estimate the hazard

rate function h(c), we count how many patients were alive when their health score just hits c, and

how many of them have died during the next ∆t time units. When ∆t is small, the reciprocal of the

ratio between these two numbers approximates the hazard rate h(c). To estimate the health score

curve c(t; ξ) for each ξ, it suffices to estimate the function H(·) in Equation (2). The function H(c)

represents the time duration it takes the health score to deteriorate from ξ̄ to c. Thus, 1/H ′(c)

gives the change rate of a patient’s health score at c, and can be estimated from the data as

1

H ′(c)
=E[c′(t; ξ)|c(t; ξ) = c]. (38)

Building on these, we estimate the function values of h(c), ρ(ξ) and H(c) at forty points that are

evenly distributed over the continuous domain [ξ, ξ̄], and recover function values on the rest of the

domain via a linear interpolation. We plot the estimated functions c(t; ξ̄) =H−1(t) in Figure 1 in

Section 2, and plot h(c) and ρ(ξ) in Figure 4.

We consider the following setting in our numerical experiment: a large donor service area (CAOP-

OP1) with more than six thousand patients on the waitlist, only blood type-O adult patients and

donors, and patients with CPRA ≤ 80%. Focusing on this setting allows us to suppress factors that

have not been considered in our model, such as blood type matching, HLA type matching, and

geographic factors. We classify the kidneys into J = 4 classes, respectively, using the cutoff values

computed earlier from the nation-wide data. Then the following parameters can be estimated in a

straightforward manner with the data in the study period: the total arrival rate of patients who

satisfy our inclusion criteria λ, the kidney arrival rate µj and the mean quality φj for kidney type

(j = 1,2,3,4). To facilitate the computation, we develop a finite-dimensional representation for

the achievable region following the procedures in Appendix I, in which the domain of ξ has been

discretized into grids with N = 10. In other words, patients are classified into ten classes depending
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on their initial health score ξ, while their health scores change with time continuously. Finally, we

follow the literature (Axelrod et al., 2018; Wyld et al., 2012) and assume that the quality-of-life

coefficients for dialysis, η, follows a Beta distribution with mean and standard deviation 0.690 and

0.037, respectively12. Table 1 summarizes the parameter estimates based on this DSA.

Table 1 Summary of Estimated Parameters

Patient Arrival Rate λ (people/year) 801.72

Kidney Class j 1 2 3 4 Total/Average
Kidney Arrival Rate (kidney/year) µj 46.78 50.07 49.88 59.25 206.08
Mean Kidney Quality φj 15.54 21.37 28.09 35.56 25.75

5.2. Results

This section compares the performance of the four policy classes numerically. The comparisons is

based on the predictions of the fluid model developed in the preceding analysis.

We first plot the efficiency-equity Pareto frontier for the inequity metric Ineq1 defined in (30).

We vary the inequity allowance ̺, solve the optimization problem (32), and obtain the optimal

efficiency level νHL-M(̺), νHL-HF(̺), and νHL-DB(̺). We also solve the optimization policy (34)

and obtain νG(̺) for each ̺. We plot the efficiency levels and the corresponding values of ̺ in

the left panel of Figure 3. The plots thus characterize the efficiency-equity Pareto frontier of each

policy class. For some policy classes, the Pareto frontier may not cover the entire domain of ̺,

which is [0, µ/λ] = [0,0.257]. That can happen when some ̺ have not been achieved by any policy

in that class. For example, our numerical test shows no HL-HF policy can achieve an inequity level

lower than 0.24.

As shown in the left panel of Figure 3, when ̺ takes the highest value 0.257 (the no inequity

constraint case), the HL-M, HL-HF, and HL-DB policies achieve the same QALYs. Because without

the inequity constraint, they all will simply prioritize healthier patients for kidney types and thus

their optimal policies coincide.

However, as ̺ decreases, the performances of the HL-DB and HL-HF policies degrade quickly. To

shed light on this, recall that Ineq1 measures the difference between the average transplantation

likelihood (0.257) and the minimal transplantation likelihood among all patient classes. An inequity

allowance lower than 0.257 would require all patient class to receive a positive amount of kidneys.

This is difficult to achieve by an HL-HF policy, in which the low-class patients hardly receive

any kidneys because they have the lowest priority but the highest death rate. As a result, no

12 Our model allows the distribution of η to vary by ξ. However, our data does not exhibit correlation between ξ and
η. As such, η has the same distribution across different values of ξ in our numerical study.
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Figure 3 The Efficiency-Equity Pareto Frontier under Ineq1 (Average Transplant Probability − Minimal Trans-

plant Probability) and Ineq2(Standard Deviation of Transplant Probability)

HL-HF policy can achieve an inequity level lower than 0.24. Compared to the HL-HF policies,

the HL-DB policies can achieve a much lower inequity level by providing higher priority to the

least healthy (thus most risky) patients. However, in order to do that, the HL-DB policies have to

prioritize the least healthy patients for all kidney types. It thus increases the chance for less healthy

patients to transplant a high-quality kidneys, which increases survival mismatch. Consequently, for

intermediate values of the inequity allowance, the Pareto frontiers imply the following performance

order for the four policy classes,

General≻HL-M≻HL-HF≈HL-DB. (39)

Table 2 supports that the ordering above stems from differences in the abilities of the four policy

classes to achieve survival matching. It shows the allocation outcomes at ̺= 0.24 under the optimal

policy in each class. Under the optimal general policy, almost all kidneys are transplanted to

patients in classes 5-10 (healthier patients). This can be achieved by assigning each patient with a

particular kidney type according to the lottery outcome upon the patient’s arrival. The patients, as

a consequence of not being offered any other kidney types, have to accept whatever types of kidneys

offered to them. If we use the waiting time instead of lottery to rank the patients as in an HL-M

policy, a patient may turn down a low-type kidney in order to receive a high-type kidney later. For

example, under the optimal HL-M policy at ̺ = 0.24, not enough class-7 patients are willing to

accept type-3 kidneys, because the likelihood of transplanting a (better) type-4 kidney is as high

as 37.8%. Consequently, only a small proportion of type-3 kidneys are allocated to class-7 patients

and the rest have to be allocated to class-6 instead. Therefore, the optimal HL-M policy does less

well in survival matching compared to the general policy due to the extra incentive compatibility
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Table 2 Comparison of Allocation Outcomes at ̺= 0.24

General HL-M

Objective 8.566 7.335

Allocation































0.017 0 0 0
0.017 0 0 0
0.017 0 0 0
0.017 0 0 0
0.473 0.380 0 0
0 0.401 0.598 0
0 0.000 0.619 0.379
0 0 0 1
0 0 0 1
0 0 0 1





























































0.061 0 0 0
0.064 0 0 0
0.144 0 0 0
0.002 0.189 0 0
0 0.307 0 0
0 0 0.782 0
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0 0 0 1
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0 0 0 1































HL-HF HL-DB

Objective 5.780 5.819
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0.173 0 0 0
0.018 0.216 0 0
0 0.021 0.052 0.145
0 0 0 0.327
0 0 0 0.379
0 0 0.541 0.013
0 0 0.591 0

0.165 0 0.576 0
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0.001 0.010 0.006 0
0.027 0 0 0
0.180 0.054 0 0
0 0.217 0.132 0
0 0.002 0.116 0.221
0 0 0.261 0.223
0 0 0.166 0.376
0 0.076 0 0.528
0 0.321 0.016 0.361
0 0.097 0.651 0.001































The entry at the ith-row and the jth-column in the matrix represents the proportion of class-i patients that

transplant a type-j kidney. A highly indexed row (column) represents a patient (kidney) class with better survival.

The inequity constraint is binding at ̺= 0.24 for all policies except for HL-M.

constraint. Compared to the HL-M policy, the HL-HF and HL-DB policies are even less effective in

promoting surviving matching for different reasons. To meet the equity constraint, HL-HF policies

need to offer class 1 patients the required amount of kidneys. Note that class 1 patients have

the lowest priority under HL-HF policies; and they have the highest death rates. To address this

challenge, the optimal HL-HF policy has used type-4 kidneys to attract the class-4 and -5 patients

so those patients, which have a high density, will not compete with class-1 patients for type-1

kidneys in our numerical analysis. An unintended consequence, however, is that a majority of the

class-4 kidneys are allocated to patients with intermediate health values, which results in survival

mismatch. The reason for the performance loss of HL-DB policies (as ̺ decreases) is different.

The HL-DB policies can give priority to the low-class patients, but it has to be for all kidney

types. Consequently, some high-class kidneys are allocated to low-type patients, which results in

survival mismatch. Despite that, the allocation outcome of HL-DB still exhibits a certain degree

of survival matching, because a patient with longer survival time has a stronger incentive to wait
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for high-quality kidneys due to the supermodularity of the survival function; see (Su and Zenios,

2006) for a detailed explanation.

When ̺ decreases further, we observe that the performance gap between HL-M and HL-DB

closes again. Intuitively, for small ̺, both HL-M and HL-DB policies strive to meet the inequity

constraint. Consequently, neither could achieve survival matching. The HL-M policies gradually

loses its advantage over HL-DB policies in achieving survival matching, and the two policies exhibit

comparable performance for small ̺, though the HL-DB policies cannot achieve inequity allowance

lower than 0.05.

We also compute the Pareto frontier for a different inequity metric Ineq2 – the variance of

transplantation probability of each patient class, which is plotted in the right panel of Figure 3.

We observe that the slopes of the HL-HF and HL-DB curves are less steep, because they are less

sensitive to Ineq2. The gap between these two policies and HL-M is smaller, and HL-HF slightly

outperforms the HL-DB for intermediate ̺s. However, the Pareto frontiers of the four policy classes

still largely follow the order of (39), suggesting that the qualitative insights we have derived for

Ineq1 are robust for similar inequity metrics.

For both inequity metrics, we note that the general policy outperforms the HL-M, HL-HF, and

HL-DB policies by a large margin (11%− 36%). In fact, by looking into the allocation outcomes

the Pareto frontier of the general policies, we find that a patient either receives a transplant upon

arrival or never receives a kidney offer. This is more socially efficient compared to performing the

transplantation after a patient’s health has deteriorated. Despite its potential for increasing the

QALYs, the lottery method cannot be justified as ethical or implemented in practice.

In addition to improving survival matching and maximizing QALYs, the HL-M policy can effi-

ciently reduce kidney wastage compared to the HL-DB policy. However, in the above parametric

setting, no kidney is ever wasted at the Pareto frontier13. This is because the patient arrival rate

λ significantly outnumbers the kidney arrival rate µ in the DSA we consider. Nevertheless, if we

scale down λ by 60% percentage (note that 0.4λ is still larger than µ), then we observe that a

significant number of class-1 kidneys are wasted under the HL-DB (on the Pareto frontier) when

the inequity allowance ̺ for Ineq1 is small; see Figure 5. Intuitively, when ̺ is large, the optimal

HL-DB policy simply assigns the lowest priority to the lowest-class patients, who have to accept

whatever kidneys that are available to them, so no kidneys are wasted. However, when ̺ is small,

each patient class has an equitable likelihood of receiving kidneys of all types because the ranking

under HL-DB does not depend on kidney type. Once λ is scaled down, this likelihood is not small.

Consequently, a patient has an incentive to turn down low-quality organs in order to get a better

13 In this paper, we only count wastage as kidneys that are not of any patient’s choice. In reality, a kidney can be
wasted for other reasons.
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one. As a result, up to 44.0% of the class-1 kidneys are wasted in this example; see Figure 5. In

contrast, under the HL-M policies, no class-1 kidneys are wasted, because the HL-M policy can

provide the low-class patients only with class-1 kidneys without violating the equity constraint.
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Figure 5 Kidney Wastage at the Pareto Frontier

Finally, we comment on the necessity of our methodological framework in obtaining the Pareto

frontier. If one uses a simulation approach to obtain the above comparison, one needs to simulate

the outcomes of all ranking policies in each policy class. That would be a formidable task as each

policy class covers numerous functional forms of ranking scores. While using the fluid model and

the achievable region approach, we can calculate the optimal policy in each class in real time. In

fact, since the transplant waitlist is an overloaded queueing system, the fluid model provides an

accurate approximation. We demonstrate in Appendix J that the predictions made by the fluid

model are close to the simulated results in the stochastic setting.

6. Concluding Remarks

This paper develops a fluid model to approximately predict the allocation outcome under a ranking

policy. Unlike many fluid models in which the steady state depends solely on service disciplines, the

steady state in our fluid model is the unique Nash equilibrium of a queue-joining game. The policy

designer’s problem is therefore to search for the ranking policy that leads to a Nash equilibrium

with the most desirable characteristics. We derive an efficient characterization of the achievable

region for each policy class. This characterization allows us to optimize over the achievable region

and compute the best allocation in each policy class policy for given efficiency and inequity metrics.

We apply the above method to the recent kidney transplant data and plot the Pareto frontier for

each policy class. The analytical and numerical results lead to the following managerial/qualitative

insights into the design of allocation policy.

• Compared to the previous policy, the new policy implemented in 2014 allows the healthier

patients to be ranked differently for kidneys of high quality. This major policy revision is a step in
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the right direction – from the HL-DB (the previous policy) to HL-M. The latter has at least two

advantages: improves survival matching and reduces kidney wastage.

• The current policy is an HL-HF policy, as it only prioritizes the healthiest patients for certain

kidney types. In order to provide patients of different types with equitable opportunity for kidney

transplantation, the future policy revision might consider prioritizing less healthy patients for low-

quality kidneys. Such a revision can also improve the total QALYs if executed properly.

• In both the previous and current policies, a patient’s score is an affine function of waiting time

with the same slope. Our analysis shows that for HL-M policies, then there is no need to consider

more complex functional form; though this conclusion might not hold for HL-DB policies.

• Our numerical study shows that a substantial improvement could be achieved by policies that

do not use waiting time as a primary ranking criterion. That motivates the policy maker to seek

alternative criteria to replace the waiting time.
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Appendix A: Proof of Proposition 1

We first prove that if τj(ξ) < +∞, then (8) holds and the inequality is strict only if c(τj(ξ); ξ) ∈ K. The

infimum in Equation (7) is always attained by the assumption that L(c(τ ; ξ), j, τ) is right-continuous in τ .

So when a patient’s waiting time reaches τj(ξ), his score must be either equal to or greater than SJ . We

next prove that the latter case could happen only when the patient’s health score c(τj(ξ); ξ) ∈K. We prove

by contradiction. Suppose L(c(τj(ξ); ξ), j, τj(ξ))>Sj . If c(τj(ξ); ξ) /∈K, then L(c(τ ; ξ)), j, τ) continuously and

strictly increases with τ in a neighborhood of τj(ξ). Thus, we can always find a time t which is slightly

smaller than τj(ξ), but with L(c(t; ξ), j, t) still having a larger value than Sj. That, however, contradicts with

τj(ξ) being the first time that the patient’s score has reached or exceeded Sj .

Let a(·, ·|ξ, η) denote the strategy of a patient with parameters (ξ, η) at the Nash equilibrium, which we

will prove to be unique. The existence of the equilibrium follows automatically because ours is a constructive

approach. For j = 1,2, . . . , J , define

Sj = inf{s |

∫∫∫

χ (L(c(τ ; ξ), j, τ)> s, a(τ, j|ξ, η) =A) π(c(τ ; ξ), τ, η)dξdτdη = 0}, (40)

where χ(·) represents a characteristic function. Intuitively, Sj represents the minimum threshold such that

no patients with score greater than Sj are willing to accept kidneys of type j. We prove the Proposition by

induction on the type of kidney offer j = J,J − 1, . . . ,1.

If j = J (the best kidney type), then by Lemma 1, every patient’s strictly dominating strategy is to accept a

type-J kidney immediately when being offered. Therefore, the equilibrium strategy must have a(τ, J |ξ, η) =A

for all ξ, η, τ . Once we have determined a(·, J |·, ·), SJ can be uniquely determined by (40) for any given

population distribution Π= (π(·, ·, ·)). We next prove that if τJ(ξ) is calculated from SJ from Equation (40)

and it has a finite value, then τJ(ξ) must be the first time that the score of patient ξ is equal to or larger

than SJ .

When a patient has waited less than τJ(ξ) time units, then his score s must be strictly smaller than SJ by

the definition of τJ(ξ). Then by the way that SJ is constructed, c.f., Equation (40), there are a positive mass

of patients who are willing to accept type-J kidneys and also have their scores strictly larger than s. Since

the population distribution at the steady state is stationary, the mass of those patients will stay invariant.

Thus, all new arrived type-J kidneys will be consumed by those patients before being offered to the patient

with a lower score s. Consequently, the patient would never receive any kidneys of type J before his waiting

time has accumulated to τJ(ξ).

When the patient has waited for exactly τJ(ξ) time units, his score has to be equal or greater than SJ by

the “furthermore” part of the proposition that we have proved at the beginning of this proof. Then by the HL

property of the score, the patient’s score must continue increasing during the time period [τJ(ξ), τJ(ξ) + δ]

for sufficiently small δ > 0. Thus, immediately after τJ (ξ), the patient’s score will be strictly larger than Sj,

and thus be larger than the scores of all other patients on the waitlist who are willing to accept a type-J

kidney. Consequently, the patient will receive a type-J kidney offer either at or immediately after τJ(ξ).

It is complicated to differentiate these two scenarios. However, for all kidney types j = 1, . . . , J , these two

scenarios only result in an infinitesimal difference in the values of τj(ξ) and UR. Thus, the two scenarios make
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no difference for a patient’s acceptance/rejection decision except when the patient has UA = UR. However,

as we argued earlier, a tie can only happen to patients with a particular η, which has a measure of zero.

Therefore, there is no need to differentiate these two scenarios, and we will simply assume in the remainder

of our paper that a patient receives a kidney offer at the allocation time.

After we obtain SJ and τJ(ξ), then whenever a patient is offered a type J − 1 kidney, we can compute his

expected QALYs by rejecting that kidney, UR. For example, if a patient with parameters (ξ, η) is offered a

type J − 1 kidney at time t, then by knowing his waiting time for type-J kidney, τJ(ξ), his UR is exactly

given by V (τJ (ξ)− t) as defined in Equation (41) with c= c(t; ξ) and j = J . Consequently, we can compute

almost every patient’s optimal strategy a(τ, J − 1|ξ, η). We then iteratively repeat the above procedure for

j = J − 1, . . . ,1. In each iteration, by knowing almost every patient’s strict dominating strategy a(τ, j|ξ, η),

we can compute the score threshold Sj and the required waiting time τj(ξ) for that type of kidneys. This

allows us to calculate every patient’s UR and to determine a(τ, j−1|ξ, η), the strictly dominating strategy for

the type-(j− 1) kidneys for almost all patients (except for those with UA =UR) given that almost everyone

will play the strategy a(τ, j|ξ, η) for the type-j kidneys. Following the above procedure, which is well known

as iterated elimination of dominated strategies, we can find the unique Nash equilibrium strategy. While

we have proved that the τj(ξ) constructed in the above procedure satisfies the properties stated in the

proposition.

Finally, we provide an example to illustrate that there might be not such a score threshold or allocation

time when the ranking policy does not satisfy the HL property. Consider a waitlist with a single kidney

type, in which the total kidney supply rate µ is lower than the aggregate patient arrival rate λ. Suppose all

patients are ranked according to a score L(c, j, τ) =−τ . This is the donor-blind, last-come-first-serve policy,

and does not satisfy the HL property. It is easy to check that patients with scores lower than zero will never

be offered a kidney. Among patients whose scores are equal to zero, which only happens at the time of their

arrival, only a proportion µ/λ are offered a kidney; while the other patients would never receive a kidney

offer. So there is not such a score threshold or allocation time as described in Proposition 1.

Appendix B: Proof of Lemma 1

Consider a patient with health score ξ at time 0 (here 0 refers to the current time, not necessarily the time

of arrival), and the quality-of-life coefficient η for that patient living on dialysis. We define the function

V (t) := η

∫ t

0

sfξ(s)ds+ ηF̄ξ(t)t+ F̄ξ(t)c(t; ξ)φj . (41)

In the above equation, η
∫ t

0
sfξ(s)ds+ ηF̄ξ(t)t and F̄ξ(t)c(t; ξ)φj gives the expected QALYs before and after

the transplantation, respectively. Thus, V (t) gives the optimal expected QALYs that the patient may receive

conditional on accepting a type-j kidney offer at time t. We note that

V ′(t) = ηF̄ξ(t)− fξ(t)c(t; ξ)φj + F̄ξ(t)c
′(t; ξ)φj ≤ F̄ξ(t)− fξ(t)c(t; ξ)φj < 0, (42)

where the first inequality follows from c′(t; ξ)≤ 0, and the second inequality follows from η < 1 and that

1−
fξ(t)

F̄ξ(t)
c(t; ξ)φj =1− h(c(t; ξ))c(t; ξ)φj < 0
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by (3). Thus, V (t) strictly decreases with t. Consequently, whenever a type j kidney is offered, the patient’s

strictly dominating strategy is to accept it immediately rather than accepting a kidney of equal or even lower

quality at a later time. If a patient chooses to stay on dialysis forever, then it is equivalent to accepting a

kidney with φ= 0 at an infinitely later time. So this case is also covered by this proof.

Appendix C: Proof of Proposition 2 and Remark 1

Proof. We proceed by contradiction. Suppose a patient with parameters with parameters (ξ, η), by using

his optimal strategy, rejects a kidney of type jk at time τjk (ξ), but accepts a kidney of the same type jk

at a later time s > τjk(ξ). After the patient rejects the kidney at time τjk(ξ), let us assume that the first

kidney type he will accept is jk′ . If jk′ 6= jk, then the patient would either die before transplantation, or

accept a kidney of type j′ and leave the waitlist. In whichever case, the patient will not accept a kidney

of type jk, which contradicts our assumption. If jk = jk′ , then it is clear from Lemma 1 that accepting the

type-jk kidney earlier at time τjk(ξ) strictly dominates the postulated alternative, and hence, leads to a

contradiction. Therefore, we conclude that the patient’s choices throughout their waits are consistent and it

suffices to restrict attention to decision times τj1(ξ), . . . , τjm(ξ).

We next prove that j∗(η, ξ) is non-decreasing in η by contradiction. Suppose there are two patients with

η1 > η2, but j1(:= j∗(ξ, η1)) < j2(:= j∗(ξ, η2)). Then kidney type j1 must have been accepted by the first

patient, and rejected by the second one; note that j2 is the first kidney type accepted by the second patient

subsequent to the offer of type j1. Given that the second patient rejects kidney type j1 and accepts j2, we

can derive the following inequality by recursively applying formula (9),

c(τj1(ξ); ξ)φj1 < η2

∫ τj2 (ξ)

τj1 (ξ)

fξ(t)

F̄ξ(τj1 (ξ))
(t− τj1(ξ))dt+

F̄ξ(τj2 (ξ))

F̄ξ(τj1 (ξ))
(η2(τj2 (ξ)− τj1(ξ))+ c(τj2 (ξ); ξ)φj2 ). (43)

Intuitively, the above inequality implies that for the second patient, choosing to wait till the offer of kidney

type j2 strictly dominates accepting kidney type j1. Since η1 > η2, the above inequality still holds by replacing

η2 with η1. However, that implies that the first patient has to reject kidney j1, which contradicts that

j∗(ξ, η1) = j1. This concludes the proof.

Remark 1 Since j∗(η, ξ) can be computed from (τj(ξ)) using the recursive equations (9)-(11) and (12), we

can then describe the equilibrium state using only (τj(ξ)) instead of the waitlist density Π. In fact, given

(τj(ξ)), we can compute each patient’s matched kidney type j∗(η, ξ). That allows us to determine if a certain

patient has already accepted a kidney offer and left by comparing the patient’s current waiting time τ and

his allocation time τj∗(η,ξ)(ξ). Specifically, for a patient with health score c and waiting time τ , we can solve

his initial health score ξ from the equality c= c(τ ; ξ). We can then recover Π := (πc,τ,η) as follows

πc,τ,η = λρ(ξ) F̄ξ(τ)χ(τ < τj∗(η,ξ)(ξ)). (44)

Appendix D: Proof of Proposition 3

Proof. We will only prove the “if” part. The “only if” part can be proved with a similar argument.

Suppose (τj(ξ)) are the allocation times at the equilibrium. We discuss two possible situations that could

happen to each of the virtual queues. Recall that the jth virtual queue consists of patients who will be

matched to kidneys of type j.
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In the first situation, queue j is non-empty and thus zj = supξ τj(ξ)> 0. Since it is at the steady state, the

inflow and out-flow rates must be balanced for each virtue queue, otherwise the queue-length cannot stay

invariant. Note that the departure rate includes those having reneged as well as those having transplanted

kidneys of type j. This leads to the following equality,

λ

∫ ξ̄

ξ

Qj(ξ)ρ(ξ)dξ = λ

∫ ξ̄

ξ

Fξ(τj(ξ))ρ(ξ)dξ +µj, (45)

where λ
∫ ξ̄

ξ
Fξ(τj(ξ))ρ(ξ)dξ gives the aggregate reneging rate in queue j. If we define yj as in (16), then the

above equality implies that yj = 0, and thus the complementary slackness condition yjzj = 0 holds for j.

In the second situation, queue j is empty, then τj(ξ) = 0 for all ξs. Thus, we have zj = supξ τj(ξ) = 0 for

patients in queue j, and the complementary slackness condition holds. If a queue is empty, there can be a

surplus in the kidney and thus yj can be any non-negative number. So the constraint yj ≥ 0 in the NCP

holds for that j.

The discussion of the above two situations show that the NCP (16) is solved by (τj(ξ)) and the associated

variables.

Appendix E: Proof of Lemma 2

Proof. (a): Since τj(ξ) is the first time that the patient’s score is equal to or larger than Sj, τj(ξ) must

be non-decreasing in Sj . Since L(cξ(τ), j) + τ is right-continuous in τ , τj(ξ) must be right-continuous. Its

left-limit exists due to monotonicity.

(b): By the assumption of HL-M, a patient with initial score ξ has his score L(c(t; ξ), j, t) strictly increasing

in t almost everywhere. At all those points, Sj strictly increases in t and thus τj(ξ) continuously increases

in Sj . However, when the patient’s health score hits one of the cutoff values in K, say, c̃, the function value

L(·, j, t) can possibly take a downward jump at c̃, at which time τj(ξ) changes discontinuously with Sj. To

see that, we refer the readers to Figure 2 –when the threshold S1
j approaches to S2

j := limc↑c̃L(c, j, c
−1(c̃; ξ))

from left, the allocation time corresponding to S1
j for patient ξ, i.e., τ1

j (ξ), does not to approach to c−1(c̃; ξ)

from left. This is because the L(c(t; ξ), j, t) has a downward jump at c̃. Consequently, it takes much longer for

the score of patient ξ to reach S2
j . That implies that the allocation time τj(ξ) changes discontinuously at S2

j .

However, for any given S2
j , since both c−1(c; ξ) is strictly increasing in ξ and L(c, j, t) is strictly increasing in

t, the left-hand-side of the following equation is strictly increasing in ξ and the equation must have at most

one solution ξ for any given S2
j and c̃∈K,

lim
c↑c̃

L(c, j, c−1(c; ξ)) = S2
j . (46)

Because the above equation is a necessary condition for τj(ξ) to be discontinuous at S2
j , there is at most

one ξ such that τj(ξ) is discontinuous at S
2
j . Since the set K contains finitely many points, there are finitely

many ξs at which τj(ξ) may change discontinuously in Sj , and those ξs have a measure of zero.
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Appendix F: Proof of Theorem 1

Proof. Let S := (Sj) denote a vector of score thresholds for all kidney types. We next construct a mapping

Ψ(·) to serve the following purpose: if S is a fixed point of this mapping (that means, S =Ψ(S)), then its

associated allocation times (τj(ξ)) must solve the NCP, c.f., Equation (16), and thus be the equilibrium

allocation times. Thus, to prove the theorem, it suffices to prove that such a fixed point exists and is unique.

The mapping Ψ(·) is constructed according to the following steps. Given (Sj), we calculate the unique

allocation times τj(ξ) for each patient ξ and j using Equation (7), and then find functions Γj(·) and Qj(·)

that are associated with (τj(ξ)). Finally, with Qj(·), we search for another vector of score thresholds S̃ := (S̃j)

and the allocation times (τ̃·(·)) associated with S̃, such that τ̃·(·) and its associated Qj(·), Γj(·) solve the

NCP (16). If this requirement can be satisfied by multiple S̃s, then we let Ψ(S) be the infimum of them.

We next show that the mapping Ψ(·) constructed above satisfy the desired properties, which allows us to

invoke the Brouwer’s fixed point theorem and prove the existence of the fixed point. First, the image of Ψ(·)

must be contained in the compact set
∏J

j=1[0, S̄j], where S̄j denote the upper limit of a patient’s score for

kidney type j,

S̄j := sup{L(c(t; ξ), j, t)|ξ≤ ξ ≤ ξ̄, 0≤ t≤ τ̄ξ}. (47)

Thus, the mapping from S to S̃ is from the compact domain
∏J

j=1[0, S̄j] to itself (not necessarily onto).

Second, Ψ(·) is well-defined. That means, we can always find a S̃ such that its associated allocation times

(τ̃j(ξ)) solve the NCP, or equivalently, for all j = 1, ldots, J , (τ̃j(ξ)) either solves the following identity,

λ

∫

ξ∈Ω

Q(ξ, j)ρ(ξ)F̄ξ(τ̃j(ξ))dξ = µj, (48)

or τ̃j(ξ) = 0 for all ξ and the following inequality holds,

λ

∫

ξ∈Ω

Q(ξ, j)ρ(ξ)dξ ≤ µj. (49)

The detailed proof follows next. For each j, by Property (b) of Lemma 2, τ̃j(ξ) increases continuously in S̃j

for almost all ξs. We can deduce that the integral on the left-hand-side of Equation (48) has to decrease

continuously with S̃j . Note that if the threshold S̃j is set as low as minξL(ξ, j,0), it does not require any

patient to wait for kidneys of type j so the associated allocation time τ̃j(ξ) = 0 for all ξ; if the threshold S̃j is

set as its upper limit S̄j , then all patients must have reneged before their allocation times by the definition of

S̄j. Therefore, when S̃j increases from minξL(ξ, j,0) to S̄j, the left-hand-side of Equation (48) continuously

decreases from λ
∫

ξ∈Ω
Qj(ξ)ρ(ξ)dξ (which is the function value corresponding to τj(ξ) = 0 for all ξ) to 0.

Thus, either µj ∈ [0, λ
∫

ξ
Q(ξ, j)ρ(ξ)dξ], in which case the intermediate value theorem implies the existence

of a solution to equality (48), or µj is outside this interval, in which case inequality (49) must hold. Note that

in the first case, it is possible that Equation (48) has multiple solutions. This could happen when the curve

L(c(τ ; ξ), j, τ) takes an upward jump at τ̃j(ξ). Then all S̃j ∈ [limτ↑τ̃j(ξ)L(c(τ ; ξ), j, τ), L(c(τ̃j(ξ); ξ), j, τ̃j(ξ))]

are associated with the same allocation time τ̃j(ξ). We then let (Ψ(S))j = limτ↑τ̃j(ξ)L(c(τ ; ξ), j, τ), which is

associated with τ̃j(ξ) by right continuity of the function L(c(τ ; ξ), j, τ) (i.e., Property (a) of Lemma 2).

Finally, we show that Ψ(·) is continuous, that is, ‖Ψ(S)−Ψ(S′)‖→ 0 if ‖S−S′‖→ 0, where ‖ ·‖ denote the

supremum norm. We will use the superscript ′ to denote the variables associated with S′. For example, τj(ξ)
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and τ ′
j(ξ) denote the allocation times associated with S and S′, respectively. By Property (b) of Lemma 2,

we have ‖τj(ξ)−τj′ (ξ)‖→ 0 for almost all ξ. Then the recursive equations (9) imply that |Vk−V ′
k | → 0 for for

almost all ξ and all k, where Vk denotes the optimal expected QALYs that a patient can get from the time

of receiving kidney offers of type jk. Since Vk and V ′
k stay very close for almost all ξ, by changing V to V ′,

only the patients with η near the cutoff values in {Γj(ξ) | j = 1, . . . , J − 1} may change their matched kidney

type j∗(ξ, η). Therefore, when |Vk − V ′
k | → 0, for almost all ξ, |Qj(ξ)−Q′

j(ξ)| → 0. Consequently, the left-

hand-side of (48), i.e., λ
∫

ξ∈Ω
Qj(ξ)ρ(ξ)F̄ξ(τj(ξ))dξ continuously decreases with S. According to the previous

discussion, S̃ is either the constant minξL(ξ, j), at which τj(ξ) = 0 for all ξs, or the unique intermediate

solution to (48). In the first case, S̃ is a constant and thus changes continuously with S; in the second case,

since the derivative of the left-hand-side of (48) with respect to S̃ is strictly negative, a small perturbation

to the left-hand-side led by replacing S with S′, can result in only small perturbation of its solution S̃. That

implies |S̃− S̃′| → 0.

We can thus proved that there exists a fixed point S =Ψ(S). We next prove that the uniqueness of the

equilibrium allocation-time vector by contradiction. Suppose there are two different allocation-time vectors,

τj(ξ) and τj(ξ). They must be associated with two different score-thresholds vectors, S and S′. Define the

index set

J + := {j |Sj <S′
j}. (50)

Intuitively, J+ denotes the set of kidney types for which the allocation time at the first equilibrium is not

longer than that at the second equilibrium for all patients. Since S 6= S′, we can assume J + 6= ∅ without loss

of generality. We note that if a patient has j∗(ξ, η) ∈ J + under S, then she must still have j∗(ξ, η) ∈ J+ if

the score thresholds S′ was replaced by S, because the latter requires an even shorter waiting time for those

kidney types. Thus, the total mass of patients will choose kidney types in J + under S is no less than that

under S′. By property (a) of Lemma 2, we have τj(ξ)≤ τ ′
j(ξ) for all ξ and all j ∈J+. Since (τj(ξ)) and (τ ′

j(ξ))

are different allocation-time vectors, we must have τj(ξ) < τ ′
j(ξ) for some j. Without loss of generality, we

assume j ∈J+ (otherwise we can define J + by swapping S and S′ to have j ∈J +). That implies the total

mass of patients who die during their waiting for kidney types in J + is larger under S′ compared to that

under S, despite the fact that the patients who choose to accept kidney types in J + under S′ is a subset

of that under S. Consequently, the total mass of patients who will transplant kidneys of types in J+ under

S is strictly larger than that under S′. However, since S′
j > Sj ≥ 0 for all j ∈J +, no queue in J + is empty

under S′, which implies that the utilization of kidneys in classes J+ have already been 100% under S′, which

contradicts that more kidneys in classes J + are accepted under S.

Appendix G: Proof of Lemma 3

Because τ satisfies constraint (C.M), γj(ξ) must be non-decreasing in ξ. Consequently, γj(ξ) must have both

left and right limits. We next prove that γj(ξ) is left-continuous. Suppose a sequence of values {ξk} ↑ ξ∗. Since

γj(ξ
k) is non-decreasing, we have {γj(ξ

k)} ↑ c∗ for some c∗, which further implies that {τj(ξk)}→ c−1(c∗; ξ∗).

Because L(c, j, τ) is continuous in τ and left-continuous in c for all j, we have

L(γj(ξ
k), j, τj(ξ

k))→L(c∗, j, c−1(c∗; ξ∗)) when k→∞. (51)



Authors’ names blinded for peer review

40Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!)

Since for each k, τj(ξ
k) is the allocation time of patient ξk, Proposition 1 implies that L(γj(ξ

k), j, τj(ξ
k))≥ Sj.

Consequently, L(c∗, j, c−1(c∗; ξ∗))≥ Sj . That implies c−1(c∗; ξ∗)≤ τj(ξ
∗), so

c∗ ≥ c(τj(ξ
∗); ξ∗) = γj(ξ

∗), (52)

On the other hand, monotonicity of γj(·) implies that c∗ = limk→∞ γj(ξ
k) ≤ γj(ξ

∗). We thus deduce that

c∗ = limk→∞ γj(ξ
k) = γj(ξ

∗). Thus, γj(·) is left-continuous.

Finally, we prove that γ−1(c) is a singleton for c /∈ K. Suppose ξ, ξ′ ∈ γ−1(c). Then since c /∈ K, we have

L(c, j, τj(ξ)) = L(c, j, τj(ξ
′)) = Sj by Proposition 1. Since L(c, j, τ) strictly increases in τ for all c and j, we

deduce that τj(ξ) = τj(ξ
′). That implies that ξ = ξ′ as c(τj(ξ); ξ) = c(τj(ξ

′); ξ′).

Appendix H: Proof of Proposition 2

Proof. To prove the “⊆” direction in Equation (20), it suffices to prove that if τ has a minimum acceptance

level k, then τ ∈Pk. We have argued in Section 3 that τ must satisfy constraint (C.1)-(C.6) by the properties

of the minimum acceptance level. We next prove that τ satisfies constraint (C.M) by contradiction. Suppose

two patients have their initial scores ξ > ξ′, but c(τj(ξ); ξ)< c(τj(ξ
′); ξ′). Since c(·; ξ) is continuously decreas-

ing, there exists a time t < τj(ξ), such that c(t; ξ) = c(τj(ξ
′); ξ′). Then by ξ > ξ′, we deduce that t > τj(ξ

′).

Since ∂L/∂τ > 0, we have

L(c(t; ξ), j, t) =L(c(τj(ξ
′); ξ′), j, t)>L(c(τj(ξ

′); ξ′), j, τj(ξ
′))≥ Sj (53)

where the last inequality follows from Proposition 1. The above equality implies that at time t < τj(ξ), the

score of patient ξ for kidney type j is already strictly greater than Sj , which contradicts with that the

patient’s score firstly reaches or exceeds Sj at time τj(ξ).

To prove the “⊇” direction, it suffices to prove that for k = 0,1, . . . , J , any τ ∈ Pk is a solution to

the NCP, c.f., (16), and thus is an equilibrium allocation-time vector by Proposition 3. Let yj = µj −

λ
∫ ξ̄

ξ
Qj(ξ)F̄ξ(τj(ξ))ρ(ξ)dξ and zj = sup{τj(ξ) | ξ ∈ [ξ, ξ]} following their definitions in the NCP. The inequal-

ity constraints zj ≥ 0 follows from the non-negative constraints for τj(ξ) in (C.6). The inequality constraint

yj ≥ 0 follows from (C.2) for j > k, and (C.3) for j = k. For j < k, (C.4) implies Qj = 0. Thus, yj = µj ≥ 0. It

remains to prove the complementary slackness condition yjzj = 0 for all j. For j ≤ k, constraint (C.5) implies

zj = 0, which leads to the complementary slackness condition. For j > k, constraint (C.6) implies yj = 0 and

thus the complementary slackness condition. Thus, (τj(ξ)) is an equilibrium allocation time.

We next prove that any τ ∈Pk can be achieved by an HL-M score L(c, j, τ) =M(c, j)+τ for score threshold

Sj = 0 (j = 1, . . . , J), where M(c, j) was constructed as in Equation (22) the the theorem. To that end, it

suffices to show that (τj(ξ)) solves Equation (7) for all j and ξ,. Because Sj = 0, Equation (7) reduces to the

following equality

τj(ξ) :=

{

τ̄ξ if {τ ≥ 0 : M(c(τ ; ξ), j)+ τ ≥ 0}= ∅,
min{τ ≥ 0 : M(c(τ ; ξ), j)+ τ ≥ 0} otherwise.

(54)

Note that when the set is empty, i.e., a patient could never reach the threshold 0, we let his allocation time

to be τ̄ξ instead of +∞ to make the allocation time bounded. That does not make a difference because a

patient with initial health score ξ cannot live no longer than τ̄ξ.
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We next prove Equation (54). It suffices to prove that L(c(τj(ξ); ξ), j, τj(ξ))≥ 0, and L(c(t; ξ), j, t)< 0 for

all t < τj(ξ). To prove the first inequality, we note that

L(γj(ξ), j, τj(ξ)) =M(γj(ξ), j)+ τj(ξ) =− inf{τj(z) | z ∈ γ−1
j (γj(ξ))}+ τj(ξ)≥ 0, (55)

where the second equality follows the definition of M(c, j) in Equation (22).

To prove the second inequality, we discuss the following two cases. If c(t; ξ) /∈ C, then by the definition of

M(c, j), we have

L(c(t; ξ), j, t) =M(c(t; ξ), j)+ t=−τ̄ξ̄ + t < 0, (56)

as no patient can live longer than τ̄ξ̄. If c(t; ξ) ∈ Cj , then by definition of Cj, the set γ−1
j (c(t; ξ)) := {z|γj(z) =

c(t; ξ)} is non-empty. For any z ∈ γ−1
j (ξ), since t < τj(ξ), we have γj(ξ) = c(τj(ξ); ξ) < c(t; ξ) = γj(z), that

implies ξ < z by monotonicity of γj(·). Because ξ < z but c(t; ξ) = c(τj(z); z), we deduce that t < τj(z).

Therefore,

L(c(t; ξ), j, t) =M(c(t; ξ), j)+ t <M(c(τj(z); z), j)+ τj(z) =L(c(τj(z); z), j, τj(z)). (57)

If c(t; ξ) /∈K, then Proposition 1 implies that L(c(τj(z); z), j, τj(z)) = Sj =0; so the above inequality implies

that L(c(t; ξ), j, t)< 0; if c(t; ξ) = γj(z) ∈K, then since the above inequality holds for all z ∈ γ−1
j (c(t; ξ)), we

have
L(c(t; ξ), j, t)≤ inf{L(γj(z), j, τj(z)) | z ∈ γ−1

j (c(t; ξ))}
= M(γj(z), j)+ inf{τj(z) | z ∈ γ−1

j (c(t; ξ))}
= 0,

(58)

where the last equality follows from inf{τj(z) | z ∈ γ−1
j (c(t; ξ))} =−M(c(t; ξ), j) =−M(γj(z), j). Therefore,

regardless of c(t; ξ) ∈ K or c(t; ξ) /∈K, we have proved that L(c(t; ξ), j, t)< 0 for all t < τj(ξ). We have thus

proved that τj(ξ) is the first time that a patient’s score reaches 0 and verified Equation (54).

It remains to prove that the score function L(c, j, τ) =M(c, j) + τ satisfies the assumptions of an HL-M

policy. It suffices to show that M(c, j) is p.c.d. for all j, and

dM(c(τ ; ξ), j)

dτ
>−1 for all j, ξ when c(τ ; ξ) /∈K. (59)

To prove that M(c, j) is p.c.d., for all c /∈K, we note that γ−1
j (c) is a singleton by Lemma 3. Furthermore,

since γj(ξ) is left-continuous and non-decreasing in ξ, Cj must have the following form,

Cj = [cj1, cj1]∪ (cj2, cj2]∪ . . .∪ (cjm, cjm], (60)

where m is a positive integer and the cutoff points satisfy c̄i−1,j < cij ≤ c̄ij for i=2,3, . . . ,m. Therefore, over

each interval (cjℓ, cjℓ] with cjℓ > cjℓ
14, dγ−1

j (c)/dc= 1/(γ′
j(γ

−1
j (c))) exists due to the assumption that τj(ξ)

(and therefore γj(ξ)) is p.c.d. in ξ. Since K contains finitely many points, we have proved that M(c, j) =

τj(γ
−1(c)) is p.c.d.

We next prove condition (59). Suppose c = c(τ ; ξ) /∈ K. For each j = 1, . . . , J , if c /∈ Cj , then

∂M(c(τ ; ξ), j)/∂c= 0 implies dM(c(τ ; ξ), j)/dτ = 0, and condition (59) is proved; if c ∈ Cj , then by Lemma

3, γ−1
j (c) is a singleton. Thus, the following equation holds for all c∈ Cj,

c= c(τj(γ
−1
j (c)) ; γ−1

j (c)) =H−1
(

τj(γ
−1
j (c))+H(γ−1

j (c))
)

. (61)

14 We allow cij = cij , in which case we assume (cij , cij ] = {cij} by abuse of notation.
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where the first equality follows from the definition of the inverse function γ−1
j (·), and the second equality

follows from Equation (2). We have argued earlier that the derivative γ−1
j (c) exists over each sub-interval of

Cj. Thus, by taking derivative at both sides of Equation (61), we have

1 = dH−1(t)

dt
|
t=τj(γ

−1

j
(c))+c−1(γ−1

j
(c))

(

dτj(γ
−1

j
(c))

dc
+

dH(γ−1

j
(c))

dc

)

= 1
H′(c)

(

dτj(γ
−1

j
(c))

dc
+

dH(γ−1

j
(c))

dc

)

> 1
H′(c)

dτj(γ
−1

j
(c))

dc
.

(62)

The second equality follows from that for all t and ξ, the derivative dH−1(t)

dt
only depends on the patient’s up-

to-date health score c=H−1
(

τj(γ
−1
j (c))+H(γ−1

j (c))
)

. For the last inequality, we note that γj(·) is strictly

increasing, so the inverse function γ−1
j (c) is strictly increasing in c. Since H(·) is strictly decreasing, we

deduce that dH(γ−1
j (c))/dc < 0, which, together with H ′(c) < 0, lead to the last inequality in (62). As a

result, for all c∈ Cj\K, we have
dM(c,j)

dτ
= ∂M(c,j)

∂c
c′(τ ; γ−1(c))

= −
dτj(γ

−1

j
(c))

dc

1
H′(c)

.

> −1,

(63)

where the second equality follows from the definition of M(c, j) on c ∈ Cj, and the third equality follows from

(62). Thus, for each j = 1, . . . , J , we have proved condition (59) in the case of c ∈ Cj . This completes the

proof.

Appendix I: Numerical Procedure for Solving the Policy Design Problem

To facilitate real-time computation, we propose a finite-dimensional approximation of (32) by discretizing the

domain of ξ into N grid points: {ℓ(ξ − ξ)/N | ℓ= 0,1, . . . ,N}. The finite-dimensional optimization problem

then searches for an (N + 1)-by-J matrix of the allocation times: τ f := {τj(ξℓ) | j = 1, . . . , J, ℓ = 0, . . . ,N},

where ξℓ := ℓ(ξ− ξ)/N and the superscript f stands for “finite-dimensional”. After obtaining τ
f , we recover

the continuous allocation time using linear interpolation.

We provide a finite-dimensional representation for the achievable region of the HL-M policies below.

Af
HL−M :=∪J

k=0P
f

k ∩Pf
M ,

where

Pf

k :=























































τ
f ∈R
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pj(ξℓ) =
1
µj
λQj(ξℓ;τ

f)ρ(ξℓ)F̄ξ(τj(ξℓ)) for all j, ℓ (Cf.1)

∑N

ℓ=1 pj(ξℓ) = 1 for j > k (Cf.2)
∑N

ℓ=1 pk(ξℓ)≤ 1 (Cf.3)

Qj(ξℓ;τ
f ) = 0 for j < k, all ℓ (Cf.4)

τf
j (ξℓ) = 0 for j ≤ k, all ℓ (Cf.5)

0≤ τf
j (ξℓ)≤ τ̄ξℓ for j > k, all ℓ (Cf.6)























































.

Pf
M :=

{

p.c.d. functions τ | c(τj(ξℓ); ξℓ)≥ c(τj(ξℓ′); ξℓ′) for all ℓ > ℓ′ (Cf.M)
}

.

Similarly, to derive a finite-dimensional representations for Af
HL−HF , we just need to replace (Cf.M) with

a stronger constraint as follows,

Pf
HF :=

{

p.c.d. functions τ f | τf
j (ξℓ)≤ τf

j (ξℓ′) for all ℓ > ℓ′ (Cf.HF)
}

.
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For the HL-DB policies, we need derive a finite-dimensional representation of constraint (C.DB). In par-

ticular, this calls for a finite-dimensional representation for the function L(c(τ ; ξ), τ) which has a continuous

domain {(ξ, τ)|ξ ∈ [ξ, ξ̄], τ ∈ [0, τ̄ξ]}. For that purpose, we construct the grid {ξℓ|ℓ = 1, . . . ,N} ⊗ {τr :=

rτ̄ξ/R|r = 0,1, . . . ,R} (let τ0 = 0) on the continuous domain, and represent the function using its values at

the grids {L(c(τr; ξℓ), τr) | ℓ= 1, . . . ,N, r= 0,1, . . . ,R}. We then recover its values on the continuous domain

by linear interpolation. This leads to the finite-dimensional representation of (C.DB) as follows

Pf
DB :=















τ
f ∈R

N+1,J
+

∣

∣

∣

∣

∣

∣

∣

∣

τf
j (ξℓ) :=min{τ̄ξℓ , min{τ ≥ 0 : L(c(τ ; ξℓ), τ)≥ Sj}} for some L(c, τ)

such that L(c(τf

r+1; ξℓ), τ
f

r+1)−L(c(τf
r ; ξℓ), τ

f
r )≥ ǫ for all ℓ, r

L(c(τf
r ; ξℓ), τ

f

r+1)−L(c(τf
r ; ξℓ), τ

f
r )≥ ǫ for all ℓ, r

(Cf.DB)















Given {L(c(τr; ξℓ), τr) | ℓ= 1, . . . ,N, r = 0,1, . . . ,R}, we solve τf
j (ξℓ) from the first equality in (Cf.DB) as

follows. First, we can find the smallest index r such that L(c(τr; ξℓ), τr)≥ Sj , if such an r exists; otherwise,

assign τf
j (ξℓ) = τ̄ξℓ . Second, because the values of L(c(τ ; ξℓ), τ) on the continuous domain are assigned using

linear interpolation, we can locate τf
j (ξℓ) as

τf
j (ξℓ) = τf

r−1 +
Sj −L(c(τf

r−1; ξℓ), τ
f

r−1)

L(c(τf
r ; ξℓ), τ

f
r )−L(c(τf

r−1; ξℓ), τ
f

r−1)
(τf

r − τf
r−1). (64)

The second and third equality in (Cf.DB) provides a discrete approximation of the constraints dL(c, τ)/dτ > 0

and ∂L(c, τ)/∂τ > 0, respectively. The parameter ǫ is set to be a small positive number, e.g., 10−10, to ensure

the derivatives to stay strictly positive.

Finally, we discuss how to formulate the constraint Qj(ξℓ;τ
f ) = 0 to facilitate the computation. If kidney

type j is dominated by other kidney types for patient ξℓ, then Qj(ξℓ;τ
f) = 0; otherwise, Qj(ξℓ;τ

f) can be

expressed according to Equation (15) using the cutoff values (Γj(ξℓ;τ
f )) associated with τ

f . The cutoff

values (Γj(ξℓ;τ
f))j=1,...,J−1 can be computed according to the following procedure for given τ

f . First, for all

1≤ j < j′ ≤ J , we compute variables ηj,j′ as the unique solution to the following equation

c(τf
j ; ξℓ)φj = η

∫ τ
f

j′
(ξℓ)

τ
f
j
(ξℓ)

fξℓ(t)

F̄ξℓ
(τf

j (ξℓ))
(t− τf

j (ξℓ))dt+
F̄ξℓ

(τf

j′(ξℓ))

F̄ξℓ
(τf

j (ξℓ))
(η(τf

j′ (ξℓ)− τf
j (ξℓ))+ c(τf

j′(ξℓ); ξℓ)φj′). (65)

In particular, ηj,j′ stands for the cutoff values at which the patient with initial health score ξℓ is indifferent

between accepting a kidney j or turning it down and wait for a kidney of type j′. Note that it could happen

that ηj,j′ < 0, which suggests that all patients prefer kidney type j′ to j; or ηj,j > 1, which suggests that

all patients prefer kidney type j to j′. Then starting from j = 1, we know for a fixed j, min{ηj,j′ | j′ > j}

provides the exact cutoff such that all patients with η smaller that cutoff point prefers kidney type j then

any kidney types larger than j′; and all other patients prefer some kidney type greater than j′ rather than

j. To ensure that Γj is non-decreasing in j and within the interval [0,1], we let

Γj(ξℓ;τ
f ) =min{1,max{min{ηj,j′ | j

′ > j}, Γj−1(ξℓ;τ
f )}}, for j =1, . . . , J, (66)

with Γ0(ξℓ;τ
f) = 0 by abuse of notation. Thus, Γj(ξℓ;τ

f ) and therefore Qj(ξℓ;τ
f ) both have an analytical

representation, which allow us to compute their sub-gradient with respect to τ and use first-order methods

to solve the policy design problem, e.g., (32) and (34).
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Appendix J: Comparison to the Stochastic Setting

We simulate the stochastic waitlist system in which patients and kidneys arrive according to a homogeneous

Poisson process, and patients use historical information (e.g., the average score thresholds for each kidney

type in the past year) to predict their allocation times and decide whether to accept or reject an offered

kidney. All the parameters in stochastic system, including ρ(·), h(·), c(·; ·), and Gξ(·), take the same values

as those in the fluid model. We simulate the stochastic waitlist under an HL-M policy and an HL-HF policy

for illustration. Table 3 reports their allocation outcomes in terms of the percentage of patients in each class

that transplant each type of kidneys. The reported percentages are averaged over a ten-year period after

the waitlist population stops further growing, so these percentages characterize the steady-state allocation

outcome. As shown in Table 3, the simulated percentages are all within 5% of those predicted by the fluid

model, suggesting that the fluid model has provided accurate predictions. This justifies our model choice.

Table 3 Comparison of the Allocation Outcomes for Fluid and Stochastic Models

Fluid Model Simulation

HL-M































0.070 0 0 0
0.070 0 0 0
0.163 0 0 0
0.003 0.181 0 0
0 0.296 0 0
0 0 0.811 0
0 0 0.344 0.394
0 0 0 1
0 0 0 1
0 0 0 1





























































0.069 0 0 0
0.067 0 0 0
0.160 0.001 0 0
0.012 0.179 0 0
0 0.292 0 0.016
0 0 0.815 0.002
0 0.011 0.337 0.417
0 0 0 0.960
0 0 0 0.982
0 0 0 0.969































HL-HF































0.002 0 0 0
0.028 0 0 0
0.184 0 0 0
0.050 0.180 0 0
0 0.300 0.115 0
0 0 0.597 0
0 0 0.406 0.495
0 0 0 1
0 0 0 1
0 0 0 1





























































0.003 0 0 0
0.028 0 0 0
0.185 0 0 0
0.046 0.169 0.004 0
0 0.317 0.129 0
0 0 0.629 0
0 0 0.400 0.475
0 0 0 0.987
0 0 0 0.951
0 0 0 0.971
































