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This case study applies the machinery developed in (Ding et al. 2018) to a practical problem

– public housing allocation in the city of Pittsburgh. Specifically, Ding et al. (2018) developed

a fluid model that approximates a bipartite queueing system (BQS) equipped with a Match-

ing(M)+Waiting(W) index, which is suitable for modeling the public housing allocation system.

In particular, we can calculate the fluid process over any finite interval using Algorithm 4 in (Ding

et al. 2018), which predicts how the queue-lengths in the BQS evolve in a given time window. We

aim to illustrate the following points via this case study.

1. The prediction from the fluid model provides accurate approximations to the stochastic sys-

tem.

2. By identifying the routing components and the associated switch times, our machinery helps

the system manger better understand the allocation outcome under a certain policy.

3. Our machinery enables the policy designer to evaluate and compare system performances

under different M+W indices.

1. Overview

Most major North American cities provide affordable housing options for eligible low-income fam-

ilies, seniors, and persons with disabilities1. The housing authority (HA) in each city is responsi-

ble for the maintenance and assignment of such houses. Currently, such programs accommodate

approximately 1.2 million households2, but the supply is far from large enough to meet all the

demand for housing. Applicants to such programs typically have strict constraints on the housing

options they prefer based on location, the community type, and features of the housing unit such as

1 The rent for public housing is usually around 30% of the renter’s gross income. This can vary depending on the size
of the residence and the type of the community.

2 http://portal.hud.gov/hudportal/HUD?src=/topics/rental_assistance/phprog
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the number of rooms etc., which exacerbates the shortage for some types of housing. For example,

the waiting time for single-bedroom apartments was reported to be around 28 years in the District

of Columbia (Stockton 2013).

We illustrate the use of the tools we developed in this paper using data from the Housing

Authority of the City of Pittsburgh (HACP) that was gathered by Geyer and Sieg (2013). The

HACP requires applicants to specify their preference among the available types of units, and among

the communities where public housing is available. Houses are allotted based on availability in the

preferred community and according to the applicants’ registration dates when joining the waitlist

for housing. Therefore the waitlist can be effectively partitioned into multiple queues according to

the applicants’ selections. If we assume that the priority is first-come-first-served in each queue3,

then the waitlist system is a BQS.

We take the following steps to study the optimal scoring policies that the HACP could use to

allocate their houses. First, Section 2 estimates parameters of this BQS using historical data that

was obtained from the HACP and the data from the Survey of Income and Program Participation

(SIPP). Next, Section 3 calculates the fluid limit process for this BQS using the tools developed

in this paper. We compare the fluid limit process to the stochastic process that is simulated using

the same set of parameters. The comparison shows that the fluid model generates very robust

predictions. Lastly, Section 4 shows that the predictions of the our fluid model make it easy to

evaluate different scoring rules with respect to various performance measures.

2. Parameter Estimation

The average net number of households that move out of PH1, PH2, and PH3 per quarter are

estimated by Geyer and Sieg (2013), which can be regarded as the resource arrival rates in the

BQS mode, namely µ1 = 118.9, µ2 = 29.5, and µ3 = 9.1.

Geyer and Sieg (2013) developed a discrete-choice-model to predict how low-income house-

holds select their housing community by studying the public housing allocation system of HACP.

Although our objective in this paper is different than theirs, we use data sets from their study and

calibrate many useful system parameters based on estimates reported in their study. They iden-

tified 34 community types in the city of Pittsburgh, and further categorized them into six broad

community types, each of which consists of fairly homogeneous housing units. To make our BQS

even simpler, we consider only three of these six broad community types, denoted by PH1, PH2,

and PH3. The majority of the housing units in these three broad types are offered to non-senior

families, so we can focus on these three types independently from the other types.

3 In fact, most households with the same selection of community types will be sequenced according to their registration
date. The HACP may prioritize a small number of households with urgent needs, but this is often negligible.
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Applicants specify a first choice among the three types, and are encouraged (but not required)

to add a second choice. An applicant’s choice profile can then be represented by a single number

or an ordered pair. For example, choice profile [12] means that the applicant’s first choice is PH1

and second choice is PH2, and choice profile [2] means that the applicant’s first choice is PH2 and

they did not specify a second choice.

To estimate the proportion of each choice profile, we use the discrete-choice model estimated by

Geyer and Sieg (2013), which assumes a renter’s utility to be

ujt = γj +β ln(yjt)+ δxt +mc+ ξjt, j =1,2,3
u0t = ln(y0t)+ δxt + ξ0t, j =1,2,3

(1)

where j denotes the community type, (j =0 means living outside public housing), t is the index of

an applicant, γj, ujt represents the utility for applicant t to accept a unit of type j, γj represents

the fixed effect of community type j and yjt denotes the net income of the applicant reduced by

the rent of housing type j, β denotes the coefficient for the log of net-income (Geyer and Sieg

(2013) assumed β = 1 for the outside housing option), xt is a vector of a household’s attributes,

mc stands for the moving cost for the household (which is incurred when the household accept

public housing), and ξjt represents idiosyncratic shocks which are assumed to be i.i.d. and possess

extreme-value distributions.

Geyer and Sieg (2013) studied the choice behavior of householders already residing in public

housing as well as those outside public housing. In order to do that, they created two population

pools to generate xt and yt: the residence pool and the waitlist pool. The residence pool consists of

households who resided in public housing in the city of Pittsburgh from June 2001 to June 2006.

The attributes of such households were recorded in the HACP’s dataset. The waitlist pool consists

of 14,234 randomly selected low-income applicants who were eligible for public housing from 13

metropolitan areas with a public housing-household ratio similar to the city of Pittsburgh. Their

information is recorded in the SIPP dataset. Geyer and Sieg (2013) argued that these applicants

are a good proxy for those on the waitlist for public housing in Pittsburgh. Since our case study

focuses on the dynamics on the waitlist, we ignore possible transfers between different community

types (which are small). Therefore, it suffices to create the waitlist pool using the same method

described in the above paper and then generate xt and yt from that waitlist.

The waitlist pool we use is a subset of the dataset used by Geyer and Sieg (2013). Therefore

their choice model can be applied to predict household choice in our system. Using xt and yt,

we can calculate the deterministic parts of the utility function ujt and u0t using the coefficients

reported in Geyer and Sieg (2013). By generating the random errors (ξjt)j=0,1,2,3 according to

their distributions, we can simulate the values of ujt and u0t and calculate the probabilities for
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each choice profile. For example, Pr(1,2) = Pr(u1t > u2t > 0), Pr(2) = Pr(u1t > 0, u2t < 0, u3t < 0).

Although our choice set has only three types rather than the six types of (Geyer and Sieg 2013),

this does not lead to any estimation bias of the choice probabilities due to the “independence of

irrelevant alternatives” property of the discrete choice model.

We estimate our matching function U(·, ·) using the following reasoning. (1) The function values

should have the same scale for different applicants. Thus, we assign U(j, (j1, j2)) = 1 when j = j1,

i.e., when an applicant’s first choice was met; and we assign U(j, (j1, j2)) = 0 if j 6= j1, j2, that is,

if j is not in an applicant’s choice set. (2) For each individual applicant, the degree of matching

for the 3 options, i.e., the “first choice”, “second choice”, and “not interested in public housing”

have to reflect an individual’s degree of interest among the three options. We find that on average,

the second largest value among the random utilities (ujt)j=0,1,2,3 is 0.66 of the largest value after

normalizing “not interested in public housing” to be zero. Therefore, we use 0.66 as the value for

the degree of matching if an offered housing unit is the second choice of the applicant.

Based on our estimation from the historical data, new applicants arrive at a constant arrival

rate of 443 every quarter of a year. The waitlist was closed in May 2015 and re-opened in July

2015. Assuming that the 1578 applicants on the older closed waitlist for non-senior housing needed

to re-register again on the new waitlist and that 50% of these applicants did register on the new

waitlist in the first two quarters, yields the total arrival rate of 50%×1578+443= 1232 per quarter

in the first two quarters, and thereafter a stable 443 per quarter since the third quarter.

Finally, applicants on a waitlist may abandon the queue before they are assigned a housing

unit for various reasons. Based on our conversations with HACP, the most typical reason that an

applicant loses eligibility because of an increase in their income. The data shows that the time

for an eligible applicant to lose their eligibility has a similar distribution across different queues,

and can be approximated by an exponential distribution with a hazard rate of d= 0.07 quarters.

Therefore the cumulative distribution of abandonment time is given by Fi(t) = 1− exp(−dt).

The parameters we estimated are summarized in Table 1.

3. Comparison of the Fluid Approximation and the Stochastic Process

A fluid approximation to the waitlist system assumes that both applicants and housing units arrive

according to deterministic processes. Using Algorithm 4 in (Ding et al. 2018), we can calculate the

HOL waiting times in the fluid model using the parameters reported in Table 1. To see whether the

fluid approximation is an accurate approximation of the underlying stochastic process, we compare

the HOL waiting times predicted by the fluid model to that in a simulated stochastic BQS using

the same set of parameters and assuming that all arrival processes are Poisson. We simulate the
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Table 1 Summary of Estimated Parameters

Choice Profile i [12] [13] [1] [21] [23] [2] [31] [32] [3]
Probability 0.1013 0.0793 0.049 0.1318 0.1939 0.1061 0.0906 0.1703 0.0776

Community Type j PH1 PH2 PH3
Service Rates µj 118.9 29.5 9.1

Time Window Quarter 1 and 2 Later
Total Arrival Rate λ 1232 443

Reneging Rate d 0.07

U(·, ·)

Queues [12] [13] [1] [21] [23] [2] [31] [32] [3]
PH1 1 1 1 0.66 -100 -100 0.66 -100 -100
PH2 0.66 -100 -100 1 1 1 -100 0.66 -100
PH3 -100 0.66 -100 -100 0.66 -100 1 1 1

HOL waiting times of this stochastic BQS by bootstrapping each applicant’s attributes from the

waitlist pool and predicting their choice profiles.

We assume that applicants on the waitlist are ranked by the optimal scoring formula at the

steady state, i.e., score∗ (See Equation (70) in (Ding et al. 2018)), where the weight η is set to

be 50. According to Corollary 1, this scoring formula optimizes the steady-state performance with

respect to the objective function (5), where efficiency (Ef) and fairness (Fa) are defined according

to equations (4) and (3), respectively. Figure 1 plots two sets of HOL waiting time curves over a

five-year horizon (20 quarters). One set are predictions made by the fluid model, and the other set

are simulated sample paths for the stochastic BQS. The two sets of curves stay fairly close and the

fluid process captures the behavior of the simulated sample paths quite well. In the first period,

each community PHi only serves the queues that indicated PHi as their first choice. However, this

routing configuration changes quickly because scores of queues in routing components of PH2 and

PH3 increase at a higher speed than those of other queues due to the acute shortage of housing

units in PH2 and PH3. Consequently, a subset of queues served by PH2 and PH3 catch up with

queues served by PH1 in their scores, and get merged into the component of PH1. At T3, queues

[32] and [3] in the faster component are merged into the slower component of PH1, which leads to

the breakpoints in the waiting-time curves. After T4, all queues are merged into a single component

and this configuration does not further change. We plot the curves for five years, which covers all

switch points, though it takes fifteen years in total for the fluid process to reach the steady state.

The change in waiting times is smaller than .00001 after 50 years, indicating convergence. The

routing configurations in different time periods are depicted in Figure 3.

We repeat the simulation 100 times and calculate the mean absolute deviation (MAD) for the

HOL waiting times in each queue, and find MADs to range from 0.097 to 0.116 quarters, which

is 8–10 days, which means that the fluid approximation is accurate up to a ten-day period. We
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also observe that the fluid approximation remains accurate even for queues with thin service rates,

such as queues [32] and [3], whose throughput rate is less than 10 per quarter. This demonstrates

that fluid models for overloaded systems were quite robust in our experiments.
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Figure 1 HOL Waiting Times for the nine queues predicted by Fluid Model (F) versus a Simulated Stochastic

Process (S). Note that some queues, such as queues [32] and [3], have the same HOL waiting times

curves. T1, T2, T3 are switch times at which the routing components change. Other kinks on the curve

are due to discontinuity of the arrival rate functions λ(t) and µ(t).

4. Policy Evaluation

Our fluid model enables the housing authority to predict the properties of the system when housing

allocations are made according to any M+W index in the following form,

score(j, i, τ) =L(j, i)+ gi(τ). (2)

In practice, most housing authorities try to match the applicants’ choice of community types

to the available capacity, but an unintended consequence is that some community types might

require a much longer waiting time than others. In practice, the queue length or waiting time is

usually unobserved by the applicants. As a result, even applicants who are somewhat indifferent

to the community type might have to wait much longer than the other applicants due to their
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PH1 PH2 PH3

[13] [1] [21] [23] [2] [31] [32] [3][12]

(a) Initially, houses in each community type are allocated

only to applicants whose first choice is matched.

PH1 PH2 PH3

[13] [1] [21] [23] [2] [31] [32] [3][12]

(b) After T1 = 2.67, queue [31] starts to be served by

PH1 instead of PH3.

PH1 PH2 PH3

[13] [1] [21] [23] [2] [31] [32] [3][12]

(c) After T2 = 3.09, queue [21] starts to be served by PH1

instead of PH2.

PH1 PH2 PH3

[13] [1] [21] [23] [2] [31] [32] [3][12]

(d) After T3 = 19.15, the routing components of PH1 and

PH3 merge into a single routing component.

Figure 2 Routing configurations in each period

unintentionally selecting a housing type that corresponds to a longer queue. Such scenarios can be

minimized if a housing authority actively tries to reduce the waiting-time disparity across different

queues while aiming to match applicants’ choices. To demonstrate how a HA can accomplish this,

we assume that HACP tries to choose an M+W index that optimizes the following efficiency and

fairness metrics,

Fa(T ) := −
∑

i∈I

∫ T

0
λi(t)dt

∫ T

0

∑

i∈I
λi(t)dt

(

∫ T

0

∑

j∈J
rji(t)dt

∫ T

0
λi(t)dt

−

∫ T

0

∑

j∈J
µj(t)dt

∫ T

0

∑

i∈I
λi(t)dt

)2

. (3)

Ef(T ) :=

∫ T

0

∑

i∈I, j∈J
U(j, i)rji(t)dt

∫ T

0

∑

j∈J
µj(t)dt

. (4)

where r(t) = rji(t) denote the service-rate matrix. The multi-objective optimization problem can

be formulated as

max Ef(T )+ ηFa(T ). (5)

where η denotes the weight that the policy maker places on fairness against efficiency. We use

the optimal index formula score∗ as the benchmark policy for our finite horizon problems for

tractability. We then compare the performance of score∗ to several alternative formulas.
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We can use Algorithm 4 in (Ding et al. 2018) to calculate the trajectories of queue-lengths

or equivalently, head-of-line (HOL) waiting times, in a fluid model over a transient period. For

example, as shown in Figure 3 (d), in Period 3, the corresponding residual network contains a

cycle PH1→ [32]→ PH3→ [3]→ PH1; in Period 4, the cycle is even larger. We could construct

alternative feasible routing rates by pushing a nonzero flow around these cycles, which would not

change the matching utility because the utility around these cycles sums to zero. In other words,

different routing rates lead to the same expected matching utility
∑

j∈J ,i∈I
rjiUji. Thus, in this

example there is no need to perturb the matching score L. Indeed, our numerical experiments

show that different perturbations of L lead to close performance with respect to the efficiency and

fairness measurements (4) and (3).
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Figure 3 The Pareto frontiers when L= U, U ±∆, U ± 3∆ and gi(W (t)) = 1− e−dW (t). See (Ding et al. 2018)

for definition of ∆.

We next fix the matching score to be L = U and test the following parametric forms of the

waiting score:

gi(τ) = τ
gi(τ) = Fi(τ) = 1− exp(−dτ)
gi(τ) = τ 2

(6)

which represents linear, concave, and convex waiting scores. For a given weight η, we calculate

the corresponding fluid process over a 20-quarter horizon. We measure efficiency using the average

matching utility (4), but use two different fairness measurements. One is still the variance in

likelihood of getting service given by (3), and the second is the minimum likelihood of getting

service across all customers, which can be calculated by

min
i∈I

∫ T

0

∑

j∈J
rji(t)dt

∫ T

0
λi(t)dt

. (7)
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By sampling different values of η, we obtain the Pareto frontiers corresponding to the three types

of waiting scores and plot them on the efficiency-fairness spectrum in Figure 4, where 4 (a) uses the

variance as fairness measure, and (b) uses the negative minimum likelihood as fairness measure.

For the first fairness measure, we have a theoretical characterization of the optimal M+W index

formula for the steady state, while the second fairness measure is much simpler and possibly

more practical in real life. Figure 4 (a) shows that the status quo, gi(WT) = Fi(W (t)) = 1 −

exp(−dW (t)) outperforms the other two forms of waiting scores with respect to the first fairness

measure; however, if the second fairness measure is used, then the convex waiting score gi(WT)=

Fi(W (t)) = 1− exp(−dW (t)) dominates the other two. Intuitively, if one wishes to lower bound

the likelihood of getting an offer, then one may consider using a convex waiting score to prioritize

queues with the smallest likelihood.

In practice, the policy designer may wish to maximize the efficiency measure solely by taking the

fairness measure as a constraint, for example, require customers in all queues to have a probability

of at least 10% to get service. Then one may look up η at which the Pareto frontier intersects the

line fairness= 10% and obtain the corresponding M+W index.
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Figure 4 The Pareto frontiers when L=U and gi(WT) takes the three forms in (6)
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