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Appendix A: Proof of Proposition 1

We first prove that if τj(ξ) < +∞, then (9) holds and the inequality is strict only if c(τj(ξ); ξ) ∈ K. The

infimum in Equation (8) is always attained by the assumption that L(c(τ ; ξ), j, τ) is right-continuous in τ .

So when a patient’s waiting time reaches τj(ξ), his score must be either equal to or greater than SJ . We

next prove that the latter case could happen only when the patient’s health score c(τj(ξ); ξ) ∈K. We prove

by contradiction. Suppose L(c(τj(ξ); ξ), j, τj(ξ))>Sj . If c(τj(ξ); ξ) /∈K, then L(c(τ ; ξ)), j, τ) continuously and

strictly increases with τ in a neighborhood of τj(ξ). Thus, we can always find a time t which is slightly

smaller than τj(ξ), but with L(c(t; ξ), j, t) still having a larger value than Sj. That, however, contradicts with

τj(ξ) being the first time that the patient’s score has reached or exceeded Sj .

We next construct the strategy a(·, ·|ξ, η) of a patient with parameters (ξ, η) at a Nash equilibrium, which

also proves the existence of the Nash equilibrium. For j = 1,2, . . . , J , define

Sj = inf{s |

∫∫∫
χ (L(c(τ ; ξ), j, τ)> s, a(τ, j|ξ, η) =A) π(c(τ ; ξ), τ, η)dξdτdη = 0}, (38)

where χ(·) represents a characteristic function. Intuitively, Sj represents the minimum threshold such that

no patients with score greater than Sj are willing to accept kidneys of type j. We prove the Proposition by

induction on the type of kidney offer j = J,J − 1, . . . ,1.

If j = J (the best kidney type), then by Lemma 1, every patient’s strictly dominating strategy is to accept a

type-J kidney immediately when being offered. Therefore, the equilibrium strategy must have a(τ, J |ξ, η) =A

for all ξ, η, τ . Once we have determined a(·, J |·, ·), SJ can be uniquely determined by (38) for any given

population distribution Π= (π(·, ·, ·)). We next prove that if τJ(ξ) is calculated from SJ from Equation (38)

and is finite, then τJ(ξ) must be the first time that the score of patient ξ is equal to or larger than SJ .

When a patient has waited less than τJ(ξ) time units, then his score s must be strictly smaller than SJ by

the definition of τJ(ξ). Then by the way that SJ is constructed, c.f., Equation (38), there are a positive mass

of patients who are willing to accept type-J kidneys and also have their scores strictly larger than s. Since

the population distribution at the steady state is stationary, the mass of those patients will stay invariant.

Thus, all new arrived type-J kidneys will be consumed by those patients before being offered to the patient

with a lower score s. Consequently, the patient would never receive any kidneys of type J before his waiting

time has accumulated to τJ(ξ).

When the patient has waited for exactly τJ(ξ) time units, his score has to be equal or greater than SJ by

the “furthermore” part of the proposition that we have proved at the beginning of this proof. Then by the HL

property of the score, the patient’s score must continue increasing during the time period [τJ(ξ), τJ(ξ) + δ]

for sufficiently small δ > 0. Thus, immediately after τJ (ξ), the patient’s score will be strictly larger than Sj,

and thus be larger than the scores of all other patients on the waitlist who are willing to accept a type-J

kidney. Consequently, the patient will receive a type-J kidney offer either at or immediately after τJ(ξ).

It is complicated to differentiate these two scenarios. However, for all kidney types j = 1, . . . , J , these two

scenarios only result in an infinitesimal difference in the values of τj(ξ) and UR. Thus, the two scenarios make

no difference for a patient’s acceptance/rejection decision except when the patient has UA = UR. However,

as we argued earlier, a tie can only happen to patients with a particular η, which has a measure of zero.
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Therefore, there is no need to differentiate these two scenarios, and we will simply assume in the remainder

of our paper that a patient receives a kidney offer at the allocation time.

After we obtain SJ and τJ(ξ), then whenever a patient is offered a type J − 1 kidney, we can compute his

expected QALYs by rejecting that kidney, UR. For example, if a patient with parameters (ξ, η) is offered a

type J − 1 kidney at time t, then by knowing his waiting time for type-J kidney, τJ(ξ), his UR is exactly

given by V (τJ (ξ)− t) as defined in Equation (39) with c= c(t; ξ) and j = J . Consequently, we can compute

almost every patient’s optimal strategy a(τ, J − 1|ξ, η). We then iteratively repeat the above procedure for

j = J − 1, . . . ,1. In each iteration, by knowing almost every patient’s strict dominating strategy a(τ, j|ξ, η),

we can compute the score threshold Sj and the required waiting time τj(ξ) for that type of kidneys. This

allows us to calculate every patient’s UR and to determine a(τ, j−1|ξ, η), the strictly dominating strategy for

the type-(j− 1) kidneys for almost all patients (except for those with UA =UR) given that almost everyone

will play the strategy a(τ, j|ξ, η) for the type-j kidneys. Following the above procedure, which is well known

as iterated elimination of dominated strategies, we can find the unique Nash equilibrium strategy. While

we have proved that the τj(ξ) constructed in the above procedure satisfies the properties stated in the

proposition.

Finally, we provide an example to illustrate that there might be not such a score threshold or allocation

time when the ranking policy does not satisfy the HL property. Consider a waitlist with a single kidney

type, in which the total kidney supply rate μ is lower than the aggregate patient arrival rate λ. Suppose all

patients are ranked according to a score L(c, j, τ) =−τ . This is the donor-blind, last-come-first-serve policy,

and does not satisfy the HL property. It is easy to check that patients with scores lower than zero will never

be offered a kidney. Among patients whose scores are equal to zero, which only happens at the time of their

arrival, only a proportion μ/λ are offered a kidney; while the other patients would never receive a kidney

offer. So there is not such a score threshold or allocation time as described in Proposition 1.

Appendix B: Proof of Lemma 1

Consider a patient with health score ξ at time 0 (here 0 refers to the current time, not necessarily the time

of arrival), and the quality-of-life coefficient η for that patient living on dialysis. We define the function

V (t) := η

∫ t

0

sfξ(s)ds+ ηF̄ξ(t)t+ F̄ξ(t)c(t; ξ)φj . (39)

In the above equation, η
∫ t

0
sfξ(s)ds+ ηF̄ξ(t)t and F̄ξ(t)c(t; ξ)φj gives the expected QALYs before and after

the transplantation, respectively. Thus, V (t) gives the optimal expected QALYs that the patient may receive

conditional on accepting a type-j kidney offer at time t. We note that

V ′(t) = ηF̄ξ(t)− fξ(t)c(t; ξ)φj + F̄ξ(t)c
′(t; ξ)φj ≤ F̄ξ(t)− fξ(t)c(t; ξ)φj < 0, (40)

where the first inequality follows from c′(t; ξ)≤ 0, and the second inequality follows from η < 1 and that

1−
fξ(t)

F̄ξ(t)
c(t; ξ)φj =1− h(c(t; ξ))c(t; ξ)φj < 0

by (3). Thus, V (t) strictly decreases with t. Consequently, whenever a type j kidney is offered, the patient’s

strictly dominating strategy is to accept it immediately rather than accepting a kidney of equal or even lower

quality at a later time. If a patient chooses to stay on dialysis forever, then it is equivalent to accepting a

kidney with φ= 0 at an infinitely later time. So this case is also covered by this proof.
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Appendix C: Proof of Proposition 2 and Remark 1

Proof. We proceed by contradiction. Suppose a patient with parameters with parameters (ξ, η), by using

his optimal strategy, rejects a kidney of type jk at time τjk (ξ), but accepts a kidney of the same type jk

at a later time s > τjk(ξ). After the patient rejects the kidney at time τjk(ξ), let us assume that the first

kidney type he will accept is jk′ . If jk′ �= jk, then the patient would either die before transplantation, or

accept a kidney of type j′ and leave the waitlist. In whichever case, the patient will not accept a kidney

of type jk, which contradicts our assumption. If jk = jk′ , then it is clear from Lemma 1 that accepting the

type-jk kidney earlier at time τjk(ξ) strictly dominates the postulated alternative, and hence, leads to a

contradiction. Therefore, we conclude that the patient’s choices throughout their waits are consistent and it

suffices to restrict attention to decision times τj1(ξ), . . . , τjm(ξ).

We next prove that j∗(η, ξ) is non-decreasing in η by contradiction. Suppose there are two patients with

η1 > η2, but j1(:= j∗(ξ, η1)) < j2(:= j∗(ξ, η2)). Then kidney type j1 must have been accepted by the first

patient, and rejected by the second one; note that j2 is the first kidney type accepted by the second patient

subsequent to the offer of type j1. Given that the second patient rejects kidney type j1 and accepts j2, we

can derive the following inequality by recursively applying formula (10),

c(τj1(ξ); ξ)φj1 < η2

∫ τj2 (ξ)

τj1 (ξ)

fξ(t)

F̄ξ(τj1 (ξ))
(t− τj1(ξ))dt+

F̄ξ(τj2 (ξ))

F̄ξ(τj1 (ξ))
(η2(τj2 (ξ)− τj1(ξ))+ c(τj2 (ξ); ξ)φj2 ). (41)

Intuitively, the above inequality implies that for the second patient, choosing to wait till the offer of kidney

type j2 strictly dominates accepting kidney type j1. Since η1 > η2, the above inequality still holds by replacing

η2 with η1. However, that implies that the first patient has to reject kidney j1, which contradicts that

j∗(ξ, η1) = j1. This concludes the proof.

Remark 1 Since j∗(η, ξ) can be computed from (τj(ξ)) using the recursive equations (10)-(12) and (13),

we can then describe the equilibrium state using only (τj(ξ)) instead of the waitlist density Π. In fact, given

(τj(ξ)), we can compute each patient’s matched kidney type j∗(η, ξ). That allows us to determine if a certain

patient has already accepted a kidney offer and left by comparing the patient’s current waiting time τ and

his allocation time τj∗(η,ξ)(ξ). Specifically, for a patient with health score c and waiting time τ , we can solve

his initial health score ξ from the equality c= c(τ ; ξ). We can then recover Π := (πc,τ,η) as follows

πc,τ,η = λρ(ξ) F̄ξ(τ)χ(τ < τj∗(η,ξ)(ξ)). (42)

Appendix D: Proof of Proposition 3

Proof. We will only prove the “if” part. The “only if” part can be proved with a similar argument.

Suppose (τj(ξ)) are the allocation times at the equilibrium. We discuss two possible situations that could

happen to each of the virtual queues. Recall that the jth virtual queue consists of patients who will be

matched to kidneys of type j.

In the first situation, queue j is non-empty and thus zj = supξ τj(ξ)> 0. Since it is at the steady state, the

inflow and out-flow rates must be balanced for each virtue queue, otherwise the queue-length cannot stay
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invariant. Note that the departure rate includes those having reneged as well as those having transplanted

kidneys of type j. This leads to the following equality,

λ

∫ ξ̄

ξ

Qj(ξ)ρ(ξ)dξ = λ

∫ ξ̄

ξ

Fξ(τj(ξ))ρ(ξ)dξ +μj, (43)

where λ
∫ ξ̄

ξ
Fξ(τj(ξ))ρ(ξ)dξ gives the aggregate reneging rate in queue j. If we define yj as in (17), then the

above equality implies that yj = 0, and thus the complementary slackness condition yjzj = 0 holds for j.

In the second situation, queue j is empty, then τj(ξ) = 0 for all ξs. Thus, we have zj = supξ τj(ξ) = 0 for

patients in queue j, and the complementary slackness condition holds. If a queue is empty, there can be a

surplus in the kidney and thus yj can be any non-negative number. So the constraint yj ≥ 0 in the NCP

holds for that j.

The discussion of the above two situations show that the NCP (17) is solved by (τj(ξ)) and the associated

variables.

Appendix E: Proof of Lemma 2

Proof. (a): Since τj(ξ) is the first time that the patient’s score is equal to or larger than Sj, τj(ξ) must

be non-decreasing in Sj . Since L(cξ(τ), j) + τ is right-continuous in τ , τj(ξ) must be right-continuous. Its

left-limit exists due to monotonicity.

(b): By the assumption of the matching policy, a patient with initial score ξ has his score L(c(t; ξ), j, t)

strictly increasing in t almost everywhere. At all those points, Sj strictly increases in t and thus τj(ξ)

continuously increases in Sj. However, when the patient’s health score hits one of the cutoff values in K,

say, c̃, the function value L(·, j, t) can possibly take a downward jump at c̃, at which time τj(ξ) changes

discontinuously with Sj. To see that, we refer the readers to Figure 2 –when the threshold S1
j approaches

to S2
j := limc↑c̃L(c, j, c

−1(c̃; ξ)) from left, the allocation time corresponding to S1
j for patient ξ, i.e., τ1

j (ξ),

does not to approach to c−1(c̃; ξ) from left. This is because the L(c(t; ξ), j, t) has a downward jump at c̃.

Consequently, it takes much longer for the score of patient ξ to reach S2
j . That implies that the allocation

time τj(ξ) changes discontinuously at S
2
j . However, for any given S2

j , since both c−1(c; ξ) is strictly increasing

in ξ and L(c, j, t) is strictly increasing in t, the left-hand-side of the following equation is strictly increasing

in ξ and the equation must have at most one solution ξ for any given S2
j and c̃∈K,

lim
c↑c̃

L(c, j, c−1(c; ξ)) = S2
j . (44)

Because the above equation is a necessary condition for τj(ξ) to be discontinuous at S2
j , there is at most

one ξ such that τj(ξ) is discontinuous at S
2
j . Since the set K contains finitely many points, there are finitely

many ξs at which τj(ξ) may change discontinuously in Sj , and those ξs have a measure of zero.

Appendix F: Proof of Theorem 1

Proof. Let S := (Sj) denote a vector of score thresholds for all kidney types. We next construct a mapping

Ψ(·) to serve the following purpose: if S is a fixed point of this mapping (that means, S =Ψ(S)), then its

associated allocation times (τj(ξ)) must solve the NCP, c.f., Equation (17), and thus be the equilibrium

allocation times. Thus, to prove the theorem, it suffices to prove that such a fixed point exists and is unique.
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The mapping Ψ(·) is constructed according to the following steps. Given (Sj), we calculate the unique

allocation times τj(ξ) for each patient ξ and j using Equation (8), and then find functions Γj(·) and Qj(·)

that are associated with (τj(ξ)). Finally, with Qj(·), we search for another vector of score thresholds S̃ := (S̃j)

and the allocation times (τ̃·(·)) associated with S̃, such that τ̃·(·) and its associated Qj(·), Γj(·) solve the

NCP (17). If this requirement can be satisfied by multiple S̃s, then we let Ψ(S) be the infimum of them.

We next show that the mapping Ψ(·) constructed above satisfy the desired properties, which allows us to

invoke the Brouwer’s fixed point theorem and prove the existence of the fixed point. First, the image of Ψ(·)

must be contained in the compact set
∏J

j=1[0, S̄j], where S̄j denote the upper limit of a patient’s score for

kidney type j,

S̄j := sup{L(c(t; ξ), j, t)|ξ≤ ξ ≤ ξ̄, 0≤ t≤ τ̄ξ}. (45)

Thus, the mapping from S to S̃ is from the compact domain
∏J

j=1[0, S̄j] to itself (not necessarily onto).

Second, Ψ(·) is well-defined. That means, we can always find a S̃ such that its associated allocation times

(τ̃j(ξ)) solve the NCP, or equivalently, for all j = 1, ldots, J , (τ̃j(ξ)) either solves the following identity,

λ

∫
ξ∈Ω

Q(ξ, j)ρ(ξ)F̄ξ(τ̃j(ξ))dξ = μj, (46)

or τ̃j(ξ) = 0 for all ξ and the following inequality holds,

λ

∫
ξ∈Ω

Q(ξ, j)ρ(ξ)dξ ≤ μj. (47)

The detailed proof follows next. For each j, by Property (b) of Lemma 2, τ̃j(ξ) increases continuously in S̃j

for almost all ξs. We can deduce that the integral on the left-hand-side of Equation (46) has to decrease

continuously with S̃j . Note that if the threshold S̃j is set as low as minξL(ξ, j,0), it does not require any

patient to wait for kidneys of type j so the associated allocation time τ̃j(ξ) = 0 for all ξ; if the threshold S̃j is

set as its upper limit S̄j , then all patients must have reneged before their allocation times by the definition of

S̄j. Therefore, when S̃j increases from minξL(ξ, j,0) to S̄j, the left-hand-side of Equation (46) continuously

decreases from λ
∫
ξ∈Ω

Qj(ξ)ρ(ξ)dξ (which is the function value corresponding to τj(ξ) = 0 for all ξ) to 0.

Thus, either μj ∈ [0, λ
∫
ξ
Q(ξ, j)ρ(ξ)dξ], in which case the intermediate value theorem implies the existence

of a solution to equality (46), or μj is outside this interval, in which case inequality (47) must hold. Note that

in the first case, it is possible that Equation (46) has multiple solutions. This could happen when the curve

L(c(τ ; ξ), j, τ) takes an upward jump at τ̃j(ξ). Then all S̃j ∈ [limτ↑τ̃j(ξ)L(c(τ ; ξ), j, τ), L(c(τ̃j(ξ); ξ), j, τ̃j(ξ))]

are associated with the same allocation time τ̃j(ξ). We then let (Ψ(S))j = limτ↑τ̃j(ξ)L(c(τ ; ξ), j, τ), which is

associated with τ̃j(ξ) by right continuity of the function L(c(τ ; ξ), j, τ) (i.e., Property (a) of Lemma 2).

Finally, we show that Ψ(·) is continuous, that is, ‖Ψ(S)−Ψ(S′)‖→ 0 if ‖S−S′‖→ 0, where ‖ ·‖ denote the

supremum norm. We will use the superscript ′ to denote the variables associated with S′. For example, τj(ξ)

and τ ′j(ξ) denote the allocation times associated with S and S′, respectively. By Property (b) of Lemma 2, we

have ‖τj(ξ)− τj′ (ξ)‖→ 0 for almost all ξ. Then the recursive equations (10) imply that |Vk−V ′k | → 0 for for

almost all ξ and all k, where Vk denotes the optimal expected QALYs that a patient can get from the time

of receiving kidney offers of type jk. Since Vk and V ′k stay very close for almost all ξ, by changing V to V ′,

only the patients with η near the cutoff values in {Γj(ξ) | j = 1, . . . , J − 1} may change their matched kidney



Authors’ names blinded for peer review

6 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the mansucript number!)

type j∗(ξ, η). Therefore, when |Vk − V ′k | → 0, for almost all ξ, |Qj(ξ)−Q′j(ξ)| → 0. Consequently, the left-

hand-side of (46), i.e., λ
∫
ξ∈Ω

Qj(ξ)ρ(ξ)F̄ξ(τj(ξ))dξ continuously decreases with S. According to the previous

discussion, S̃ is either the constant minξL(ξ, j), at which τj(ξ) = 0 for all ξs, or the unique intermediate

solution to (46). In the first case, S̃ is a constant and thus changes continuously with S; in the second case,

since the derivative of the left-hand-side of (46) with respect to S̃ is strictly negative, a small perturbation

to the left-hand-side led by replacing S with S′, can result in only small perturbation of its solution S̃. That

implies |S̃− S̃′| → 0.

We thus proved the existence of a fixed point S =Ψ(S). We next prove its uniqueness by contradiction.

Suppose there are two different allocation-time vectors, τj(ξ) and τ ′j(ξ), which are associated with two

different score-thresholds vectors, S and S′. Define the index set

J + := {j |Sj <S′j}. (48)

Intuitively, J+ contains kidney types for which the allocation time at the first equilibrium is not longer than

that at the second equilibrium. Since S �= S′, we can assume J + �= ∅ without loss of generality. We note that

if a patient has j∗(ξ, η) ∈J + under S, then she must still have j∗(ξ, η) ∈ J+ if the score thresholds S′ was

replaced by S, because the latter requires an even shorter waiting time for those kidney types. Thus, the total

mass of patients will choose kidney types in J + under S is no less than that under S′. By property (a) of

Lemma 2, we have τj(ξ)≤ τ ′j(ξ) for all ξ and all j ∈J
+. Since (τj(ξ)) and (τ

′
j(ξ)) are different allocation-time

vectors, we must have τj(ξ)< τ ′j(ξ) for some j. Without loss of generality, we assume j ∈J+ (otherwise we

can define J+ by swapping S and S′ to have j ∈J +). That implies the total mass of patients who die during

their waiting for kidney types in J+ is larger under S′ compared to that under S, despite the fact that the

patients who choose to accept kidney types in J + under S′ is a subset of that under S. Consequently, the

total mass of patients who will transplant kidneys of types in J + under S is strictly larger than that under

S′. However, since S′j > Sj ≥ 0 for all j ∈ J+, no queue in J + is empty under S′, which implies that the

utilization of kidneys in classes J + have already been 100% under S′, which contradicts that more kidneys

in classes J + are accepted under S.

Appendix G: Proof of Lemma 3

Because τ satisfies constraint (C.M), γj(ξ) must be non-decreasing in ξ. Consequently, γj(ξ) must have both

left and right limits. We next prove that γj(ξ) is left-continuous. Suppose a sequence of values {ξ
k} ↑ ξ∗. Since

γj(ξ
k) is non-decreasing, we have {γj(ξ

k)} ↑ c∗ for some c∗, which further implies that {τj(ξk)}→ c−1(c∗; ξ∗).

Because L(c, j, τ) is continuous in τ and left-continuous in c for all j, we have

L(γj(ξ
k), j, τj(ξ

k))→L(c∗, j, c−1(c∗; ξ∗)) when k→∞. (49)

Since for each k, τj(ξ
k) is the allocation time of patient ξk, Proposition 1 implies that L(γj(ξ

k), j, τj(ξ
k))≥ Sj.

Consequently, L(c∗, j, c−1(c∗; ξ∗))≥ Sj . That implies c
−1(c∗; ξ∗)≤ τj(ξ

∗), so

c∗ ≥ c(τj(ξ
∗); ξ∗) = γj(ξ

∗), (50)

On the other hand, monotonicity of γj(·) implies that c∗ = limk→∞ γj(ξ
k) ≤ γj(ξ

∗). We thus deduce that

c∗ = limk→∞ γj(ξ
k) = γj(ξ

∗). Thus, γj(·) is left-continuous.
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Finally, we prove that γ−1(c) is a singleton for c /∈ K. Suppose ξ, ξ′ ∈ γ−1(c). Then since c /∈ K, we have

L(c, j, τj(ξ)) = L(c, j, τj(ξ
′)) = Sj by Proposition 1. Since L(c, j, τ) strictly increases in τ for all c and j, we

deduce that τj(ξ) = τj(ξ
′). That implies that ξ = ξ′ as c(τj(ξ); ξ) = c(τj(ξ

′); ξ′).

Appendix H: Proof of Proposition 2

Proof. To prove the “⊆” direction in Equation (21), it suffices to prove that if τ has a minimum acceptance

level k, then τ ∈Pk. We have argued in Section 3 that τ must satisfy constraint (C.1)-(C.6) by the properties

of the minimum acceptance level. We next prove that τ satisfies constraint (C.M) by contradiction. Suppose

two patients have their initial scores ξ > ξ′, but c(τj(ξ); ξ)< c(τj(ξ
′); ξ′). Since c(·; ξ) is continuously decreas-

ing, there exists a time t < τj(ξ), such that c(t; ξ) = c(τj(ξ
′); ξ′). Then by ξ > ξ′, we deduce that t > τj(ξ

′).

Since ∂L/∂τ > 0, we have

L(c(t; ξ), j, t) =L(c(τj(ξ
′); ξ′), j, t)>L(c(τj(ξ

′); ξ′), j, τj(ξ
′))≥ Sj (51)

where the last inequality follows from Proposition 1. The above equality implies that at time t < τj(ξ), the

score of patient ξ for kidney type j is already strictly greater than Sj , which contradicts with that the

patient’s score firstly reaches or exceeds Sj at time τj(ξ).

To prove the “⊇” direction, it suffices to prove that for k = 0,1, . . . , J , any τ ∈ Pk is a solution to

the NCP, c.f., (17), and thus is an equilibrium allocation-time vector by Proposition 3. Let yj = μj −

λ
∫ ξ̄

ξ
Qj(ξ)F̄ξ(τj(ξ))ρ(ξ)dξ and zj = sup{τj(ξ) | ξ ∈ [ξ, ξ]} following their definitions in the NCP. The inequal-

ity constraints zj ≥ 0 follows from the non-negative constraints for τj(ξ) in (C.6). The inequality constraint

yj ≥ 0 follows from (C.2) for j > k, and (C.3) for j = k. For j < k, (C.4) implies Qj = 0. Thus, yj = μj ≥ 0. It

remains to prove the complementary slackness condition yjzj = 0 for all j. For j ≤ k, constraint (C.5) implies

zj = 0, which leads to the complementary slackness condition. For j > k, constraint (C.6) implies yj = 0 and

thus the complementary slackness condition. Thus, (τj(ξ)) is an equilibrium allocation time.

We next prove that any τ ∈Pk can be achieved by a score L(c, j, τ) =M(c, j)+τ for score threshold Sj =0

(j = 1, . . . , J), where M(c, j) was constructed as in Equation (23) the the theorem. To that end, it suffices to

show that (τj(ξ)) solves Equation (8) for all j and ξ,. Because Sj =0, Equation (8) reduces to the following

equality

τj(ξ) :=

{
τ̄ξ, if {τ ≥ 0 : M(c(τ ; ξ), j)+ τ ≥ 0}= ∅,
min{τ ≥ 0 : M(c(τ ; ξ), j)+ τ ≥ 0}, otherwise.

(52)

Note that when the set is empty, i.e., a patient could never reach the threshold 0, we let his allocation time

to be τ̄ξ instead of +∞ to make the allocation time bounded. That does not make a difference because a

patient with initial health score ξ cannot live no longer than τ̄ξ.

We next prove Equation (52). It suffices to prove that L(c(τj(ξ); ξ), j, τj(ξ))≥ 0, and L(c(t; ξ), j, t)< 0 for

all t < τj(ξ). To prove the first inequality, we note that

L(γj(ξ), j, τj(ξ)) =M(γj(ξ), j)+ τj(ξ) =− inf{τj(z) | z ∈ γ−1
j (γj(ξ))}+ τj(ξ)≥ 0, (53)

where the second equality follows the definition of M(c, j) in Equation (23).
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To prove the second inequality, we discuss the following two cases. If c(t; ξ) /∈ C, then by the definition of

M(c, j), we have

L(c(t; ξ), j, t) =M(c(t; ξ), j)+ t=−τ̄ξ̄ + t < 0, (54)

as no patient can live longer than τ̄ξ̄. If c(t; ξ) ∈ Cj , then by definition of Cj, the set γ
−1
j (c(t; ξ)) := {z|γj(z) =

c(t; ξ)} is non-empty. For any z ∈ γ−1
j (ξ), since t < τj(ξ), we have γj(ξ) = c(τj(ξ); ξ) < c(t; ξ) = γj(z), that

implies ξ < z by monotonicity of γj(·). Because ξ < z but c(t; ξ) = c(τj(z); z), we deduce that t < τj(z).

Therefore,

L(c(t; ξ), j, t) =M(c(t; ξ), j)+ t <M(c(τj(z); z), j)+ τj(z) =L(c(τj(z); z), j, τj(z)). (55)

If c(t; ξ) /∈K, then Proposition 1 implies that L(c(τj(z); z), j, τj(z)) = Sj =0; so the above inequality implies

L(c(t; ξ), j, t)< 0; if c(t; ξ) = γj(z)∈K, then since the above inequality holds for all z ∈ γ−1
j (c(t; ξ)), we have

L(c(t; ξ), j, t)≤ inf{L(γj(z), j, τj(z)) | z ∈ γ−1
j (c(t; ξ))}=M(γj(z), j)+ inf{τj(z) | z ∈ γ−1

j (c(t; ξ))}= 0, (56)

where the last equality follows from inf{τj(z) | z ∈ γ−1
j (c(t; ξ))} =−M(c(t; ξ), j) =−M(γj(z), j). Therefore,

regardless of c(t; ξ) ∈ K or c(t; ξ) /∈K, we have proved that L(c(t; ξ), j, t)< 0 for all t < τj(ξ). We have thus

proved that τj(ξ) is the first time that a patient’s score reaches 0 and verified Equation (52).

It remains to prove that the score function L(c, j, τ) =M(c, j)+ τ satisfies the assumptions of a matching

policy. It suffices to show that M(c, j) is p.c.d. for all j, and

dM(c(τ ; ξ), j)

dτ
>−1 for all j, ξ when c(τ ; ξ) /∈K. (57)

To prove that M(c, j) is p.c.d., for all c /∈K, we note that γ−1
j (c) is a singleton by Lemma 3. Furthermore,

since γj(ξ) is left-continuous and non-decreasing in ξ, Cj must have the following form,

Cj = [cj1, cj1]∪ (cj2, cj2]∪ . . .∪ (cjm, cjm], (58)

where m is a positive integer and the cutoff points satisfy c̄i−1,j < cij ≤ c̄ij for i=2,3, . . . ,m. Therefore, over

each interval (cj�, cj�] with cj� > cj� (let (cij , cij ] = {cij} by abuse of notation). dγ
−1
j (c)/dc= 1/(γ′j(γ

−1
j (c)))

exists due to the assumption that τj(ξ) (and therefore γj(ξ)) is p.c.d. in ξ. Since K contains finite points,

M(c, j) = τj(γ
−1(c)) is p.c.d.

We next prove condition (57). Suppose c = c(τ ; ξ) /∈ K. For each j = 1, . . . , J , if c /∈ Cj , then

∂M(c(τ ; ξ), j)/∂c= 0 implies dM(c(τ ; ξ), j)/dτ = 0, and condition (57) is proved; if c ∈ Cj , then by Lemma

3, γ−1
j (c) is a singleton. Thus, the following equation holds for all c∈ Cj,

c= c(τj(γ
−1
j (c)) ; γ−1

j (c)) =H−1
(
τj(γ

−1
j (c))+H(γ−1

j (c))
)
. (59)

where the first equality follows from the definition of the inverse function γ−1
j (·), and the second equality

follows from Equation (2). We have argued earlier that the derivative γ−1
j (c) exists over each sub-interval of

Cj. Thus, by taking derivative at both sides of Equation (59), we have

1 = dH−1(t)
dt

|t=τj(γ
−1

j
(c))+c−1(γ−1

j
(c))

(
dτj(γ

−1

j
(c))

dc
+

dH(γ−1

j
(c))

dc

)

= 1
H′(c)

(
dτj(γ

−1

j
(c))

dc
+

dH(γ−1

j
(c))

dc

)

> 1
H′(c)

dτj(γ
−1

j
(c))

dc
.

(60)
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The second equality follows from that for all t and ξ, the derivative dH−1(t)

dt
only depends on the patient’s up-

to-date health score c=H−1
(
τj(γ

−1
j (c))+H(γ−1

j (c))
)
. For the last inequality, we note that γj(·) is strictly

increasing, so the inverse function γ−1
j (c) is strictly increasing in c. Since H(·) is strictly decreasing, we

deduce that dH(γ−1
j (c))/dc < 0, which, together with H ′(c) < 0, lead to the last inequality in (60). As a

result, for all c∈ Cj\K, we have

dM(c, j)

dτ
=

∂M(c, j)

∂c
c′(τ ; γ−1(c)) =−

dτj(γ
−1
j (c))

dc

1

H ′(c)
>−1, (61)

where the second equality follows from the definition of M(c, j) on c ∈ Cj, and the inequality follows from

(60). Thus, for each j =1, . . . , J , we have proved condition (57) when c∈ Cj . This completes the proof.

Appendix I: An Example Showing that PDB Cannot be Recovered by Affine Scores

Here we present an example to illustrate that the achievable region of donor-blind policies cannot be recov-

ered by scores in the form of M̃(C) + τ . Suppose two patients with initial health scores ξ1 and ξ2 satisfy

c(τ1(ξ
1); ξ1) = c(τ2(ξ

2); ξ2) /∈K, that is, the first patient, when being offered a kidney of type 1, has exactly

the same health score as that of the second patient when being offered a kidney of type 2. We further assume

that there are two other patients with initial health scores ξ3 and ξ4 such that c(τ1(ξ
3); ξ3) = c(τ2(ξ

4); ξ4) /∈K.

Then if the donor-blind score has a form M̃(c)+ τ , then by Proposition 1 we have

S1 = M̃(c(τ1(ξ
1); ξ1))+ τ1(ξ

1) = M̃(c(τ1(ξ
3); ξ3))+ τ1(ξ

3)

S2 = M̃(c(τ2(ξ
2); ξ2))+ τ1(ξ

2) = M̃(c(τ2(ξ
4); ξ4))+ τ2(ξ

4),
(62)

As c(τ1(ξ
1); ξ1) = c(τ2(ξ

2); ξ2), c(τ1(ξ
3); ξ3) = c(τ2(ξ

4); ξ4), we have the following equality

τ1(ξ
1)− τ1(ξ

3) = τ1(ξ
2)− τ1(ξ

4). (63)

The above equality is not implied by any constraints in the expression of PDB. That means, if we assume

the score of a donor-blind policy to take the special form of M̃(c) + τ , then we have implicitly imposed an

extra equality constraint (63). Thus, any allocation time that violates equality (63) cannot be achieved by

the score M̃(c) + τ , though it could always be achieved by a score in its general form. In fact, the above

example also suggests that other special forms such as L(c, τ) = M̃(c)+M̂ (τ) or L(c, τ) = M̃(c)M̂(τ) cannot

recover the entire achievable region for similar reasons.

Appendix J: Numerical Procedure for Solving the Policy Design Problem

To facilitate real-time computation, we propose a finite-dimensional approximation of (31) by discretizing the

domain of ξ into N grid points: {
(ξ − ξ)/N | 
= 0,1, . . . ,N}. The finite-dimensional optimization problem

then searches for an (N + 1)-by-J matrix of the allocation times: τ f := {τj(ξ�) | j = 1, . . . , J, 
 = 0, . . . ,N},

where ξ� := 
(ξ− ξ)/N and the superscript f stands for “finite-dimensional”. After obtaining τ
f , we recover

the continuous allocation time using linear interpolation.

We provide a finite-dimensional representation for the achievable region of the matching policies below.

Af
M :=∪J

k=0P
f

k ∩P
f
M ,
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where

Pf

k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
f ∈R

N+1,J
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pj(ξ�) =
1
μj
λQj(ξ�;τ

f)ρ(ξ�)F̄ξ(τj(ξ�)) for all j, 
 (Cf.1)

∑N

�=1 pj(ξ�) = 1 for j > k (Cf.2)
∑N

�=1 pk(ξ�)≤ 1 (Cf.3)

Qj(ξ�;τ
f ) = 0 for j < k, all 
 (Cf.4)

τf
j (ξ�) = 0 for j ≤ k, all 
 (Cf.5)

0≤ τf
j (ξ�)≤ τ̄ξ� for j > k, all 
 (Cf.6)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Pf
M :=

{
p.c.d. functions τ | c(τj(ξ�); ξ�)≥ c(τj(ξ�′); ξ�′) for all 
 > 
′ (Cf.M)

}
.

Similarly, to derive a finite-dimensional representations for Af
HF , we just need to replace (Cf.M) with a

stronger constraint as follows,

Pf
HF :=

{
p.c.d. functions τ f | τf

j (ξ�)≤ τf
j (ξ�′) for all 
 > 
′ (Cf.HF)

}
.

For the donor-blind policies, we need derive a finite-dimensional representation of constraint (C.DB).

In particular, this calls for a finite-dimensional representation for the function L(c(τ ; ξ), τ) which has a

continuous domain {(ξ, τ)|ξ ∈ [ξ, ξ̄], τ ∈ [0, τ̄ξ]}. For that purpose, we construct the grid {ξ�|
= 1, . . . ,N}⊗

{τr := rτ̄ξ/R|r = 0,1, . . . ,R} (let τ0 = 0) on the continuous domain, and represent the function using its

values at the grids {L(c(τr; ξ�), τr) | 
= 1, . . . ,N, r= 0,1, . . . ,R}. We then recover its values on the continuous

domain by linear interpolation. This leads to the finite-dimensional representation of (C.DB) as follows

Pf
DB :=

⎧⎪⎪⎨
⎪⎪⎩

τ
f ∈R

N+1,J
+

∣∣∣∣∣∣∣∣

τf
j (ξ�) :=min{τ̄ξ� , min{τ ≥ 0 : L(c(τ ; ξ�), τ)≥ Sj}} for some L(c, τ)

such that L(c(τf

r+1; ξ�), τ
f

r+1)−L(c(τf
r ; ξ�), τ

f
r )≥ ε for all 
, r

L(c(τf
r ; ξ�), τ

f

r+1)−L(c(τf
r ; ξ�), τ

f
r )≥ ε for all 
, r

(Cf.DB)

⎫⎪⎪⎬
⎪⎪⎭

Given {L(c(τr; ξ�), τr) | 
= 1, . . . ,N, r = 0,1, . . . ,R}, we solve τf
j (ξ�) from the first equality in (Cf.DB) as

follows. First, we can find the smallest index r such that L(c(τr; ξ�), τr)≥ Sj , if such an r exists; otherwise,

assign τf
j (ξ�) = τ̄ξ� . Second, because the values of L(c(τ ; ξ�), τ) on the continuous domain are assigned using

linear interpolation, we can locate τf
j (ξ�) as

τf
j (ξ�) = τf

r−1+
Sj −L(c(τf

r−1; ξ�), τ
f

r−1)

L(c(τf
r ; ξ�), τ

f
r )−L(c(τf

r−1; ξ�), τ
f

r−1)
(τf

r − τf
r−1). (64)

The second and third equality in (Cf.DB) provides a discrete approximation of the constraints dL(c, τ)/dτ > 0

and ∂L(c, τ)/∂τ > 0, respectively. The parameter ε is set to be a small positive number, e.g., 10−10, to ensure

the derivatives to stay strictly positive.

Finally, we discuss how to formulate the constraint Qj(ξ�;τ
f ) = 0 to facilitate the computation. If kidney

type j is dominated by other kidney types for patient ξ�, then Qj(ξ�;τ
f) = 0; otherwise, Qj(ξ�;τ

f) can be

expressed according to Equation (16) using the cutoff values (Γj(ξ�;τ
f )) associated with τ

f . The cutoff

values (Γj(ξ�;τ
f))j=1,...,J−1 can be computed according to the following procedure for given τ

f . First, for all

1≤ j < j′ ≤ J , we compute variables ηj,j′ as the unique solution to the following equation

c(τf
j ; ξ�)φj = η

∫ τ
f

j′
(ξ�)

τ
f
j
(ξ�)

fξ�(t)

F̄ξ�
(τf

j (ξ�))
(t− τf

j (ξ�))dt+
F̄ξ�

(τf

j′(ξ�))

F̄ξ�
(τf

j (ξ�))
(η(τf

j′ (ξ�)− τf
j (ξ�))+ c(τf

j′(ξ�); ξ�)φj′). (65)
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In particular, ηj,j′ stands for the cutoff values at which the patient with initial health score ξ� is indifferent

between accepting a kidney j or turning it down and wait for a kidney of type j′. Note that it could happen

that ηj,j′ < 0, which suggests that all patients prefer kidney type j′ to j; or ηj,j > 1, which suggests that

all patients prefer kidney type j to j′. Then starting from j = 1, we know for a fixed j, min{ηj,j′ | j′ > j}

provides the exact cutoff such that all patients with η smaller that cutoff point prefers kidney type j then

any kidney types larger than j′; and all other patients prefer some kidney type greater than j′ rather than

j. To ensure that Γj is non-decreasing in j and within the interval [0,1], we let

Γj(ξ�;τ
f ) =min{1,max{min{ηj,j′ | j

′ > j}, Γj−1(ξ�;τ
f )}}, for j =1, . . . , J, (66)

with Γ0(ξ�;τ
f) = 0 by abuse of notation. Thus, Γj(ξ�;τ

f ) and therefore Qj(ξ�;τ
f ) both have an analytical

representation, which allow us to compute their sub-gradient with respect to τ and use first-order methods

to solve the policy design problem, e.g., (31) and (33).

Appendix K: Comparison to the Stochastic Setting

We simulate the stochastic waitlist system in which patients and kidneys arrive according to a homogeneous

Poisson process, and patients use historical information (e.g., the average score thresholds for each kidney

type in the past year) to predict their allocation times and decide whether to accept or reject an offered

kidney. All the parameters in stochastic system, including ρ(·), h(·), c(·; ·), and Gξ(·), take the same values

as those in the fluid model. We simulate the stochastic waitlist under a matching policy and a healthier-first

policy for illustration. Table 3 reports their allocation outcomes in terms of the percentage of patients in each

class that transplant each type of kidneys. The reported percentages are averaged over a ten-year period after

the waitlist population stops further growing, so these percentages characterize the steady-state allocation

outcome. As shown in Table 3, the simulated percentages are all within 5% of those predicted by the fluid

model, suggesting that the fluid model has provided accurate predictions. This justifies our model choice.

Appendix L: Sensitivity Analysis

We present a sensitivity analysis to validate the robustness of our results. We change the total patient arrival

rate to 641.38, which is 80% of the value we used in Section 5. Keeping all other parameters the same, we

use the achievable region to compute the Pareto frontier of the four policies, with the results plot in Figure

6. The plots show similar pattern as in Figure 3, which supports the robustness of our conclusions.
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Table 3 Comparison of the Allocation Outcomes for Fluid and Stochastic Models

Fluid Model Simulation

Matching

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.070 0 0 0
0.070 0 0 0
0.163 0 0 0
0.003 0.181 0 0
0 0.296 0 0
0 0 0.811 0
0 0 0.344 0.394
0 0 0 1
0 0 0 1
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.069 0 0 0
0.067 0 0 0
0.160 0.001 0 0
0.012 0.179 0 0
0 0.292 0 0.016
0 0 0.815 0.002
0 0.011 0.337 0.417
0 0 0 0.960
0 0 0 0.982
0 0 0 0.969

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Healthier-First

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.002 0 0 0
0.028 0 0 0
0.184 0 0 0
0.050 0.180 0 0
0 0.300 0.115 0
0 0 0.597 0
0 0 0.406 0.495
0 0 0 1
0 0 0 1
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.003 0 0 0
0.028 0 0 0
0.185 0 0 0
0.046 0.169 0.004 0
0 0.317 0.129 0
0 0 0.629 0
0 0 0.400 0.475
0 0 0 0.987
0 0 0 0.951
0 0 0 0.971

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 6 The Efficiency-Equity Pareto Frontier for λ= 641.38


