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We consider the appointment scheduling problem, which determines the job allowance over the planning

horizon. In particular, we study a simple yet effective scheduling policy – the so-called “constant” policy,

which allocates a constant job allowance for each appointment. Prior studies on appointment scheduling

suggest a “dome” shape structure for the optimal job allowance over the planning horizon. This implies that

job allowance does not vary significantly in the middle of the schedule sequence, but varies at the beginning

as well as the end of the optimal schedule. We show that an even simple scheduling policy – the constant

policy, is asymptotically optimal thus provide theoretical justification for such a widely used policy. Using a

dynamic programming formulation, we express each job’s waiting time as the maximum of a random walk,

which allows us to bound the performance gap between the constant policy and the optimal schedule based

on classical results on D/G/1 queues. We derive an explicit upper bound for the performance gap when

either of the following conditions holds: (1) the server idling cost is relatively small compared to the job

waiting cost; (2) the number of appointments is sufficiently large. We also extend this result to a more

general setting with multiple service types. Numerical experiments show that the constant policy is near

optimal even when the number of appointments is small or when the server idling cost is moderately large,

which complements our theoretical results. Our result provides a justification and strong support for the

constant policy under certain mild conditions. Moreover, with minor modifications, the constant policy can

be adapted to more general scenarios with patient no-shows, or with heterogeneous appointment types.
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1. Introduction

Scheduling appointments is commonly used by many agencies to provide consulting ser-

vices, such as investment, tax, lawsuits, dental care, and medical diagnosis or treatment

such as CT scan, magnetic resonance imaging (MRI). As the first step in making appoint-

ments, one needs to determine the start time for each appointment slot, or equivalently the

job allowance for each patient or customer. This problem has been referred to as appoint-

ment scheduling in the literature (see, for example, Denton and Gupta 2003, Hassin and

Mendel 2008). The objective is to maximize the servers’ utilization while minimizing the
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patients’ wait times, assuming that all the scheduled patients arrive at the servers punctu-

ally. (In this paper, we use the terms patients and customers interchangeably.) Due to the

random service times, sometimes the previous patient spent less time than the scheduled

job allowance, leaving the server idled; at other times, the previous patient cannot finish

on time, resulting in delay (waiting) of the next appointment. In either case, it results in

efficiency loss to the system.

In general, solving the appointment scheduling problem to optimality is intractable

(Robinson and Chen 2003). Even for a high quality solution with SAA method, the number

of samples is a polynomial in the number of appointments and the accuracy level (Begen

et al. 2012). An alternative approach to this problem is to study the properties of the

optimal schedules and derive insights for practical use. One of the most important findings

from numerical study is that, when the service times are independently and identically

distributed (i.i.d.), the optimal schedule exhibits a “dome” shape (Wang 1993, 1997, Den-

ton and Gupta 2003, Kaandorp and Koole 2007, Hassin and Mendel 2008, Klassen and

Yoogalingam 2009). A “dome” shape means that the job allowance increases sharply for

the first few appointments, then climbs slowly before the peak, decreases slowly after the

peak, and finally, descends quickly for the last few appointments. Figure 1 depicts a typi-

cal “dome”-shaped curve, where the height of the curve corresponds to the job allowance

under the optimal policy.

Figure 1 Dome Shape of Optimal Schedule (service time follows a normal distribution with mean 20 and variance

16, with unit idle time cost 3 and unit waiting time cost 1)

Knowing that the optimal schedule is “dome”-shaped, however, does not directly lead

to an implementable schedule, because the job allowance for each appointment is still

unknown. However, one may observe that the differences of the job allowances become
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smaller in the middle of the scheduling period. In fact, it is reported that the “dome”-

shaped curve may become more flattened in the middle when the number of appointments

increases (Klassen and Yoogalingam 2009), or when the unit waiting cost is relatively larger

compared to the unit idle cost (Hassin and Mendel 2008). Inspired by this observation,

Klassen and Yoogalingam (2009) propose a simple policy, i.e., a “plateau-dome” policy,

where the job allowances in the middle of a day are constrained to all be equal. They show

that the plateau-dome policy performs robustly in various parametric settings.

This motivates us to consider an even simpler policy, i.e., the constant job-allowance

policy, which simply allocates the same job allowance to every appointment. Here, a natural

question may be how well the constant policy performs in comparison to more sophisticated

policies, particularly, to the optimal schedule. This paper answers this question by deriving

a closed-form upper bound for the optimality gap of the constant policy when either of

the following conditions holds: (1) the server idling cost is relatively small compared to

the job waiting cost; (2) there are sufficiently many appointments to be scheduled in a

continuous session. This upper bound also leads to the asymptotical optimality of the

constant policy under the above conditions. To the best of our knowledge, this is the first

theoretical performance bound derived for this classic problem. In fact, the existing studies

on the properties of the optimal schedule, e.g., the dome-shape characterization, are all

based on numerical analyses.

The constant policy is used widely in practice. For example, the constant policy has

been used in hospitals in Ontario which provide 24-hour MRI service to patients who have

booked appointments in advance.1 It has also been used in many outpatient care clinics,

such as the British Columbia Children’s Hospital. The reasons for the constant policy

being so commonly used include that this policy is easiest to implement, and is also fair

by assigning an equal service time to each patient. Our research work provides both the

theoretical analysis and numerical examination for this important policy. In particular, our

theory implies that the constant policy achieves near optimality either when the patient

waiting cost is relatively higher than the server idling cost, or when a large number (e.g.,

typically more than 400) of appointments have been served during a consecutive period

without service interruption. The first condition applies to many service industries which

1 According to the historical data, except for less than 2% urgent cases, the majority of the patients need to book
their appointments one week before their visit date.
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target at high-valued customers, for example, consulting service for making investments,

or exclusive services for VIP customers. The second condition is suitable in a few practical

appointment systems, such as the aforementioned 24-hour MRI or CT scan. It has been

reported that a few hospitals have done more than 400 MRIs on average in a time window

of 7-14 days until service interruption (e.g., maintenance of the MRI machine), and most

of those MIRs are booked in well advance. Therefore, our analysis provides a theoretical

guarantee for the constant policy when being used in those scenarios. Nevertheless, neither

condition holds in a typical outpatient care setting, suggesting that there could be potential

improvement by considering more sophisticated schedules instead of a constant policy.

Our theoretical framework of analyzing the constant policy can be adapted to variants

of model assumptions. Specifically, the same approach can be used to derive the theoretical

bound for the constant policy with i.i.d. patient no-shows, given the sequence of the ser-

vices. We also extend this framework to cover the case when the service time distributions

differ in varying time blocks of a day. We propose a piecewise-constant policy in which

patients in the same time block (thus with the same service time distributions) are assigned

with the same job allowance. We derive theoretical upper bounds for the optimality gap

of this piecewise-constant policy and show that asymptotic optimality can be achieved by

a certain constant policy.

Our main contribution is three-folds as follows.

• First, under the assumption of i.i.d. service durations, we provide an explicit upper

bound for the optimality gap of the constant policy under either of the aforementioned

conditions. This upper bound also implies asymptotic optimality of the constant policy,

providing a theoretical basis for the implementation of such a simple policy in practice when

either condition holds. Our numerical study looks into the performance of the constant

policy for a small number of appointments (e.g., n= 16). Our theoretical and numerical

results thus characterize appointment systems in which a constant policy achieves near

optimal performance.

• Second, the theoretical bound we derive in Section 4 for the constant policy validates

several findings regarding the optimal appointment schedule previously reported in the

literature. For example, the upper bound for the optimality gap becomes smaller when

the unit waiting cost is larger compared to the unit idling cost. This is consistent with

the numerical results reported by Hassin and Mendel (2008) that the “dome” tends to
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be more like a constant when the ratio between waiting cost and idling cost is larger.

The upper bound is also closer to zero when the number of appointments is larger. This

is consistent with the numerical findings reported by the literature on optimal schedule

patterns (Klassen and Yoogalingam 2009).

• Third, the methods we used to derive the analytical bounds for constant policy is

promising to extend to more general settings and to make more interesting findings. In

fact, we have made two relatively easy extensions, an appointment system with patient no-

shows, or with heterogeneous service time distributions. This demonstrates the robustness

of our theoretical characterization of the constant policy. The analysis of the piecewise

constant policy takes the first step in studying the optimal scheduling policy when service

time distributions are not i.i.d.

The remainder of this paper is organized as follows. Section 2 is the literature review.

Section 3 presents the description of the problem and the model setting. Section 4 presents

the main theoretical result – an upper bound for the optimality gap of the constant policy

and its asymptotical optimality, as well as a formal proof for this result. We also extend

the asymptotic optimality result to incorporating patient no-shows in Section 4. Section 5

extends the result for i.i.d. service durations to the case of piecewise i.i.d. service durations,

and show in this case that a piece-wise constant scheduling policy is asymptotically optimal.

Section 6 presents a numerical study, where the optimal policy is approximately computed

using the sample average approximation (SAA) method and compared to the optimal

constant policy. Section 7 concludes the paper and discusses future research.

2. Literature Review

The literature on appointment scheduling has been growing rapidly in recent years, espe-

cially in the healthcare services. Most of the literature models the appointment scheduling

problem by focusing on making two types of decisions: (1) determining the number of

patients scheduled in time blocks, or (2) the start time for each appointment. In the models

for the first type of decision (Kaandorp and Koole 2007, LaGanga and Lawrence 2012), it

is often assumed that a working day is divided into multiple time blocks and each time

block can accommodate multiple appointment slots. The actual consultation time of each

appointment is often assumed to have deterministic length. Some literature (Robinson

and Chen 2010, Zacharias and Pinedo 2014, 2017) also considers patient no-shows in the

models.
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In models for the second type of decision, some of the literature considers the sequence

of appointments as well as the job allowance for each appointment as the decisions (Mak

et al. 2014b, Chen and Robinson 2014, Mancilla and Storer 2012). However, most of the

existing research assumes that the sequence of the appointments are given and only the

job allowance for each appointment is to be determined. These types of models have been

studied by a rich set of literature for different service time distributions, e.g., uniform

distribution (Ho and Lau 1992, Denton and Gupta 2003), normal distribution (Denton

and Gupta 2003), log-normal distribution (Cayirli et al. 2008, Chen and Robinson 2014),

exponential distribution (Ho and Lau 1992, Kaandorp and Koole 2007, Hassin and Mendel

2008, Zeng et al. 2010), and gamma distribution (Bailey 1952, Soriano 1966, Denton and

Gupta 2003). In contrast, our analysis does not impose any assumption on the service time

distribution.

A common optimization objective in the appointment scheduling literature is to minimize

the weighted expected value of the waiting cost and the idling cost, given the corresponding

cost rates (Robinson and Chen 2010, Yang et al. 1998, Weiss 1990, Lau and Lau 2000,

Mak et al. 2014b, Kuiper et al. 2015). Some studied aim to minimize the day (session)

end time (Klassen and Rohleder 2004, Hassin and Mendel 2008), which is equivalent to

minimizing the total idle time. Some researchers assume that the session has a fixed length

and aim to minimize the overtime cost as well as the waiting and idling cost (Denton and

Gupta 2003, Kaandorp and Koole 2007, De Vuyst et al. 2014, Kong et al. 2013, Mak et al.

2014a). We note that including the overtime cost will make the question very different and

our method can no longer apply to. However, the numerical results show that the constant

policy performs near optimally even if the overtime cost has been included in the objective

function; see Appendix C.

When there is uncertainty surrounding the parameters, the appointment scheduling

problem is usually formulated as a stochastic programming problem. However, there are no

efficient methods to solve stochastic programming problems in general. The most popular

method, the sample average approximation (SAA) method (Begen et al. 2012), is com-

putationally expensive and is unable to solve the model to optimality if the problem size

is large. Being aware of the computational challenge in obtaining the optimal schedule,

researchers turn to simple yet effective scheduling policies. For example, Bailey (1952) pro-

pose to schedule two customers at the beginning of each time block and the third one at the
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2/3 mark of the time block. Researchers also investigate other scheduling policies/rules,

e.g., the Yang’s rule (Yang et al. 1998) and multiple block rule (Soriano 1966). For a sum-

mary of the schedule policies, we refer the reader to a survey paper by Cayirli and Veral

(2003). Although these policies perform quite well in numerical experiments, and some of

them also prevail in practice, there is no theoretical analysis, in particular with regards to

the performance bounds for the rules, reported in the literature.

While it is challenging to compute the optimal schedule, it is desirable to identify the

structural properties of the optimal schedule. In the presence of patient no-shows, Robinson

and Chen (2010) prove that the optimal schedule exhibits a “no hole” structure when the

scheduler’s decision is the number of appointments scheduled in each time block. When

the decision variables are the job allowances, Wang (1993) show that that the optimal job

allowance exhibits a “dome” shape when the service times are exponentially distributed.

In recent decades, this “dome” shape of the optimal schedule has been illustrated for i.i.d.

service durations in numerical experiments (Denton and Gupta 2003, Kaandorp and Koole

2007, Hassin and Mendel 2008, Klassen and Yoogalingam 2009). However, there is scant

theoretical evidence to support these findings. In this work, the constant schedule policy

with i.i.d. service durations is analyzed and the asymptotic optimality is then proved.

For the “dome”-shape scheduling policy, it is reported that the shape of the “dome” is

more flattened as the ratio of the idle time penalty parameter to the waiting time cost

parameter decreases for the i.i.d. uniform service durations (Denton and Gupta 2003).

This flattening of the “dome”-shape is also illustrated with the i.i.d. exponential service

durations (Hassin and Mendel 2008). The underlying intuition of the impact of the unit idle

time cost parameter is that when this parameter is high, the total cost related to idling is

high, providing an incentive to reduce total idle time by scheduling the first few customers

to arrive very closely or even together. Furthermore, at the end of the planning horizon,

the last few patients are scheduled to arrive closer to each other to avoid the server from

idling because only a few patients arrive. Our theoretical results also explain the impact

of the relative costs associated with server idling and customer waiting.

The constant job allowance policy has been studied in a few previous works. Jansson

(1966) studied an appointment booking system with constant job allowances and exponen-

tially distributed service durations. He derived the constant job allowance which minimizes

the expected total cost in such an appointment booking system (which is essentially a
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D/M/1 queue). Mercer (1960) and Sabria and Daganzo (1989) studied the steady-state

behavior of an appointment system in the presence of customer unpunctuality. Charnetski

(1984) used service times of over 2,000 real surgical procedures to evaluate the perfor-

mance of a constant job allowance policy in an operating room. Later, Wang (1997) derived

the optimal constant job allowance when the service durations can be approximated by

a phase-type distribution. However, those works have focused either on searching for the

optimal job allowance or analyzing the steady-state queue, while our paper aims to bound

the gap between the optimal constant job-allowance schedule and the optimal schedule.

(Chen et al. 2016) studied a new appointment system in which customers are given the

earliest possible appointment times under the service level constraints, and derived some

asymptotic properties of this system when the number of arrivals approaches infinity.

The performance of an appointment scheduling policy depends on the probability of

no-shows (Gupta and Denton 2008, Cayirli et al. 2006, 2008). It is reported that the

“dome”-shape is more pronounced as the show-up probability decreases (Kaandorp and

Koole 2007, Hassin and Mendel 2008). This means that high show-up probability may

result in a more flattened optimal scheduling pattern, and our theoretical analysis supports

this claim. During the past decade, patients’ no-shows have been studied extensively in the

literature such as Muthuraman and Lawley (2008), Robinson and Chen (2010), Cayirli et al.

(2012), Luo et al. (2012), Zacharias and Pinedo (2014), Zacharias and Pinedo (2017), and

Kong et al. (2016). A well-known strategy to offset the impact of no-shows is overbooking,

i.e., booking more customers in a certain time slot than the service capacity. For example,

Muthuraman and Lawley (2008) develop a stochastic overbooking policy to compensate

for patients with no-shows in an outpatient clinic. LaGanga and Lawrence (2012) derive

analytical bounds for the optimal number of patients to be scheduled in each time block

with customers’ no-shows. In addition to overbooking, other approaches can be used to

mitigate the detrimental effects of patient no-shows; for example, Cayirli et al. (2012)

propose a universal appointment rule to reduce the disruptive impact of no-shows. However,

the theoretical analysis for appointment scheduling with patient no-shows is not considered

and is usually quite challenging.

3. Problem Formulation

Consider a generic clinic session with a single doctor and n + 1 appointments to be

scheduled in a finite time horizon (e.g., a day). The service times of those appointments
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are independent and identically distributed (i.i.d.) random variables, denoted by A =

(A1,A2, · · · ,An). (Throughout this paper, we distinguish between a random variable and

its realization (or constant) using capital letter and lower case letter, respectively. We use

bold-faced letters to denote vectors.) We use A to denote the random variable having the

same distribution as each At. While the literature has characterized the optimal policies

when the random service duration A follows certain distributions (Kaandorp and Koole

2007, Hassin and Mendel 2008, Zeng et al. 2010), our main results (i.e., upper bounds (12)

and (29)) allow the service times to follow any continuous distribution.

We assume that the n+1 appointments, indexed by t= 1,2, · · · , n+1, have already been

sequenced. The clinic manager, being aware of the fixed sequence as well as the distribution

of the i.i.d. service times, needs to determine the job allowance of each appointment, that

is, the time separation between the start times of two consecutive appointments. We use st

to denote the job allowance scheduled for the tth appointment, and use s = (s1, s2, · · · , sn)

to denote the vector of all job allowances. We do not include the job allowance of the

last job sn+1 as a decision variable because that will not affect the objective value. The

start time of the first appointment is 0, and thus, given s, the appointment start times

are scheduled as {0, s1, s1 +s2, · · · ,
∑n

t=1 st}, which can also be interpreted as the scheduled

arrival times of patients. According to the usual practice, the scheduled arrival times have

to be determined and released to patients before the beginning of the horizon (time 0)

and no further adjustment can be made after the patients have arrived. We assume that

all patients will show up punctually at their scheduled times, but will later relax this

assumption and consider patient no-shows in Section 4.3. Finally, we assume that the job

allowance for each appointment is subject to an upper bound constraint, i.e., there exists

d such that st ≤ d for t= 1, . . . , n.

Due to the uncertainty of the service durations, a doctor may not finish serving each

patient on time. If the doctor finishes serving the (t− 1)th patient prior to the scheduled

start time of the tth appointment,
∑t−1

k=1 sk, then the doctor will stay idle until that time;

otherwise, if the (t−1)th patient has not completed service by the scheduled time
∑t−1

k=1 sk,

then the next patient has to wait until the service completes. We let Wt denote the waiting

time of tth patient and It denote the doctor’s idle time before seeing the tth patient. We

assume that the doctor is always available at time 0, so that the first patient can see the
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Figure 2 Variables in Our Model

doctor immediately, i.e., W1 = 0. A graphical illustration of the variables introduced above

is provided in Figure 2.

Note that the scheduled start time or the appointment for the tth patient is
∑t−1

k=1 sk,

and the actual start time of this patient is
∑t−1

k=1 sk +Wt, allowing for any possible waiting.

Thus, the ending time for the tth patient is
∑t−1

k=1 sk +Wt +At. Now, since the scheduled

start time for the (t+ 1)th patient is
∑t

k=1 sk, the actual start time of this patient is the

larger of
∑t−1

k=1 sk +Wt +At and
∑t

k=1 sk, and it follows that the waiting times and idle

times for the (t+1)th patient can be recursively expressed as follows: for each t= 1,2, · · · , n,

Wt+1 = [Wt +At− st]+ and (1)

It+1 = [Wt +At− st]− , (2)

where [x]+ max{x,0} and [x]− = max{−x,0} denote the positive and negative part of x,

respectively.

Following the literature (Weiss 1990, Lau and Lau 2000, Mak et al. 2014b, Kuiper et al.

2015), we assume that the scheduler aims at minimizing the expected total cost, which

consists of expected waiting cost and idle cost and has the following expression,

ν(s) = E

[
n∑
t=1

{cW ·Wt+1(s) + cI · It+1(s)}

]
. (3)

The parameters cW and cI in the above equation stand for the unit waiting time cost and

idle time cost, respectively. We use the notations Wt+1(s) and It+1(s) to highlight their

dependence on the job allowance vector s.

It is usually difficult to solve the above problem in large sizes (e.g., n> 50) to optimality

in real time. Heuristic methods have been proposed in the literature to obtain near-optimal

and easy-to-implement policies. In this paper, we provide a theoretical justification of the

constant policy by proving its asymptotic optimality for the above problem under certain

conditions. We first prove the result for i.i.d. service durations. Later, we prove an analog

of the result when the service durations are allowed to have different distributions for

patients scheduled in different time blocks.
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4. The Constant Policy

Throughout this section, we assume that the service durations {At}, t = 1,2, . . . , n, are

i.i.d. with the common probability density function f and cumulative distribution function

F . Let µ and σ represent the mean and standard deviation of At, respectively. In this

section, we show under certain conditions that there exists a constant policy which is

asymptotically optimal when the total number of appointments n grows large.

We first consider the case with n= 1. In this case, there are only two appointments, and

this appointment scheduling problem is equivalent to a Newsvendor problem (Weiss 1990).

The first assignment is at time 0, and the second appointment is at time s1, which is the

only decision variable here. The objective function given in (3) can be written as:

ν(s1) = E [cW ·W2(s1) + cI · I2(s1)] = cW ·E[A1− s1]
+ + cI ·E[A1− s1]

− .

where the last equality holds since (1) and (2) imply W2 = [A1− s1]
+ and I2 = [A1− s1]

−.

It is easy to verify that this function is a Newsvendor cost function, which is convex in s1.

Let s and g denote the minimizer and the minimum value of ν(s1) given above, i.e.,

s = arg min
s∈<+

cW ·E[A− s]+ + cI ·E[A− s]− and (4)

g = min
s∈<+

cW ·E[A− s]+ + cI ·E[A− s]− . (5)

Note that the above minimization problem faces uncertainty arising only from the service

duration A. In the problem with an arbitrary number of appointments, the job allowance

for the tth patient needs to consider not only the service duration At+1 for the next patient

but also possibly delay in starting the service for the tth patient. With this additional

uncertainty, it can be shown that s is a lower bound on the job allowance for the tth patient

under the optimal policy, denoted by s∗t . Similarly, g is a lower bound on the cost associated

with the (t+ 1)th patient given by Ct = cW ·Wt+1 + cI · It+1. Let C∗t denote this cost under

the optimal policy. These findings are summarized in the next lemma. The proof of the

lemma is attached in Appendix A.1.

Lemma 1. For t∈ {1, . . . , n}, s∗t ≥ s and E[C∗t ]≥ g.
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4.1. Statement of Theorem 1 and Discussion

To formally state the main result of this section, Theorem 1, we need to introduce several

notations. Recall that cW and cI are the per-unit cost parameters associated with the

patient’s waiting and the server’s idling. Also, F is the cumulative distribution function of

the service time A. Furthermore, d is an upper bound imposed on the choice of each st,

i.e., st ≤ d for t = 1, . . . , n. Let ζ denote the skewness of the random service time A and

define τ to be a function of ζ and two cost parameters cW and cI :

τ =


8

3ζ +

√
2cI
cW

+

√(
cI

2cW

)3


2 where ζ =
E[|A−µ|3]

σ3
. (6)

For fixed r, we let random variable ηr∞ denote the hitting time of the maximum of a

random walk. In the random walk that we consider, the increment quantity in each epoch

i is Ai− r. Define, for each t∈ {0,1,2, . . .}, the following random variable:

ηrt = min

{
j∗ ∈ {0,1, . . . , t}

∣∣ j∗∑
i=1

(Ai− r) = max
j∈{0,1,...,t}

j∑
i=1

(Ai− r)

}
. (7)

Since the summation in the above equation represents a random walk, an explicit, but

still complicated, expression for the probability distribution of ηrt is given in Theorem 1 of

Andersen (1955). Also, by substituting t= +∞, we let ηr∞ follow the limiting distribution

of ηrt as t→∞. This distribution is well defined provided r > µ (Spitzer 1956). Then, for

each n≥ 1, define

εn =
cW rE[(ηr∞)2− ηr∞]

ng
+

cIσ
2

2ng(r−µ)
. (8)

Also, for r > µ, define

ϕr = inf
ψ≥0

φr(ψ) and ψr = arg inf
ψ≥0

φr(ψ), where φr(ψ) = E[exp(ψ(A−r))] .

(9)

These quantities are used in the statement of Theorem 1. In particular, εn will be used to

provide a bound on the performance of the constant policy, and ϕr is used in an upper

bound for εn.

Consider an optimal policy, and let s∗t denote the job allowance of the tth appointment

under this policy. Let

r =
1

n

n∑
t=1

s∗t (10)
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denote the average job allowance under the optimal policy. We consider a constant policy

r, in which all job allowances are set to the constant value r. We use ν(r) and ν∗ to denote

the expected total cost under the constant policy r and the optimal (possibly non-constant)

policy, respectively.

Theorem 1. Suppose at least one of the following conditions hold:

• Condition 1: F (µ)< cW/(cW + cI);

• Condition 2: n≥max{2τ,6τ 3
2σ−1(d− s)}.

Let n≥ 1. Then, we have r > µ, and

ν∗ ≤ ν(r) ≤ (1 + εn)ν∗ . (11)

Furthermore,

εn ≤
2cW rϕ

2
r

ng(1−ϕr)2
+

cIσ
2

2ng(r−µ)
→ 0 as n→∞. (12)

While the formal proof of this theorem is provided in Section 4.2, we make several

comments regarding the statement of the theorem.

The relationship in (11) can be written as 0 ≤ ν(r)/ν∗ − 1 ≤ εn. We refer to the ratio

ν(r)/ν∗−1 as the relative optimality gap for the constant policy r. Theorem 1 provides two

upper bounds for the relative optimality gap: one is the expression of εn on the right-hand-

side of (8) and the other in (12). The first upper bound can be computed only when At

follows any given continuous distributions, for example, a normal distribution. The second

upper bound is weaker than the first one, but it has better analytic properties, providing

qualitative insights. For example, the second upper bound monotonically decreases with

n, suggesting that the constant policy has a better performance guarantee when the time

horizon is longer. The limiting property in (12) shows that a simple constant policy r is

asymptotically optimal.

Theorem 1 is about near-optimality of the constant policy r, with r being the average

job allowance of the optimal schedule. While constant policies are simple in general, imple-

menting this constant policy however essentially requires solving the optimal schedule to

obtain the value of r. This can be challenging for problems of large scale. Alternatively,

we can find the optimal constant policy, i.e., the constant policy with the best constant

job allowance, by a one-dimensional search. The expected total cost can be evaluated by

the sample average approximation. Since the optimal constant policy performs at least as
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well as the constant policy r, the upper bound of Theorem 1 applies. The details of the

numerical algorithm for computing the optimal constant policy is given in Section 6.

We now elaborate on ηrt and explore its connection to the waiting time. Let W r
t+1 denote

the waiting time of the (t+ 1)th patient under this constant policy r. Using the Lindley’s

recursion and the recursive definition of Wt given in (1), we have

W r
t+1 = [Wt +At− r]+ = max{0,Wt +At− r}

= max{0,At− r,Wt−1 +At−1− r} = · · · = max
j∈{0,1,...,t}

{
t∑

i=t+1−j

(Ai− r)

}
.

From the i.i.d. assumption of Ai’s, the rightmost expression above has the same distribution

as max
j∈{0,1,...,t}

{∑j
i=1(Ai− r)

}
, which in turn has the same distribution as W r

t+1, i.e.,

W r
t+1

d
= max

j∈{0,1,...,t}

{
j∑
i=1

(Ai− r)

}
. (13)

We have defined ηrt in (7) to be a random variable representing the index corresponding

to the maximum of the random walk used in the right-side of (13), where ties are broken

in favor of the smaller index.

We comment on Conditions 1 and 2 used in Theorem 1. Each of them provides a sufficient

condition for the value of r= (s∗1 + · · ·+ s∗n)/n given in (10) to satisfy r > µ. This ensures

that r is sufficiently high so that the random walk used in (13) has a negative drift, implying

that ηr∞ has a finite expectation.

Lemma 2. If at least one of the two conditions in Theorem 1 holds, then r > µ.

While a rigorous proof for the above lemma is provided in Appendix A.2, we provide

below some key ideas in the proof. The main part of Condition 1, F (µ) < cW/(cW +

cI), ensures that µ < s since s defined in (4) is a newsvendor solution satisfying F (s) =

cW/(cW + cI). Since Lemma 1 implies r = (s∗1 + · · ·+ s∗n)/n≥ s, it follows that r > µ. An

implication of Condition 1 is that when the ratio cW/cI is sufficiently large, cW/(cW + cI)

is close to 1, satisfying Condition 1. Then, for any value of n ≥ 1, the bound in (11) is

valid and the asymptotic optimality holds. This is consistent with the numerical studies

in Denton and Gupta (2003) and Hassin and Mendel (2008), which show that the “dome”

shape becomes more flattened when the ratio cW/cI is larger.
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When Condition 1 fails, the unit waiting cost cW is relatively small compared to the

doctor idling cost parameter cI . In this case, the scheduler would rather keep the patients

waiting than making the doctor idle, and may choose the job allowances to be small,

possibly smaller than µ. This reasoning is valid when the total number of appointments,

n, is small. However, when n is large and approaches infinity, the job allowances under the

optimal policy s∗ = (s∗1, s
∗
2, · · · , s∗n) should be large enough so that their average, r, should

be at least µ; otherwise, the policy would result in very high waiting time by queuing

theory, failing to be optimal. Condition 2 spells the a sufficient condition on how large n

should be.

Finally, we elaborate on the role of this property, r > µ. Note that εn is an upper bound

on the relative optimality gap. According to classic random walk theory (see e.g., Karlin

2014), ηr∞, used in the definition of εn given in (8), has finite first and second moments if

and only if r > µ. Thus, E[(ηr∞)2− ηr∞]<+∞ is finite if and only if r > µ. This property,

r > µ, is sufficient and necessary condition for the convergence of εn to 0.

4.2. Proof of Theorem 1

Now we prove Theorem 1. To prove an upper bound for (ν(r)− ν∗)/ν∗, we first derive an

alternative expression for ν(r)− ν∗, and provide an upper bound for the above difference.

Then, by lower bounding ν∗, we derive an upper bound for (ν(r)− ν∗)/ν∗.

The following lemma derives an alternative expression for ν(s), originally defined in (3).

A proof for this lemma is in Appendix A.3.

Lemma 3. For any given schedule s,

ν(s) = E

[
n∑
t=1

cWWt+1

]
+ cI

n∑
t=1

st + cIE [Wn+1] − cInµ .

According to Lemma 3, for any constant policy with the constant job allowance r′, we

have

ν(r′)−ν(s∗) = cW

n∑
t=1

E
[
W r′

t+1−W ∗
t+1

]
+ cI

(
nr′−

n∑
t=1

s∗t

)
+ cIE

[
W r′

n+1−W ∗
n+1

]
, (14)

where W r′
t and W ∗

t represent the waiting time under a constant policy r′ and the optimal

policy, respectively. Below we upper bound each of the three terms on the right side of the

above equation.
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We consider a constant policy with r′ = r, where r= (s∗1 + · · ·+ s∗n)/n. Then, the second

term above becomes 0.

To upper bound the first term, consider an alternative expression for E[W r
t+1] using (13),

and the definition of ηrt given in (7):

E
[
W r

t+1

]
= E

[
max

j∈{0,··· ,t}

{
j∑
i=1

(Ai− r)

}]
= E

[(
ηrt∑
i=1

Ai

)
− ηrt r

]
.

Now, we obtain the following lower bound for W ∗
t , we use an argument similar to (13):

E
[
W ∗

t+1

]
= E

[
max

j=0,1,··· ,t

{
t∑

i=t+1−j

(Ai− s∗i )

}]

≥ E

 t∑
i=t+1−ηrt

(Ai− s∗i )

 = E

( ηrt∑
i=1

Ai

)
−

 t∑
i=t+1−ηrt

s∗i

 ,
where the inequality holds since we have used ηrt instead of the true maximizer, and the

second equality holds since Ai’s are i.i.d.. Then,

E
[
W r

t+1−W ∗
t+1

]
≤ E

 t∑
i=t+1−ηrt

s∗i

− rηrt
 . (15)

Thus, we have

n∑
t=1

E
[
W r

t+1−W ∗
t+1

]
≤

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− rηrt
 ≤ rE[(ηr∞)2− ηr∞] , (16)

where the second inequality holds provided that the following lemma 4 holds. The proof

of the lemma below is in Appendix A.4.

Lemma 4.

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− n∑
t=1

rE [ηrt ] ≤ rE[(ηr∞)2− ηr∞] .

Hence, with (16), the first term in (14) can be bound as follows

cW

n∑
t=1

E
[
W r

t+1−W ∗
t+1

]
≤ cW rE[(ηr∞)2− ηr∞] . (17)

To upper bound the third term in (14), which is cIE[W r
n+1 −W ∗

n+1] when r′ = r, it

suffices to upper bound E[W r
n+1]. Note from the recursive definition given in (1) that W r

t
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can be regarded as the waiting time of tth customer in a D/G/1 queue with constant inter-

arrival time r and random service time A, with an initial state W r
1 = 0. By the property of

D/G/1 queue, the expected value E[W r
t ] monotonically increases from 0 to E[W r

∞] (see,

for example, Theorem 4 of Kingman (1962)). Thus, we have

E[W r
t ] ≤ E[W r

∞] for all t≥ 1. (18)

We now state a lemma that provides an analytic upper bound for E[W r
∞]. Let ρ = µ/r.

Also, define

Υ1 =
σ2

2r(1− ρ)
and Υ2 =

4

e2(ψr)2
log

1

1−ϕr
+

[
σ2

2r(1− ρ)

]2

. (19)

Lemma 5. Consider a D/G/1 queue with a deterministic inter-arrival time r and ran-

dom service time A, with mean µ and standard deviation σ. If ρ = µ/r < 1, then ψr > 0

holds, and the steady-state waiting distribution W∞ has the following upper bounds on the

first and second moments:

E[W∞] ≤ Υ1 and E[W 2
∞]≤Υ2 .

The first part of the lemma, ψr > 0, is due to Kingman (1962), and the bound for the

first moment appears in Marshall (1968). The bound for the second moment comes from

Theorem 6 of Kingman (1962).

An implication of the above lemma is an upper bound on the third term in (14). Since

r > µ holds by Lemma 2, we can apply Lemma 5 to obtain

cIE[W r
n+1−W ∗

n+1] ≤ cIE[W r
n+1] ≤ cIΥ1 =

cIσ
2

2r(1− ρ)
. (20)

Based on the above argument, we are now ready to establish an upper bound on (14),

when r′ = r. From (17) and (20), we can bound ν(r)− ν(s∗) in (14) as follows:

ν(r′)− ν(s∗) ≤ cW rE[(ηr∞)2− ηr∞] + 0 +
cIσ

2

2r(1− ρ)
.

Since Lemma 1 states E[C∗t ]≥ g for each t, it follows that ν∗ =
∑n

t=1E[C∗t ]≥ ng. Thus,

ν(r)− ν∗

ν∗
≤ cW rE[(ηr∞)2− ηr∞]

ng
+

1

ng
· cIσ

2

2r(1− ρ)
= εn ,

where the last equality follows from the definition of εn in (8). This establishes (11), the

first result in the statement of Theorem 1.
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Now, we provide an analytical upper bound for εn, by deriving a bound on E[(ηr∞)2−ηr∞].

Consider the discrete-time random walk defined by
∑j

i=1(Ai−r) in j ∈ {0,1, . . . , t}, and let

Nt denote the number of times when this random walk has a positive value. By Andersen

(1955) and Bingham (2001), the index ηrt defined in (7) has the same distribution as the

random number Nt for each t= 0,1, . . . ,+∞. Let N∞ denote the limiting random variable

for Nt as t→∞, which is well-defined (Spitzer 1956) since µ=E[Ai]< r by Lemma 2. By

invoking Theorem 5.2 of Spitzer (1956), we derive the following alternative expression for

E[(ηr∞)2− ηr∞]:

E[(ηr∞)2− ηr∞] = E[(N∞)2−N∞] = E[N∞(N∞− 1)] =

(
∞∑
k=1

bk

)2

+

∞∑
k=2

(k− 1)bk,

where bk = P
[∑k

i=1(Ai− r)> 0
]
. By the Chernoff’s inequality, for any ψ > 0, we have

bk = P

[
k∑
i=1

(Ai− r)> 0

]
≤ (E[exp(ψ(A− r))])k = (φr(ψ))k ,

where the last equality follows from the definition of φr(ψ) =E[exp(ψ(A−r))] in (9). Since

the above inequality holds for any ψ > 0, it follows from (9) that we have bk ≤ (ϕr)
k. Note

that ϕr ∈ [0,1) holds (Kingman 1962). (To see this, note that φr(ψ) is a continuous function

of ψ on (0,∞) from the definition of φr(ψ) in (9). Also, φr(ψ) is right differentiable at 0

in which the derivative equals to E[A]− r= µ− r < 0. Since φ′′r(ψ)< 0 for all ψ > 0, φr(ψ)

has to keep decreasing since 0. Therefore, φr(ψ)<φr(0) = 1 for all ψ > 0.) Therefore,

E[(ηr∞)2− ηr∞] =

(
∞∑
k=1

bk

)2

+

∞∑
k=2

(k− 1)bk

≤

(
∞∑
k=1

(ϕr)
k

)2

+

∞∑
k=2

(k− 1)(ϕr)
k ≤ 2 · (ϕr)2

(1−ϕr)2
, (21)

where the last inequality directly from the basic manipulation of the geometric series (ϕr)
k.

By substituting the above inequality to the definition of εn given in (8), we obtain

εn =
cW rE[(ηr∞)2− ηr∞]

ng
+

cIσ
2

2ng(r−µ)
≤ 2cW rϕ

2
r

ng(1−ϕr)2
+

cIσ
2

2ng(r−µ)
,

which is the inequality in (12) in the statement of Theorem 1. It is easy to show that

the rightmost expression above converges to 0 as n→∞. This completes the proof of the

theorem.
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We make a few comments on the proof of Theorem 1. The structure of our proof fol-

lows the same framework as Goldberg et al. (2016) and Xin and Goldberg (2016). These

two papers have studied a constant order quantity policy for a lost sales inventory con-

trol problem. However, an adaptation of their idea to the appointment scheduling setting

requires additional work for two reasons. First, the recursive formulae of the waiting time

and a corresponding quantity in inventory papers are different: Wt+1 = [Wt + st − At]
+

in the lost sales model and Wt+1 = [Wt +At− st]+ in the appointment scheduling model.

Despite apparent similarity, the two formulae lead to a different analysis. For example,

Lemma 4 in our proof has used a different method than the counterpart of Theorem 2 in

Goldberg et al. (2016). The random walk used in (7) of our analysis starts with an initially

empty state whereas the random walk used in Goldberg et al. (2016) starts from a steady

state; in analyzing ηrt , we cannot use a key result identified in Lemma 6 of Goldberg et al.

(2016), and have to derive a different relationship (see, for example, ηrt used in (A.7) in the

appendix). Second, the inventory model in the literature and the appointment scheduling

model studied here use different asymptotic regimes to establish asymptotic optimality of

the constant order quantity or job allowance policy. In the inventory models by Goldberg

et al. (2016) and Xin and Goldberg (2016), there are two time durations, the first one

being the fixed lead time L that determines the state of the dynamic programming and

the second one being the rolling horizon T of decision epochs. The asymptotic optimality

in Goldberg et al. (2016) requires that L→∞ and T/L→∞ as the relative performance

gap becomes close to 0. In Xin and Goldberg (2016), they use the asymptotic regime where

T →∞ while L is fixed. Thus, in both of these papers, it is assumed that T/L→∞
holds, implying that the planning horizon contains infinitely many information updates.

In contrast, in our paper, we have no information updates, which is essentially equivalent

to L= T , which is not covered by Goldberg et al. (2016) and Xin and Goldberg (2016).

4.3. When Patients Have No-Shows

An underlying assumption in Theorem 1 is that all the patients would show up. We now

discuss briefly how Theorem 1 can be extended to cover the case with the possibility of

patient no-shows. To model no-shows, we introduce a random binary variable Zt ∈ {0,1}
to indicate whether the tth patient in the sequence shows up for her appointment (Zt = 1)

or not (Zt = 0). We assume Zt’s are i.i.d. and have an average show-up probability p, i.e.,

E[Zt] = p.
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The key idea in our approach is that we treat no-show patients as regular patients

who show up, but consider the service times of these patients to be 0. More precisely, let

(Ǎ1, Ǎ2, · · · , Ǎn) denote the service duration vector in the presence of no-shows. Then, for

each t∈ {1,2, · · · , n}, we have Ǎt =ZtAt, where (A1, . . . ,An) is the service duration vector

without no-shows studied previously. On this basis, the waiting times and idling times

account for no-shows, which we now denote by {W̌t} and {Ǐt}, respectively, can be adapted

from (1) and (2) as follows: for t∈ {1, . . . , n},

W̌t+1 = [W̌t + Ǎt− st]+ and

Ǐt+1 = [W̌t + Ǎt− st]− ,

where W̌1 = 0.

When we count the waiting cost, we only need to count the waiting time of those who

actually show up. Thus, the total cost for a given schedule s can be formulated as, similar

to (3),

ν(s) = E

[
n∑
t=1

{
cW ·Zt+1 · W̌t+1(s) + cI · Ǐt+1(s)

}]
.

Since Zt+1 is independent of (Z1,Z2, · · · ,Zt), it must be independent of Wt+1. Thus,

E[Zt+1W̌t+1] = pE[W̌t+1]. Note that the idle time before the (t+ 1)th appointment, It+1,

does not depend on whether the (t+1)th patient would show up or not. Therefore, omitting

the explicit dependence on s, we have

ν(s) = E

[
n∑
t=1

{
(cWp) · W̌t+1 + cI · Ǐt+1

}]

= E

[
n∑
t=1

{
čW · [W̌t + Ǎt− st]+ + cI · [W̌t + Ǎt− st]−

}]
,

where čW = cWp. Thus, with the modified service durations Ǎt and modified unit waiting

cost čW , we can apply Theorem 1 and derive analogous results.

5. Multiple Types of Appointments: The Piecewise Constant Policy

In this section, we relax the i.i.d service duration assumption in the basic model (Sec-

tions 3 and 4), and show that a generalization of the constant policy achieves asymptotic

optimality.
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We model the service duration to be piecewisely i.i.d., that is, there can be M ≥ 2 differ-

ent types of appointments, and within each type, service duration distributions are iden-

tical. Furthermore, we assume that all the appointments of any given type are sequenced

consecutively, forming a block in the schedule. In other words, the entire appointment

sequence contains M blocks, each consisting of appointments of the same type. We let

nm = qmn

denote the number of appointments of typem, where n denotes the total number of patients

of all types, and qm denotes the proportion of the type-m appointments. Let Fm(·) be

the cumulative distribution function of the service duration of the type-m appointments,

and we denote its mean and standard deviation by µm, and σm, respectively. We use

the superscript m and subscript t to index the blocks and the position in that block,

respectively; for example, Am
t stands for the random service duration of the tth patient in

the mth block. All service durations are independent, as before.

The policy that we consider, called the piecewise constant policy, schedules the same job

allowance for all appointments of the same type. We show that, under the above assump-

tions, this policy is asymptotically optimal. Let sm∗t denote the optimal job allowance of

the tth patient in the mth block under the optimal schedule. Let

rm =
1

nm

nm∑
t=1

sm∗t (22)

denote the average job allowance of type-m appointments under the optimal schedule. We

consider a piecewise constant policy r = (r1, r2, · · · , rm), where r is bolded to signify that it

is a vector representing a piecewise constant policy. Consistent with the previous section,

we also use ν(r) and ν∗ to denote the expected total cost under the piecewise constant

policy r and the optimal schedule, respectively.

5.1. Statement of Theorem 2 and Discussion

We present our result in Theorem 2 below, which provides an approximation ratio for

the piecewise constant policy. Most of the notations used in Theorem 2 follow the same

definition and interpretation that we introduced in Section 4 for Theorem 1, by adapting

to a system which consists of only one type of patients.
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For m∈ {1, . . . ,M}, we define sm and gm in the exact same way as s and g given in (4)

and (5), i.e., the minimizer and minimum value of a Newsvendor function:

sm = arg min
s∈<+

cW ·E[Am− s]+ + cI ·E[Am− s]− and

gm = min
s∈<+

cW ·E[Am− s]+ + cI ·E[Am− s]− . (23)

where Am denotes the i.i.d. service duration for type m. Similar to (6), define τm to be the

skewness of Am and define ζm as a function of τm:

τm =


8

3(ζm) +

√
2cI
cW

+

√(
cI

2cW

)3


2 where ζm =
E[|Am−µm|3]

(σm)3
.

Let ρm = µm/rm. Similar to (9), define for rm >µm,

ϕmrm = inf
ψ≥0

φmrm(ψ) and ψmrm = arg inf
ψ≥0

φmrm(ψ) where φmrm(ψ) = E[exp(ψ(Am−rm))].

(24)

Similarly, we can define φmr̄m(ψ), ψmr̄m, ϕmr̄m for a different constant policy r̄m, with

r̄m = rm− 1

K̄m
, where K̄m =

⌈
2

rm−µm

⌉
. (25)

Thus, r̄m >µm.

We also define ηm,r
m

t in the same way as ηrt in (7) except that Ai and r are replaced by

Am
i and rmi , i.e., ηm,r

m

t is the first index when the random walk
∑t

k=1(A
m
k − rm) achieves

its maximum value:

ηm,r
m

t = min

{
j∗ ∈ {0,1, . . . , t}

∣∣ j∗∑
i=1

(Am
i − rm) = max

j∈{0,1,...,t}

j∑
i=1

(Am
i − rm)

}
.

Furthermore, let ηm,r
m

∞ be the limiting distribution of ηm,r
m

t as t→∞. We let, similar to

(19),

Υ
m

1 =
(σm)2

2rm(1− ρm)
and Υ

m

2 =
4

e2(ψmrm)2
log

1

1−ϕmrm
+

[
(σm)2

2rm(1− ρm)

]2

,

and define

Ωm = (m− 1)K̄m

m−1∑
k=1

Υ
k

2 +
ϕ̃

1− ϕ̃

m−1∑
k=1

Υ
k

1 (26)

where

ϕ̃ = max
m∈{1,2,...,M}

ϕmr̄m . (27)
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Finally, instead of the definition of εn given in (8), we define

εn =
cW
∑M

m=1

{
rmE

[(
ηm,r

m

∞
)2− ηm,rm∞

]
+ Ωm

}
+ cI

∑M
m=1 Υ

m

1∑M
m=1 n

mgm
. (28)

Theorem 2. Suppose at least one of the following conditions hold for each m ∈

{1, . . . ,M}:

• Condition 1′: Fm(µm)< cW/(cW + cI);

• Condition 2′: nm ≥max{2(τm),6(τm)
3
2 (σm)−1(d− sm)}.

Let nm ≥ 1 hold for each m∈ {1, . . . ,M}. Then, we have rm >µm for each m∈ {1, . . . ,M},

and

ν∗ ≤ ν(r) ≤ (1 + εn)ν∗ .

Furthermore,

εn ≤
cW
∑M

m=1

{
2rm(ϕm

rm)
2

(1−ϕm
rm )2

+ Ωm

}
+ cI

∑M
m=1 Υ

m

1∑M
m=1 n

mgm
→ 0 as n→∞. (29)

Similar to Theorem 1, Theorem 2 provides two upper bounds for the relative optimality

gap ν(r)/ν∗− 1. The first upper bound, which is εn itself given in (28), can be computed

only when the inter-arrival times {Am
t } follow certain distributions, e.g., a normal distri-

bution. The second bound, given in (29), is an upper bound on εn, and it converges to zero

when n→∞, proving the asymptotic optimality of the piecewise constant policy r.

Condition 1′ and 2′ are simply adapting Condition 1 and 2 to a system with only one

type of appointment. By Lemma 2, Condition 1′ and 2′ provide a sufficient condition for

rm >µm for each m, which gives a sufficient and necessary condition for the first and second

moment of ηm,r
m

∞ to be finite. To achieve this, we consider the waiting-time distributions

{Wm,rm

t }, where t = 1,2, . . ., in a D/G/1 queue with the constant inter-arrival time rm

and random service times {Am
t }, where the system is initially empty. In our analysis, we

use the following bounds, given in Lemma 5 of Section 4, on the first two moments of the

steady-state waiting-time distribution Wm,rm

∞ :

E
[
Wm,rm

∞
]
≤ Υ

m

1 and E
[(
Wm,rm

∞
)2
]
≤ Υ

m

2 . (30)

Earlier in Section 4, recall from (18) that we used the steady-state distribution to bound

the distribution of waiting time for any t. Such a bound is valid if the system is initially
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empty. Thus, in applying this result to our setting, such a bound is valid for the first block

of patients, i.e., for m= 1. In fact, if there is only one block, i.e., M = 1, then the definition

of εn in (28) is equivalent to the corresponding definition in (8) of Section 4, and the bound

in (29) simplifies to (12).

However, for subsequent blocks (m≥ 2), some patients from the previous subsequence

need to be seen before the patients from this block can be served. In other words, the

waiting time of the first patient in the current subsequence is not necessarily 0. As a result,

we can neither consider the M blocks as M separate systems, nor apply the upper bound

of Theorem 1 to each block. Instead, we need to derive an upper bound for a new system

with nonzero initial stocks which are unfinished appointments from the previous block. A

careful analysis of this treatment is required in the proof that appears in the appendix,

accounting for the extra Ωm term included in the upper bounds in (28) and (29) above.

We now investigate the Ωm expressions to gain insight into how the order of the blocks

affects the overall performance. Recall from the definition of each Ωm in (26) that Ωm

contains
∑m−1

k=1 Υ
k

1 and
∑m−1

k=1 Υ
k

2. The summation
∑M

m=1 Ωm, appearing in (28) and (29),

contains terms involving (M − k)Υ
k

1 and
∑M

m=k+1(m− 1)K̄mΥ
k

2. In other words, a block

scheduled earlier in the schedule has a smaller k and thus a larger weight, (M − k) or∑M
m=k+1(m − 1)K̄m, contributing towards the computation of the upper bounds. From

the property of the random walk used in the definition of Υ
k

1 and Υ
k

2, it can be shown

that these quantities increase with the standard deviation of the service time distribution

Ak. Thus, it follows that the summation
∑M

k=1 Ωk included in the upper bounds can be

made smaller by arranging appointment blocks with lower service time standard deviation

before those with higher service time standard deviation. This observation is consistent

with the computational result of Denton et al. (2007), in which they show that sequencing

appointments in the decreasing order of their variances performs well, better than the other

two heuristic sequencing algorithms studied in their paper.

5.2. Proof of Theorem 2

The proof of Theorem 2 follows the same high-level structure as the proof of Theorem

1 consisting of these three steps: we first derive an alternative expression for ν(r)− ν∗,
then find an upper bound for that difference by choosing a particular piecewise constant

policy r, and finally derive a lower bound for ν∗, leading to an upper bound for the relative

optimality gap ν(r)/ν∗−1. However, there is a notable difference between the homogeneous



25

service model of Section 4 and the multiple type of appointments considered in this section

– the queue may not be empty at the beginning of each block, except for the first one.

This requires a different approach in finding an upper bound on the difference ν(r)− ν∗.
Throughout the proof, we use s∗ = (sm∗t ) to denote the optimal schedule, where sm∗t

denotes the job allowance for the tth patient in the mth block, and let W
m∗
t represent the

waiting time for the tth patient in the mth block in the optimal schedule. We use W
m

t to

denote the waiting time for the tth patient in the mth block under the piecewise constant

policy r = (r1, . . . , rM), where each rm is defined according to (22). In comparison, for

fixed m, we use the notation Wm,rm

t to denote the waiting time for the tth patient if the

inter-arrival times are deterministically rm, and the i.i.d. service times are given by the

random variables (Am
t ), where t= 1,2, . . ., provided that the buffer is empty initially. Thus,

Wm,rm

t is exactly the same as W r
t used in Section 4. The only difference between W

m

t and

Wm,rm

t is the initial state: the system with W
m

t may have an initial buffer resulting from

the previous block, but the system with Wm,rm

t is initially empty.

For the first step of finding an upper bound for ν(r) − ν∗, we derive an alternative

expression for this quantity, similar to (14).

Lemma 6.

ν(r)− ν(s∗) = cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
+ cIE

[
W

M

nM+1−W
∗
nM+1

]
. (31)

A formal proof of Lemma 6 is attached in Appendix B.1. We develop an upper bound for

the right-side of (31). From the choice of rm = (sm∗1 + sm∗2 + · · ·+ sm∗nm)/nm given in (22), rm

corresponds to the average job allowance of type-m appointments in the optimal schedule.

Thus, we find each of the two terms on the right side of (31).

In the proof of Theorem 1, we exploit the property of the D/G/1 queue and derived an

upper bound for the waiting-time difference between the constant policy r and the optimal

policy for a single type of patients, which is given in (15). To bound the first term in

(31), it may be tempting to apply the same method to each block m to obtain an upper

bound for
∑nm

t=1E
[
W

m

t+1−W
m∗
t+1

]
. Unfortunately, this approach does not work out easily

due to a key difference between the models in Section 4 and Section 5 – that in the mth

block, W
m

1 , may not be zero as all the patients from the previous block may not have been

served by the allocated time. Therefore, it calls for some additional work to upper bound∑nm

t=1E
[
W

m

t+1−W
m∗
t+1

]
when W

m

1 is possibly strictly positive.
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To this end, we consider an alternate queuing system. A key idea in this alternate system

is that it is a priority queue where the patients from a later block (i.e., larger m) is given

priority over the patients from an earlier block (i.e., smaller m). Patients within the same

block are served in the order of scheduled arrival times (i.e., smaller t index). Thus, the

first patient in any block is served starting from the appointment time without any waiting

delay. Furthermore, the alternate system allows preemption. Figure 3 illustrates both the

original system (under “System 1”) and the alternate system (under “System 2”).

Figure 3 An Alternative System that Holds the Jobs from the Previous Subsequence tills the Server Is Idle

It is easy to verify that the server is busy in the original system if and only if the server is

busy in the alternate system. Since W
m

1 is the amount of waiting time for the first patient

in block m in the original system, it also corresponds to the amount of time needed to serve

all backlogged patients at the appointment time of the first patient in block m in either

the original system or the alternate system. Recall that the job allowance for each patient

in block m is rm under the piecewise constant policy. If w is the amount of server time

required to clear all backlog present at the first appointment of block m, let ∆m(w) denote

the random variable representing that index of the earliest type-m patient experiencing no

waiting if there were infinitely many type-m patients, i.e., ∆m(ω) is the smallest integer

such that w plus the total of t− 1 service durations is at most the total job allowance of

t− 1 patients:

∆m(w) = min
{
t∈ {1, . . .}

∣∣ w+ (Am
1 + · · ·+Am

t−1)≤ (t− 1) · rm
}
. (32)

Recall that Wm,rm

t is the waiting time of the tth patient in block m if there is no initial

backlog at the beginning of block m. Based on the definition of the ∆m function above, it is

easy to see that, if t≥∆m(W
m

1 ), the starting time of the service for the tth patient in block

m is the same regardless of whether the initial backlog is empty or it is W
m

1 amount of time;
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consequently, the waiting time for this patient is unaffected under these two cases. Thus,

W
m

t = Wm,rm

t provided that t ≥∆m(W
m

1 ). Otherwise, the waiting time of this customer

under the original system with the initial backlog of W
m

1 may be larger than the waiting

time of this customer had the backlog been empty at the beginning of this block; however, it

can be argued that this difference does not exceed W
m

1 , i.e., Wm,rm

t ≤Wm

t ≤W
m,rm

t +W
m

1 .

(To see this, note that the original system is busy whenever the system corresponding to

Wm,rm

t , i.e., starting with an empty buffer, is busy.) Thus,

W
m

t

 ≤ Wm,rm

t +W
m

1 if t <∆m(W
m

1 )

= Wm,rm

t if t≥∆m(W
m

1 ).
(33)

To find an upper bound on the first term of (31), the property given in (33) will be used,

along with the following lemma on the expected value of ∆m(w). The parameters K̄m and

ϕ̃ were defined in (27). The proof of this lemma appears in Appendix B.2.

Lemma 7. For any w> 0,

E[∆m(w)|w] ≤ K̄mw +
ϕ̃

1− ϕ̃
.

From (33),

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
≤

nm∑
t=1

E
[
Wm,rm

t+1 −W
m∗
t+1

]
+ E

[
nm∑
t=1

W
m

1 ·1[t <∆m(W
m

1 )]

]
(34)

Since W
m∗
t+1 denoting the waiting time under the optimal policy would have been the same

or smaller if the initial buffer was empty, we can use the results from Section 4 to bound

the first term on the right side above using (16):

nm∑
t=1

E
[
Wm,rm

t+1 −W
m∗
t+1

]
≤ rmE

[
(ηm,r

m

∞ )2− ηm,rm∞
]
. (35)

To bound the second term on the right side of (34), we use Lemma 7 to obtain

E

[
nm∑
t=1

W
m

1 ·1[t <∆m(W
m

1 )]

]
≤ E

[
∆m(W

m

1 )W
m

1

]
≤ K̄mE

[(
W

m

1

)2
]

+
ϕ̃

1− ϕ̃
E
[
W

m

1

]
.(36)

We proceed to find upper bounds for E[(W
m

1 )2] and E[W
m

1 ]. From (33),

W
m

1 = W
m−1

nm−1+1 ≤ Wm−1,rm−1

nm−1+1 +W
m−1

1 .
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By repeatedly applying the above inequality, we obtain

W
m

1 ≤ Wm−1,rm−1

nm−1+1 +W
m−1

1 ≤ · · · ≤
m−1∑
k=1

W k,rk

nk+1
(37)

As we argued in the proof of Theorem 1, E[W k,rk

t ] monotonically increases from zero to

E[W k,rk

∞ ] as t→∞. Furthermore, we have E[W k,rk

∞ ]≤Υ
k

1 by (30). Thus, we have a bound

for E
[
W

m

1

]
:

E
[
W

m

1

]
≤

m−1∑
k=1

E
[
W k,rk

nk+1

]
≤

m−1∑
k=1

Υ
k

1 . (38)

Also using (37) and a similar argument, we can obtain a bound for E[(W
m

1 )2]:

E
[(
W

m

1

)2
]
≤ E

(m−1∑
k=1

W k,rk

∞

)2
 ≤ (m−1)

m−1∑
k=1

E

[(
W k,rk

∞

)2
]
≤ (m−1)

m−1∑
k=1

Υ
k

2 , (39)

where the second inequality follows from Cauchy’s inequality, i.e., (a1b1 + · · ·+ am′bm′)
2 ≤

(a2
1 + · · ·+ a2

m′)(b
2
1 + · · ·+ b2

m′), and the last inequality follows from (30).

Putting together, we have

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
≤

nm∑
t=1

E
[
Wm,rm

t+1 −W
m∗
t+1

]
+E

[
nm∑
t=1

W
m

1 ·1[t <∆m(W
m

1 )]

]
≤ rmE

[
(ηm,r

m

∞ )2− ηm,rm∞
]

+ K̄mE
[(
W

m

1

)2
]

+
ϕ̃

1− ϕ̃
E
[
W

m

1

]
≤ rmE

[
(ηm,r

m

∞ )2− ηm,rm∞
]

+ (m− 1)K̄m

m−1∑
k=1

Υ
k

2 +
ϕ̃

1− ϕ̃

m−1∑
k=1

Υ
k

1

= rmE
[
(ηm,r

m

∞ )2− ηm,rm∞
]

+ Ωm .

Above, the first inequality follows from (34), the second inequality follows from (35) and

(36), the third inequality follows from (39) and (38), and the final equality follows from

the definition of Ωm in (26). Thus, the first term in (31) is bounded above as follows:

cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
≤ cW

M∑
m=1

{
rmE

[
(ηm,r

m

∞ )2− ηm,rm∞
]

+ Ωm
}
.

Finally, the second term in (31) satisfies

cIE
[
W

M

nM+1−W
∗
nM+1

]
≤ cIE

[
W

M

nM+1

]
= cIE

[
W

M+1

1

]
≤ cI

M∑
m=1

Υ
m

1 ,



29

where the last inequality follows from (38). Therefore, from Lemma 6, we conclude

ν(r)− ν∗ = ν(r)− ν(s∗) ≤ cW

M∑
m=1

{
rmE

[
(ηm,r

m

∞ )2− ηm,rm∞
]

+ Ωm
}

+ cI

M∑
m=1

Υ
m

1 .

This establishes an upper bound for ν(r)− ν∗.

Now, since the expected total cost associated with each appointment in each block m is

bounded below by gm defined in (23) from Lemma 1, it follows

ν∗ ≥
m∑
i=1

nmgm .

Therefore,

ν(r)− ν∗

ν∗
≤

cW
∑M

m=1

{
rmE

[(
ηm,r

m

∞
)2− ηm,rm∞

]
+ Ωm

}
+ cI

∑M
m=1 Υ

m

1∑M
m=1 n

mgm
= εn , (40)

where the equality follows from the definition of εn in (28). Furthermore, since (21) implies

rmE
[
(ηm,r

m

∞ )2− ηm,rm∞
]
≤ 2 · rm · (ϕmrm)2

(1−ϕmrm)2
,

we obtain the inequality in (29). The convergence result in (29) holds since the numerator

in the bound is independent of n and the denominator increases to become arbitrarily large

as n→∞. This completes the proof of Theorem 2.

6. Computational Results: Performance of the Constant and
Piecewise Constant Policies

In this section, we report on our computational investigation of the performance of the

constant policy and the piecewise constant policy. We study how much the restriction

imposed by these simple policies increases the overall cost compared to a more general

policy.

We use the sample average approximation approach (Kleywegt et al. 2002) in our com-

putation. Specifically, we randomly generate K i.i.d. scenarios with a given distribution

of service time and then solve the resulting linear program that optimizes the schedule

for these sample service times. If the job allowance is allowed to be different for each job,

the resulting solution, denoted by sSAA, is a proxy for the optimal schedule. If the linear

program constrains the job allowance to be the same, the resulting solution, denoted by

rSAA, is the best constant policy for the generated sample service times. Note that the



30

theoretical results in Sections 4 and 5 have used a specific constant policy, namely one with

the average job allowance under the optimal policy, which requires knowing the optimal

schedule. Instead, by using a linear program, we search for the best constant job allowance

among all constant policies.

We let ν(sSAA) and ν(rSAA) denote the expected cost associated with the “optimal’

policy and the best constant policy, respectively, using sample average approximation. The

ratio (ν(rSAA)− ν(sSAA))/ν(sSAA) gives the relative gap between the optimal constant

policy and the optimal policy solved using the SAA method. Since the SAA method usually

solves the problem to optimality when the problem scale is not too large, this ratio provides

an estimation of the relative optimality gap for the optimal constant policy. We normalize

the waiting time cost parameter to be 1, i.e, cW = 1, and vary the unit idling time cost

parameter cI , which then corresponds to the ratio cI/cW . We consider the case with i.i.d.

service durations in Section 6.1, and discuss the case with piecewise i.i.d. service durations

in Section 6.2. We also compare the constant policy and the optimal policy under several

extensions of the model, e.g., when the objective includes an overtime cost, when patients

have no-show or arrival unpunctuality.

6.1. Homogeneous Customers: I.I.D. Service Durations

The numerical study aims to complement the theoretical results in two aspects. First, our

theoretical bound in Theorem 1 shows that the constant policy is near optimal either if

cI/cW is sufficiently small (Condition 1), or if the number of appointments, n, is sufficiently

large (Condition 2). Our computation focuses on the cases not covered by the theorem,

namely when n is small and cI/cW is large. Second, while the theoretical convergence rate

identified in Theorem 1 is O(1/n), we learn the actual convergence rate computationally.

To test the performance of the constant policy for small n, we fix n = 16, and choose

various ratios of cI/cW . In each scenario, we test four service duration distributions: expo-

nential distribution with mean 20, lognormal distribution with mean 20 and standard

deviation 4, and two normal distributions with mean 20 and standard deviation 4 and 8.

(In the case of normal distributions, we truncate them at 0, ensuring nonnegativity.) In

each test, we randomly generate K = 2000 scenarios, solve the sample average approxima-

tion linear program to determine the corresponding optimal schedule and best constant

policy. Then, we generate another K ′ = 2000 scenarios to calculate ν(sSAA) and ν(rSAA)
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Table 1 The gaps (in %) for different service time distributions and ratios of cI/cW : i.i.d. service durations

Distribution µ σ
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 10 100

Normal
20 4 0.15 0.25 0.43 0.56 0.68 1.03 1.14 1.77 1.89 4.48 25.15

20 8 0.18 0.33 0.59 0.67 0.79 1.51 1.87 1.98 2.16 5.06 25.45

Exponential 20 20 0.43 0.83 1.00 1.27 1.45 2.18 2.63 2.78 3.12 6.48 25.63

Lognormal 20 4 0.09 0.38 0.42 0.54 0.86 1.23 1.54 1.9 2.09 4.87 25.21

to approximate the relative optimality gap, (ν(rSAA)− ν(sSAA))/ν(sSAA). The ratios are

summarized in Table 1.

Table 1 provides several insights. First, the constant policy performs well in general under

various combinations of cI/cW and service duration distributions. The relative optimality

gap under the worst combination is less than 4% when cI/cW ≤ 3. Hence, even for small-size

problems (n= 16), the constant policy is able to achieve near-optimal performance as long

as the idling cost is not too large compared to the waiting cost. However, if the idling cost is

too large, then the constant policy can lose substantially to the optimal schedule. Second,

the constant policy achieves the best performance when the service duration has a normal

distribution with small standard deviation and has the worst performance for exponential

distribution. It appears that the constant policy works well when the service duration has

a small coefficient of variation, σ/µ. This is not surprising since the constant job allowance

is optimal if all service times are deterministic. Third, for each type of service duration

distribution, the relative optimality gap exhibits a clear decreasing trend approaching 0

as cI/cW becomes smaller. This observation is consistent with what has been reported in

Denton and Gupta (2003), Hassin and Mendel (2008) – the curve of the job allowance

under the optimal schedule, despite still having a dome shape, is more flattened when the

unit idling cost is relatively small.

We next consider the relative optimality gap as we vary the number of total appointments

(i.e., problem sizes), n, to understand how the relative optimality gap converges. Since

the technical difficulty with a large n is that it is very slow to solve the sample average

approximation linear program to obtain sSAA, we use a smaller K = 400 for problems when

n ≥ 100. Then, the standard error has an order of 0.01, and thus at least the first digit

after the decimal is of reliable accuracy. We fix cI = 3, and calculate the relative optimality

gap for n= 25,50,100,200, respectively. The results are summarized in Table 2. It shows
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that the relative optimality gap decreases as n increases, as expected. The speed that the

gap converges to zero actually depends on the type of service duration distribution. While

the actual convergence rates are difficult to estimate with limited n values, it appears that

the convergence rate is faster than O(1/n) in all three types of service distributions.

Table 2 The gaps (in %) for different problem sizes: i.i.d. service durations

Distribution µ σ
n

25 50 100 200

Normal
20 4 1.3 0.6 0 0

20 8 1.5 0.7 0.3 0

Exponential 20 20 2.3 1.4 0.5 0.1

6.2. Multiple Customers Types: Piecewise I.I.D. Service Durations

We next study the performance of the piecewise constant policy when the service durations

are piecewise i.i.d. We consider a system with M = 2 types of patients, with an equal

proportion, i.e., q1 = q2 = 0.5. For each type patients, we assume its service duration can

take one of the four service duration distributions. The first three distributions are the

same as those used previously in Section 6.1, and the fourth distribution that we added

is an exponential distribution with mean 4. Six combinations of these distributions were

tested. Similar to the setting used in Table 1, we use a small problem size with n = 16,

with 8 patients for each type, and set K =K ′ = 2000. The results are summarized in Table

3.

Table 3 The gaps (in %) for different service time distributions and ratios of cI/cW : piecewise i.i.d. service

durations

Type 1 Type 2 cI/cW

Distribution µ σ Distribution µ σ 0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

Normal 20 4 Normal 20 8 0.20 0.23 0.26 0.41 0.59 0.86 0.93 0.99 1.06
Normal 20 8 Normal 20 4 0.34 0.67 0.90 1.37 1.86 2.25 2.72 2.88 3.01
Exponential 4 4 Exponential 20 20 0.40 0.49 0.83 0.94 1.09 1.29 1.79 1.90 1.93
Exponential 20 20 Exponential 4 4 3.41 3.67 3.90 4.45 5.57 6.02 7.09 7.92 8.65
Normal 20 4 Exponential 20 20 0.37 0.53 0.88 1.01 1.22 1.50 1.56 1.63 1.71
Exponential 20 20 Normal 20 4 4.08 4.65 4.89 5.05 5.25 5.55 6.91 7.12 7.50

From Table 3, we observe that the relative optimality gap of the piecewise constant

policy is less than 9% for all combinations. We also observe that the piecewise constant
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policy performs better when the ratio cI/cW is smaller, similar to the i.i.d. service duration

case.

More interestingly, when we compare the last two rows of the table, both using the

same set of service distributions, it turns out that the performance gap is smaller when

the normal distribution with standard deviation 4 is used for the first block of patients

and the exponential distribution with standard deviation 20 is used for the second block of

patients. It suggests that it is better to schedule the patient block with a smaller standard

deviation first. A similar observation can be made from the third and fourth rows of the

table (with two exponential distributions, one with standard deviation 4 and another with

standard deviation 20). This is consistent with what we have inferred from the analytical

upper bounds – that the performance gap is more sensitive with service distributions in

earlier blocks; see Section 5.1.

7. Conclusion

Prior studies on appointment scheduling report that the optimal schedule has a “dome”

pattern for the i.i.d. service durations, in which the service allowances for patients exhibit

little variation in the middle of the planning horizon. Inspired by this, we analyze a simple

but effective constant scheduling policy for the traditional appointment scheduling prob-

lem. The numerical experiments show that the constant policy performs well in various

parameters and distributions combinations. Most importantly, we prove that the constant

policy is asymptotically optimal for homogeneous patients, and we extend the asymptotic

optimality result to heterogeneous patient types.

We make several contributions in this paper. We make a novel analysis of the easy-

to-implement policy for the traditional appointment scheduling problem, which is robust

over a range of settings such as i.i.d. service duration distributions and the possibility of

no-shows. The numerical experiments show that the constant policy and the piecewise

constant policy perform well, providing support to the implementation of these scheduling

polices in practice.

We also establish the explicit relative optimality gap bounds between the constant policy

or its extension and the optimal schedule. Further, we prove the asymptotic optimality of

our policy, once again advocating for its use in practice. Also, to the best of our knowledge,

this is the first proven result to be within 1 + ε of the optimal schedule, from theoretical
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aspect. Furthermore, we have identified several managerial insights – some of which are

new and affirm observations made in the literature.

Furthermore, our approach of attaining asymptotic optimality results can be extended

to other optimization problems that makes a tradeoff between two types of costs. For

example, in a slot queue staffing assignment problem, the number of servers scheduled in

a slot directly impacts the staffing cost and customer goodwill with respect to waiting.

However, for a more general type of service duration distributions beyond the piecewise

i.i.d. service duration structure, the optimality structure is still unknown and remains

open. The case when patients may arrive later than their scheduled times is a possibility

for future research. Even though some policies have been shown to be numerically effective

in the literature, no theoretical performance bounds have yet been derived for such patient

behavior under consideration. These considerations are beyond the scope of this paper and

potential for future research.
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A. Proofs for Section 4

A.1. Proof of Lemma 1

From the definition given in (3),

ν(s) =
n∑
t=1

{cW ·E [Wt+1] + cI ·E [It+1]} =
n∑
t=1

{
cW ·E [Wt +At− st]+ + cI ·E [Wt +At− st]−

}
(A.1)

where the second equality follows from (1) and (2). Recall that each Wt is nonnegative and it is

independent of At.

For fixed t ∈ {1, . . . , n}, we consider the impact of st, on the above objective function. The job

allowance for the tth patient does not impact the cost for patients in {1,2, . . . , t− 1}. For patients

in {t+ 1, . . . , n}, the choice of st has an impact on the cost through waiting time distributions

{Wt+1, . . . ,Wn}; more specifically, the summation of costs from t+ 1 to n decreases in st. This

implies that the optimal value of st should be bounded below by the optimizer of the myopic cost

(cost in period t) given by

Ct = cW ·E [Wt +At− st]+ + cI ·E [Wt +At− st]− . (A.2)

Note that this is a well-known Newsvendor function, which is a convex function of st, and the

derivative of Ct with respect to st is given by

−cW ·P [Wt +At > st] + cI ·E [Wt +At ≤ st] .

This derivative depends on the distribution of Wt and can be made the smallest when Wt = 0, i.e.,

the above expression is bounded below by −cW ·P [At > st] + cI ·E [At ≤ st], which turns out to be

the function inside the minimization operator in (4) used for the definition of s. Thus, we conclude

that s is a lower bound for the optimizer of (A.2), which in turn is a lower bound for the optimal

value of st, denoted by s∗t . This proves s∗t ≥ s.
Now, since s≥ 0, it follows from the definition of g in (5),

g = min
s∈<+

cW ·E [At− s]+ + cI ·E [At− s]−

≤ min
s∈[−E[Wt],d−E[Wt]]

cW ·E [At− s]+ + cI ·E [At− s]−

≤ min
s∈[−E[Wt],d−E[Wt]]

cW ·E [Wt−E[Wt] +At− s]+ + cI ·E [Wt−E[Wt] +At− s]−

= min
s∈[0,d]

cW ·E [Wt +At− s]+ + cI ·E [Wt +At− s]−

≤ cW ·E [Wt +At− st]+ + cI ·E [Wt +At− st]− = Ct ,

where the second inequality follows since cWE [At− s]+ + cIE [At− s]− is a convex function of s

and Wt−E[Wt] +At is a mean-preserving spread of At (Landsberger and Meilijson 1993). Since it

is shown that g is a lower bound for any Ct, it follows that g≤C∗t also holds.
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A.2. Proof of Lemma 2

Suppose Condition 1 holds, i.e., F (µ)< cW/(cW + cI). Recalling the definition of s in (4), it follows

from the property of the Newsvendor problem that we have F (s) = cW/(cW + cI). Thus, from

Lemma 1, we conclude r= (s∗1 + · · ·+ s∗n)/n≥ s > µ, as required.

Now, consider Condition 2. This condition is stated in terms of the standard deviation of the

service time, σ, and the upper bound d imposed on the choice of each time allowance, as well as

τ , defined in (6): τ = d{8(3ζ +
√

2cI
cW

+
√

( cI
2cW

)3)}2e where ζ =E[|A−µ|3]/σ3. Suppose Condition

2 holds, i.e., n ≥ max{2τ,6τ 3
2σ−1(d− s)}. While this condition was inspired by Goldberg et al.

(2016), it requires a modified analysis because of the way the recursive equation Wt is defined,

as discussed in the end of Section 4.2. Recall, from definition, τ = d{8(3ζ +
√

2cI
cW

+
√

( cI
2cW

)3)}2e.
Suppose h satisfies 1≤ h≤ n.

For t satisfying 1≤ h≤ t≤ n, define

γt =
t∑

k=t+1−h

s∗k . (A.3)

For the waiting time of (t+ 1)th patient under the optimal schedule, we have

E[W ∗
t+1] = E

[
max

j=0,1,··· ,t

{
t∑

i=t+1−j

(Ai− s∗i )

}]

≥ E

[
max

{
0,

t∑
i=t+1−h

(Ai− s∗i )

}]

= σh
1
2E

[
max

{
0,

∑t

i=t+1−h (Ai−µ)

σh
1
2

+
hµ−

∑t

i=t+1−h s
∗
i

σh
1
2

}]

= σh
1
2E

[
max

{
0,

∑t

i=t+1−h (Ai−µ)

σh
1
2

+
hµ− γt
σh

1
2

}]
,

where the last two equalities follow from algebraic manipulation. Then, we can find the lower bound

for the rightmost expression using Theorem 3 of Goldberg et al. (2016) and Chen and Shao (2005),

and we have

E[W ∗
t+1] ≥ σh

1
2E

[
max

{
0,N +

hµ− γt
σh

1
2

}]
− 3σζ , (A.4)

where N denotes a standard normal random variable.

Now, we can bound the cost of the optimal schedule using a feasible schedule given by st = r̃ for

each t∈ {1, . . . , n}, where r̃= µ+
√
cW/(2cI)σ. Since we have

ν(s∗) = E

[
n∑
t=1

(
cW · [W ∗

t +At− s∗t ]+ + cI · [W ∗
t +At− s∗t ]−

)]

= E

[
n∑
t=1

(
cW · [W ∗

t +At− s∗t ]+ + cI · s∗t
)]

+ cI · [W ∗
n +An− s∗n]+− cInµ ,
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where the last equality follows from Lemma 3, and a similar equation holds for the feasible policy

given by st = r̃ for each t, it follows

ν(s∗) ≤ E

[
n∑
t=1

(
cW · [W ∗

t +At− r̃]+ + cI · r̃
)]

+ cI · [W ∗
n +An− r̃]+− cInµ

≤ n

(
cW

σ2

2(r̃−µ)
+ cI r̃

)
+ cI

σ2

2(r̃−µ)
− cInµ

= n

(
cW

σ2

2(r̃−µ)
+ cI(r̃−µ) +

cI
n
· σ2

2(r̃−µ)

)
.

Above, the second inequality follows from (18) and Lemma 5. Therefore, since ν(s∗) is at least

cW
∑n

t=1E[W ∗
t+1], which in turn can be bounded below using (A.4), we have

cWσh
1
2

n∑
t=h

E

[
max{0,N +

hµ− γt
σh

1
2

}
]
−3cWσζn ≤ ν(s∗) ≤ n

(
cW

σ2

2(r̃−µ)
+ cI(r̃−µ) +

cI
n
· σ2

2(r̃−µ)

)
,

which implies

n∑
t=h

E

[
max{0,N +

hµ− γt
σh

1
2

}
]
≤ n

(
3σζ +

σ2

2(r̃−µ)
+
cI
cW

(r̃−µ) +
cI
ncW

· σ2

2(r̃−µ)

)
σ−1h−

1
2

= n

(
3σζ +

√
2cI
cW

σ+
cIσ

2ncW
·
√

2cI
cW

)
σ−1h−

1
2

= n

(
3ζ +

√
2cI
cW

+
1

n
· 1
√

2 · ( cI
cW

)
3
2

)
h−

1
2 ,

where the first equality follows from r̃ = µ +
√
cW/(2cI)σ. Since E[max{0,N + y}] is a convex

function of y, we have, by Jensen’s inequality,

E

[
max

{
0, (n+ 1−h)N +

n∑
t=h

hµ− γt
σh

1
2

}]
≤

n∑
t=h

E

[
max{0,N +

hµ− γt
σh

1
2

}
]
.

Therefore,

E

[
max

{
0, (n+ 1−h)N +

n∑
t=h

hµ− γt
σh

1
2

}]
≤ n

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 (A.5)

Now, we find a lower bound for the left-side expression above using an expression involving r.

Since we have defined γt =
∑t

k=t+1−h s
∗
k in (A.3), which is a sum of h distinct s∗k values,

∑n

t=h γt is

the sum of (n− h+ 1) · h number of s∗k values, and for fixed k, s∗k appears at most h times in the

sum. Thus, we must have

n∑
t=h

γt =
n∑
t=h

t∑
k=t+1−h

s∗k

= (s∗1 + s∗2 + · · ·+ s∗h) +
(
s∗2 + s∗3 + · · ·+ s∗h+1

)
+ · · ·+

(
s∗n+1−h + s∗n+2−h + · · ·+ s∗n

)
≤ h

n∑
t=1

s∗t −h(h− 1)s ,
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since s is a lower bound for each s∗. Thus,
n∑
t=h

γt ≤ hnr−h(h− 1)s = h(n+ 1−h)r+h(h− 1)(r− s) ≤ h(n+ 1−h)r+h(h− 1)(d− s) , (A.6)

where the last inequality follows from r≤ d.

Then,

E

[
max

{
0,N +

h
1
2

σ

(
µ− r− (h− 1)(d− s)

n+ 1−h

)}]
≤ n

n+ 1−h

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 ,

where the inequality follows by substituting the upper bound of
∑n

t=h γt given in (A.6) to (A.5),

and then both dividing by n+ 1−h. Recall that Condition 2 is n≥max{2h,6h 3
2σ−1(d− s)}. Note

that n≥ 2h implies n
n+1−h ≤ 2, and n≥ 6h

3
2σ−1(d− s) implies (h−1)(d−s)

n+1−h < h(d−s)
n+1−h ≤

1
3
σh−

1
2 . Hence,

E

[
max

{
0,N +

h
1
2

σ
(µ− r− 1

3
σh−

1
2 )

}]
≤ 2

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 .

The condition n≥ 2h implies n≥ 2, hence we have

E

[
max

{
0,N +

h
1
2

σ
(µ− r− 1

3
σh−

1
2 )

}]
≤ 2

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2

≤ 2

(
3ζ +

√
2cI
cW

+
1

2
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 .

It can be verified that E[max{0,N−0.34}]≥ 1
4
. Let h= τ = d{8(3ζ+

√
2cI
cW

+
√

( cI
2cW

)3)}2e. Then,

we have

E

[
max

{
0,N +

τ
1
2

σ
(µ− r− 1

3
στ−

1
2 )

}]
≤ 2

(
3ζ +

√
2cI
cW

+
1

2
· 1√

2
· ( cI
cW

)
3
2

)
τ−

1
2

≤ 1

4
≤ E[max{0,N − 0.34}] .

Therefore, it follows τ
1
2

σ
(µ − r − 1

3
στ−

1
2 ) ≤ −0.34, which implies r − µ ≥ 0.006στ−

1
2 . Thus, we

complete the proof of r > µ.

A.3. Proof of Lemma 3

From the definition of [·]+ and [·]−, as well as the recursive definitions (1) and (2),

Wt−1 +At−1− st−1 = [Wt−1 +At−1− st−1]+− [Wt−1 +At−1− st−1]− = Wt− It ,

which implies
∑n+1

t=2 It =Wn+1−
∑n+1

t=2 At−1 +
∑n+1

t=2 st−1. Then, from the definition given in (3), the

objective function satisfies

ν(s) = E

[
n+1∑
t=2

{cW ·Wt + cI · It}

]
= E

[
n+1∑
t=2

cWWt

]
+E [cIWn+1]−E

[
cI

n+1∑
t=2

At−1

]
+ cI

n+1∑
t=2

st−1

= E

[
n∑
t=1

cWWt+1

]
+ cI

n∑
t=1

st + cIE [Wn+1]− cInµ .

This completes the proof.
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A.4. Proof of Lemma 4

Recall from (7) that ηrt corresponds to the index k in which the random walk
∑k

i=1(Ai− r) attains

its maximum, where ties are broken in favor of the smaller index, and ηr∞ is the limiting distribution

of ηrt as t→∞. To establish the inequality in the statement of Lemma 4, we find an upper bound

for
∑n

t=1E[
∑t

i=t+1−ηrt
s∗i ], and then a lower bound for

∑n

t=1 rE[ηrt ]. Before finding these bounds,

we state and prove the following claim:

P(ηrt = k) ≥ P(ηr∞ = k) for any k ∈ {0,1, . . . , t}. (A.7)

Intuitively, since ηrt represents the index of the random walk that achieves its maximum, the

probability that the random walk attains its maximum with index k is lower with a larger value

of t since it would increase the set from which the maximum operator is applied. More formally,

to prove (A.7), fix k and t such that 1≤ k≤ t, and define

z1 =

{
k∑
i=1

(Ai− r)>
j∑
i=1

(Ai− r) for each j∈ {0,1, . . . , k− 1}

}

z2 =

{
k∑
i=1

(Ai− r)≥
j∑
i=1

(Ai− r) for each j∈ {k+ 1, . . . , t}

}

z3 =

{
k∑
i=1

(Ai− r)≥
j∑
i=1

(Ai− r) for each j∈ {t+ 1, t+ 2, . . .}

}
.

Then, the event [ηrt = k] is in the intersection of z1 and z2 whereas the event [ηr∞ = k] is in the

intersection of z1, z2 and z3. This completes the proof of claim (A.7).

We now provide an upper bound for
∑n

t=1E[
∑t

i=t+1−ηrt
s∗i ]. To do so, for any t∈ {1, . . . , n},

E

 t∑
i=t+1−ηrt

s∗i

 =
t∑

k=1

P(ηrt+i−1 = k) ·

{
t∑

i=t+1−k

s∗i

}
=

t∑
i=1

s∗iP(ηrt ≥ t+ 1− i) .

Summing over all t∈ {1, . . . , n},

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

 =
n∑
t=1

t∑
i=1

s∗iP(ηrt ≥ t+ 1− i) =
n∑
i=1

n∑
t=i

s∗iP(ηrt ≥ t+ 1− i)

=
n∑
i=1

n+1−i∑
t=1

s∗iP(ηrt+i−1 ≥ t) =
n∑
i=1

n+1−i∑
t=1

s∗i

{
1−

t−1∑
k=0

P(ηrt+i−1 = k)

}
.

By applying claim (A.7), we obtain

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

 ≤ n∑
i=1

n+1−i∑
t=1

s∗i

{
1−

t−1∑
k=0

P(ηr∞ = k)

}
=

n∑
i=1

n+1−i∑
t=1

s∗iP(ηr∞ ≥ t)

≤
n∑
i=1

∞∑
t=1

s∗iP(ηr∞ ≥ t) =
1

n

n∑
i=1

s∗i

n∑
j=1

∞∑
t=1

P(ηr∞ ≥ t) = r
n∑
j=1

∞∑
t=1

P(ηr∞ ≥ t), (A.8)
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where the last equality follows from the choice of r=
∑n

i=1 s
∗
i /n given in (10).

Next we find a lower bound for
∑n

t=1 rE[ηrt ]. Applying claim (A.7), we have

n∑
t=1

E[ηrt ] =
n∑
t=1

t∑
j=1

P(ηrt = j)j =
n∑
j=1

j∑
t=1

tP(ηrj = t) ≥
n∑
j=1

j∑
t=1

tP(ηr∞ = t) .

which implies
n∑
t=1

rE[ηrt ] ≥ r
n∑
j=1

j∑
t=1

tP(ηr∞ = t) . (A.9)

We now compare the bounds identified in (A.8) and (A.9). For fixed j, note

∞∑
t=1

P(ηr∞ ≥ t)−
j∑
t=1

tP(ηr∞ = t)

=
∞∑

t=j+1

P(ηr∞ ≥ t) +

j∑
t=1

P(ηr∞ ≥ t)−
j∑
t=1

tP(ηr∞ = t)

=
∞∑

t=j+1

P(ηr∞ ≥ t) +E[min(ηr∞, j)]−E[ηr∞I(ηr∞ ≤ j)]

=
∞∑

t=j+1

P(ηr∞ ≥ t) +E[ηr∞I(ηr∞ ≤ j)] +E[jI(ηr∞ ≥ j+ 1)]−E[ηr∞I(ηr∞ ≤ j)]

=
∞∑

t=j+1

P(ηr∞ ≥ t) +E[jI(ηr∞ ≥ j+ 1)] =
∞∑

t=j+1

P(ηr∞ ≥ t) +

j∑
t=1

P(ηr∞ ≥ j+ 1) .

Hence, summing over j, it follows

n∑
j=1

∞∑
t=1

P(ηr∞ ≥ t)−
n∑
j=1

j∑
t=1

tP(ηr∞ = t)

=
n∑
j=1

∞∑
t=j+1

P(ηr∞ ≥ t) +
n∑
j=1

j∑
t=1

P(ηr∞ ≥ j+ 1)

≤
∞∑
j=1

∞∑
t=j+1

P(ηr∞ ≥ t) +
∞∑
j=1

j∑
t=1

P(ηr∞ ≥ j+ 1)

=
∞∑
j=1

∞∑
t=j+1

∞∑
`=t

P(ηr∞ = `) +
∞∑
j=1

j∑
t=1

∞∑
`=j+1

P(ηr∞ = `)

=
∞∑
`=2

∑̀
t=2

t−1∑
j=1

P(ηr∞ = `) +
∞∑
`=2

`−1∑
j=1

j∑
t=1

P(ηr∞ = `)

=
∞∑
`=2

(1 + 2 + · · · (`− 1))P(ηr∞ = `) +
∞∑
`=2

(1 + 2 + · · · (`− 1))P(ηr∞ = `)

=
∞∑
`=1

`(`− 1)P(ηr∞ = `)

= E
[
(ηr∞)2− ηr∞

]
.
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Thus, we conclude

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− n∑
t=1

rE [ηrt ] ≤
n∑
j=1

∞∑
t=1

P(ηr∞ ≥ t)−
n∑
j=1

j∑
t=1

tP(ηr∞ = t)

≤ rE[(ηr∞)2− ηr∞] ,

completing the proof of Lemma 4.

B. Proofs for Section 5

B.1. Proof of Lemma 6

It follows from the proof of Lemma 3 that, for optimal schedule s∗, we have

ν(s∗) = E

[
n+1∑
t=2

cWW
∗
t

]
+E

[
cIW

∗
n+1

]
−E

[
cI

n+1∑
t=2

At−1

]
+ cI

n+1∑
t=2

s∗t−1

=
M∑
m=1

nm∑
t=1

cWE
[
W

m∗
t+1

]
+ cIE

[
W ∗
n+1

]
− cI

n∑
t=1

E [At] + cI

M∑
m=1

nm∑
t=1

sm∗t

=
M∑
m=1

nm∑
t=1

cWE
[
W

m∗
t+1

]
+ cIE

[
W ∗
n+1

]
− cI

M∑
m=1

nmµm + cI

M∑
m=1

nm∑
t=1

sm∗t .

Similarly, we can also derive an alternative expression for ν(r). Since the piecewise constant

policy r = (r1, . . . , rM) satisfies rm =
∑nm

t=1 s
m∗
t /nm by (22), it follows that

ν(r)− ν(s∗) = cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
+ cIE

[
W

m

nm+1−W ∗
nm+1

]
+ cI

M∑
m=1

{
nmrm−

nm∑
t=1

sm∗t

}

= cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
+ cIE

[
W

m

nm+1−W ∗
nm+1

]
+ 0.

This is the required result.

B.2. Proof of Lemma 7

Recall from the definition of ∆m(w) given in (32):

∆m(w) = min
{
t∈ {1,2, . . .}

∣∣ w+ (Am1 − rm) + · · ·+ (Amt−1− rm)≤ 0
}
. (B.1)

Then, since the event ∆m(w)≥ k implies that w+ (Am1 − rm) + · · ·+ (Amk−2− rm) should be strictly

positive, we obtain

E
[
∆m(w)

∣∣w] =
∞∑
k=1

P (∆m(w)≥ k)

≤
∞∑
k=1

P

(
w+

k−2∑
t=1

(Amt − rm)> 0

)
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=
∞∑
k=1

P

(
k−2∑
t=1

(
rm− w

k− 2
−Amt

)
< 0

)

=
∞∑
k=1

P

(
k∑
t=1

(
rm− w

k
−Amt

)
< 0

)
.

Now, we break the summation in the rightmost expression above into two parts based on whether

k is at most K̄mw or not. Suppose we have k > K̄mw, in which case, we have w/k < 1/K̄m. Hence,

P

(
k∑
t=1

(
rm− w

k
−Amt

)
< 0

)
≤ P

(
k∑
t=1

(
rm− 1

K̄m
−Amt

)
< 0

)
= P

(
k∑
t=1

(r̄m−Amt )< 0

)
.

where the last equality follows from the definition of r̄m = rm− 1/K̄m given in (25). By applying

the Chernoff bound, we obtain that the rightmost expression above is bounded above by{
inf
ψ>0

E [exp (−ψ · (r̄m−Am))]

}k
which is {ϕmr̄m}

k
since we have ϕmr̄m = inf

ψ≥0
φmr̄m(ψ) where φmr̄m(ψ) = E[exp(ψ(Am− r̄m))]. Also, since

we have defined ϕ̃= maxi∈{1,2,...,M}ϕ
m
r̄m in (27), we have ϕmr̄m ≤ ϕ̃. In summary, if k > K̄mw, then

P

(
k∑
t=1

(
rm− w

k
−Amt

)
< 0

)
≤ {ϕ̃}k . (B.2)

Then, we have

E
[
∆m(w)

∣∣w]
≤
bK̄mwc∑
k=1

P

(
k∑
t=1

(
rm− w

k+ 2
−Amt

)
< 0

)
+

∞∑
k=dK̄mwe

P

(
k∑
t=1

(
rm− w

k+ 2
−Amt

)
< 0

)

≤ bK̄mwc +
∞∑

k=dK̄mwe

{ϕ̃}k ≤ bK̄mwc+
{ϕ̃}dK̄

mwe

1− ϕ̃
≤ K̄mw+

ϕ̃

1− ϕ̃
,

where the second inequality follows from P
(∑k

t=1

(
rm− w

k
−Amt

)
< 0
)
≤ 1 and the inequality given

in (B.2). This completes the proof.

C. Supplementary Numerical Analysis

In this appendix, we conduct additional supplementary numerical experiments to illustrate the

robustness of constant scheduling under various settings. Our purpose is to test the relative opti-

mality gaps under different cI/cW values and other parameters, and see under which conditions

the constant policy performs well.

We fix the service durations distribution as an i.i.d. exponential distribution with mean 20, and

set the number of appointments at n= 16 except for the last experiment.
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C.1. Patient No-Show and Unpunctuality

Since the case of unpunctual arrivals has been studied in the literature (Samorani and Ganguly

2016, Han et al. 2018). We also examine the performance of the constant policy in the presence

of patient unpunctuality or no-shows. The numerical results are shown in Table 4. We start with

the patients’ unpunctual arrival. Specifically, we suppose that each customer arrives late by L time

units, where L follows one of the two exponential distributions with mean 4 and 10, which we

denote L ∼ EXP (4) and L ∼ EXP (10). We report the relative optimality gap in Table 4. It is

easy to see that the constant policy performs well when cI/cW is small, and the relative optimality

gap exhibits an increasing trend as cI/cW increases. The changing trend is similar to Table 1. In

addition, we particularly note that the relative performance of the constant policy is better with

EXP (10) than with EXP (4). As patient arrivals are more variable, it is more difficult for the

optimal policy to anticipate when exactly patients arrive, and the simplicity of the constant policy

helps it to perform better. This observation is consistent with another observation that when we

compare the first two lines of Table 4 to Table 1, we see that the relative optimality gap of the

patient unpunctual case in Table 4 is smaller than the corresponding quantity in Table 1. This

means that the relative performance of the constant policy is better when patients have a later

arrival pattern. It seems that the later arrival behavior would enlarge the job allowances for jobs

at the beginning and ending of the planning horizon, which makes the optimal schedule “flatter”

than those in the case without later arrival behavior. As a result, the constant policy is a better

approximation of the optimal policy when customers may not be punctual.

Table 4 The gaps (in %) in presence of patient unpunctuality or no-show; n= 16

Scenarios
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

Not punctual
L∼EXP (10) 0.17 0.32 0.33 0.44 0.56 0.93 1.08 1.22 1.49

L∼EXP (4) 0.27 0.45 0.61 0.89 1.19 1.46 1.52 1.81 2.09

I.I.D. No-shows

p= 0.9 0.48 0.84 1.24 1.28 1.83 2.32 2.71 3.09 3.38

p= 0.8 0.5 0.93 1.31 1.43 1.85 2.33 3.01 3.35 3.87

p= 0.7 0.56 1.06 1.52 1.72 2.06 2.75 3.17 3.72 4.09

p= 0.6 0.59 1.18 1.69 2.21 2.43 3.1 3.59 4.63 5.06

Non-I.I.D. No-shows
p1 0.93 1.2 1.57 2.12 2.33 2.8 3.2 3.51 3.72

p2 2.32 2.73 3.07 3.27 3.31 3.89 4.15 4.44 4.94

Next, we examine the impact of the no-show probability on the relative optimality gap. To do

this, we test different cI/cW for both i.i.d. and non-i.i.d no-show cases. For the i.i.d. no-show case,
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we test four different show-up probabilities: p= 0.6,0.7,0.8,0.9. For the non-i.i.d. no-show case, we

also test two different sets of show-up probabilities: p1 which alternates between 0.8 and 0.7, and

p2 alternating between 0.9 and 0.6. From Table 4, we can find that both i.i.d. and non-i.i.d no-show

cases exhibit a clear increasing trend as cI/cW increases, similar to the patient unpunctuality case

discussed above. In addition, the relative optimality gap exhibits a clear increasing trend as the

show-up probability decreases for the i.i.d. no-show case. This result is reasonable. As derived in

the section 4.3, a higher show-up probability p results in a higher čW (i.e., the virtual unit waiting

time cost in the presence of no-show), thus leading to a lower optimality gap. For the non-i.i.d.

no-show case, the results are similar. We particularly note that the constant policy performs better

when the fluctuation of show-up probabilities is smaller. This makes sense since the constant policy

ignores this fluctuation, and it does not adapt to the changing environment. In summary, even

though our theoretical results can not cover some cases, the constant scheduling policy still achieves

near optimal performance in the presence of patient unpunctuality or no-show.

C.2. The Case with Overtime Cost

Next, we test the performance of the constant policy when we consider the overtime cost. We set the

session length T at three different level, i.e., T = nµ, T = 1.5nµ and T = 2nµ, where n is the number

of appointments and µ is the mean of service duration (µ= 20). We test different combinations of

cI/cW and unit overtime cost, which we denote by co. Following Zacharias and Pinedo (2017), we

set the unit overtime cost at 1.5 and 3 times of unit idling cost. We made the following observations

from Table 5. First, for small co, the relative optimality gap exhibits an increasing trend as cI/cw

increases, which is consistent with what we observed from the no-overtime-cost case. Second, the

optimality gap is generally smaller when the session time limit is larger or when the unit overtime

cost is smaller, which brings the overtime cost problem closer to the original problem.

C.3. Job Allowance Comparison: The Optimal Constant Policy and the Optimal
Schedule

Finally, we compare job allowance between the optimal constant policy and the optimal schedule.

Since the optimal schedule has varying job allowance, we compare the average of job allowance

durations. We compare them under various values of cI/cW and n, and the results are shown in

Table 6. We see that both policies have smaller job allowance when cI/cW is high. This phenomenon

is reasonable because when cI is relatively small, we should schedule larger job allowances to avoid

the building up of patients who are waiting. Also, the job allowance under both policies are larger

than the mean of service duration (µ= 20), which is the result of mitigating to the effect of random

service durations. When we compare the job allowance between the optimal constant policy and

the optimal schedule, the constant policy has a slightly higher job allowance. This may happen
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Table 5 The gaps (in %) for different session length T , ratios of cI/cW and co; n= 16

co T
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

1

nµ 1.83 2.29 2.16 2.17 2.43 3.22 3.33 3.35 3.49

1.5nµ 2.19 2.19 1.97 1.82 2 2.42 2.92 3.07 3.02

2nµ 0.55 0.76 0.97 1.21 1.3 2.04 2.56 2.75 3.06

3

nµ 3 3.27 3.28 3.37 3.49 4.01 3.85 4.33 4.21

1.5nµ 2.24 2.37 2.16 2.24 2.52 2.88 3.13 3 3.41

2nµ 0.6 0.83 1.35 1.45 1.47 1.8 2.42 2.78 2.98

5

nµ 4.17 3.87 3.58 4.35 4.41 4.44 4.76 4.56 4.91

1.5nµ 2.53 2.66 3.02 3.08 2.88 2.97 3.18 3.51 3.72

2nµ 0.78 0.75 0.99 1.19 1.72 1.98 2.58 2.73 3

since the constant policy has less flexibility and needs to allocate extra allowance to mitigate

randomness. However, the difference is not substantial indicating that the constant policy is a good

heuristic.

Table 6 Job allowance comparison: Optimal constant policy and the average in the optimal schedule

n
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

16
Constant 46.93 39.49 35.58 33.29 31.27 28.51 26.95 25.28 24.01

Optimal (average) 46.69 39.01 34.93 32.68 30.52 27.79 26.22 24.59 23.34

50
Constant 46.94 40.09 37.08 34.70 33.04 30.65 29.07 27.8 27.11

Optimal (average) 46.88 39.81 36.81 34.33 32.55 30.14 28.55 27.27 26.53

200
Constant 47.78 40.50 37.37 34.72 33.44 31.06 29.67 28.74 27.95

Optimal (average) 47.65 40.37 37.1 34.55 33.28 30.95 29.44 28.51 27.71


