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We study an appointment-based slotted-service queue with the goal of maximizing service volume. Returning

customers prefer to be served by the same service agent that they visited in their previous visit. Applications

of this model include a whole host of medical clinics, lawyers, councillors, tutors, and government officials who

deal with the public. We consider a simple strategy that a service provider may use to reduce balking among

returning customers – designate some returning customers as high-priority customers. These customers are

placed at the head of the queue when they call for a follow-up appointment. In an appointment-based

system, this policy can be implemented by booking a high-priority returning customer’s appointment right

before she leaves the service facility. We focus on a need-based policy in which the decision to prioritize

some customers depends on their return probability. We analyze three systems, an open-access system, a

traditional appointment system, and a carve-out system. We show that in an open-access system, the service

provider should never prioritize returning customers in order to maximize the throughput rate. However, it

is always optimal to prioritize some customers in a traditional appointment system. In the carve-out system,

which may be modeled as a system with two parallel queues, the optimal prioritized follow-up appointments

booking policy varies depending on which queue is more congested. In the traditional systems, we prove

that the throughput rate is a quasi-concave function of the threshold under the assumption that returning

customers see time averages (RTA). This allows service systems to determine optimal operating policies that

are both easy to implement and provably optimal.

Key words : Appointment Scheduling, Re-entrant Queue, Returning Customers See-Time-Average,

Infinitesimal Perturbation Analysis

1. Introduction

Many service providers divide their consult time into slots and require customers to book appoint-

ments only in these slots, giving rise to slotted service systems. Examples include lawyers, council-

lors, tutors, government officials who deal with the public, and health professionals such as doctors,

dentists, psychiatrists, and physical therapists. In several such settings, returning customers have

a preference for consulting the same service provider that they met in their earlier visit. For exam-

ple, patients may need to consult with their physical therapists several times before they feel well
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enough to continue their treatments, exercises, and/or lifestyle changes on their own. These types

of systems can be modeled as appointment-based queues with slotted service and returning cus-

tomers. Because the motivation for this study comes from outpatient clinics, we use the terms

“customers” and “patients” interchangeably throughout the paper. In non-revenue-oriented sys-

tems, the service provider may wish to complete as many service requests as possible to maximize

social welfare. In revenue-oriented systems, if the service content is standard and each appointment

generates approximately the same fee, then the service provider maximizes revenue by maximizing

throughput. Therefore, our research objective is to characterize policies that maximize throughput

in single-server appointment-based queues with slotted service and returning customers.

We investigate a strategy that involves reserving a potential follow-up appointment right after

the customer’s previous visit. Appointments booked using this strategy are hereafter referred to as

the prioritized follow-up (PFU) appointments. Alternatively, one may interpret PFU appointments

as being equivalent to designating some returning customers as high-priority customers, who are

placed at the head of the backlog queue when they need an appointment. PFU is commonly used

in the practice. For example, such a strategy was used in many outpatient clinics in a large health

system in Minnesota (see Section 3 for details). Viewed in this light, our research objective is to

determine which customers should have high priority to maximize throughput rate. Characterizing

an optimal policy is challenging and involves trading off two opposing effects of booking PFU

appointments: (1) a holding effect, through which the match between returning customers and

service agents is improved, and (2) a blocking effect, through which spoilage is increased, leading

to lower throughput.

The holding effect: Usually, patients with the potential need for a follow-up visit are advised to

observe their health conditions at home for a period, which we refer to as the observation period.

After the observation period, they decide based on whether the reason for their original visit is

resolved or not, that is, if they need a follow-up appointment or not. Unfortunately, by the time a

returning customer calls to book a follow-up appointment with his or her preferred service agent,

there may exist a backlog of appointments for that server. The customer may balk upon anticipating

a long wait, which results in revenue loss. If the customer visits a substitute provider, then the

latter has to spend time learning the customer’s information, which also increases cost. Such service

disruption is more costly in the primary care setting in which interpersonal continuity of care

(COC) is a core element of high-quality service (Shin et al. 2014). Booking a PFU appointment

in advance, however, allows some returning customers to secure their slots in the queue, which

prevents them from balking and reduces the potential costs associated with the disruption of service

continuity.
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The blocking effect: Whereas PFU appointments reduce service disruption costs, they can also lead

to greater spoilage. This happens because at the time a slot is held for the high-priority returning

customer, he or she does not know if follow-up appointment will be needed. That becomes known

only at the end of the observation period. If returning customers cancel their appointments late, or

in some cases forget to cancel and no-show, the appointment slot intended for them will go unused,

causing spoilage. Late cancellations and no-shows are common in outpatient appointment systems,

see for example, Dixon et al. (2010) and Liu et al. (2015). Furthermore, we present empirical

evidence in Section 3 that spoilage rate is higher among PFU customers. Thus, holding slots for

PFU customers increases backlog, resulting in a higher balking rate of regular returning customers

and episode-initiating customers, and potentially a lower average throughput rate.

We develop mathematical models of slotted-service queues with returning customers under three

different appointment regimes to determine if and when PFU should be booked. The first system,

has limited buffer capacity, and customers balk if the buffer is full. The second system has no

size limit on the waiting room and customers balk according to a queue-length dependent balking

probability. The third system consists of two parallel queues whose properties are the same as

those of the queues in the first and the second system, respectively. The three systems represent

an open-access system, a traditional appointment system that allows patients to book in advance,

and a carve-out system with certain appointments reserved for walk-in appointments (late-arriving

requests) and others reserved for patients who book in advance (Dobson et al. 2011).

We assume that the service provider can estimate each customer’s revisit probability and uses

that as a criterion to determine whether a potential returning customer should be designated high-

priority or not. We show that the effective throughput rate is always maximized by a threshold-type

policy, i.e., a returning customer gets prioritized only if his revisit probability is above a threshold.

We restrict our study to the class of fixed-threshold PFU policy, i.e. the service provider does not use

the size of the current queue or anticipated future arrivals to adjust this threshold. The rationale

is that although a state-dependent threshold policy may achieve a higher effective throughput rate

(net of cancellations and no-shows), non-need-based priority schemes are difficult to implement in

service systems involving humans, because of ethical and fairness concerns. In contrast, people do

not consider need-based criterion as being unfair (Larson 1987).

Slots may go unused primarily because of two reasons: (a) customers may realize very close to the

appointment date that they do not need the appointment (e.g., when patients get better) resulting

in an unusable late cancellation or no-show, and (b) customers may encounter a conflict or forget

the appointment, resulting in spoilage. In this paper, we do not differentiate between these two

situations but refer to those unusable slots as spoilage. Scenario (a) is more likely to happen among

appointments booked using the PFU policy, but Scenario (b) may occur equally among all types
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of appointments. The key tradeoff in this paper comes from the greater spoilage rate caused by

higher late cancellation rate among the PFUs on the one hand, and the higher balking rates among

the remaining customers on the other. We assume that the spoilage rates among regular-returning

and episode-initiating appointments are the same. This assumption is supported by our data, as

shown in Section 3.

We show that booking PFUs is never a good option in a limited waiting buffer (i.e., an open-access

system) because the holding effect does not pay off. In contrast, in the unlimited waiting-buffer

(traditional) system with state-dependent balking, prioritizing a certain proportion of customers

maximizes the effective throughput rate. Furthermore, we prove that under some mild conditions,

the effective throughput rate is a quasi-concave function of the proportion of returning customers

being prioritized, which leads to a simple method for identifying the optimal threshold needed to

implement the PFU policy.

We call a queue a slotted-service queue if (1) each customer’s service time equals a unit of time

(referred to as a “slot”), and (2) start times of appointments are integers. The analysis of slotted-

service queues with re-entrant customers is a known difficult problem. Closed-form expressions

for the steady-state distribution of the number in queue are generally not available. To overcome

this difficulty, we develop an analytical framework that builds on the returning customer see time

average (RTA) approximation, which was first proposed by Greenberg and Wolff (1987) for studying

an M/M/c orbits’ queue, and later adopted for analyzing other orbits’ queueing models (Greenberg

1989, Artalejo 1995, Greenberg and Wolff 1987). An equivalent interpretation of RTA is that the

re-entrant customers are assumed to arrive according to a time-homogeneous Poisson process, with

the mean arrival rate equal to the inverse of the mean orbit time. Yang and Templeton (1987) and

Wolff (1989) presented detailed discussions of the RTA approximation. Under this framework, we

are able to derive key performance metrics for the queueing system of interest and find the optimal

probability threshold for high-priority designation to maximize the system throughput rate.

A summary of the paper’s contributions is as follows.

• Utilizing data from a large number of outpatient clinics, we identify outcomes associated with

PFU appointments. For example, PFU appointments in the data have a lower likelihood of

balking and seeking service from a different service provider, but have a higher spoilage rate.

This motivates us to study the optimal strategy for booking PFU appointments to balance the

holding and the blocking effects, which is a new topic in the appointment scheduling literature.

• We develop stylized models for an open-access system, a traditional appointment booking

system, and a carve-out system, respectively, and characterize the optimal policy for PFU

capacity control in each system. In an open access system, we show PFU should not be

booked; whereas in a traditional system with advanced scheduling, under mild conditions, we
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show that the throughput rate first increases, and then decreases with the amount of PFUs

being booked. Finally, we analyze the optimal PFU booking policy in a carve-out system

in which some no-show or late-cancellation slots can be avoided by utilizing those slots for

walk-in patients. This feature reduces the blocking effect, which suggests at first glance that

PFU booking should be a dominating strategy. Contrary to this intuition, our analysis reveals

that booking all follow-up appointments (FUAs) as PFUs is not optimal because the optimal

control policy needs to take into account load balancing between the two patient groups as

well as the reduced blocking effect.

• There is no closed-form characterization for the steady-state queue length of a slotted ser-

vice queue with returning customers. Thus, our proof technique, which is built on the RTA

approximation and utilizes sample-path comparisons, provides a novel approach for analyzing

such queueing systems.

• We used infinitesimal perturbation analysis (IPA) to characterize the second-order effect of

the control parameter on the steady-state performance. The analysis may be generalized and

applied to other similar stochastic problems.

The paper is organized as follows. Section 2 reviews the related literature. Section 3 presents

empirical evidence from a large set of outpatient clinics in Minnesota. Section 4 presents the model

formulation and shows that the optimal need-based PFU booking policy possesses a threshold

structure. Sections 5, 6, and 7 characterize the optimal threshold under an open-access system, a

traditional appointment system, and a carve-out system, respectively. Section 8 presents a numeri-

cal study that complements the theoretical findings and validates the robustness of key assumptions.

Section 9 concludes the paper and discusses potential future research topics.

2. Literature Review

There is a rich body of literature that studies different aspects of scheduling appointment, including

such issues as intra-day or inter-day scheduling, capacity planning, panel sizing, and customer

priority and capacity reservation policies. We will discuss papers that are closely related to our

problem, which come predominantly from the healthcare domain. Comprehensive reviews can be

found in Cayirli and Veral (2003), Gupta and Denton (2008) and Erdogan and Denton (2010).

A stream of papers have studied appointment scheduling in the presence of patient no-show and

late cancellations. A common strategy used in these situations is overbooking, which, however,

may lead to longer patient waiting times and clinic overtime. LaGanga and Lawrence (2007) devel-

oped a scheduling model for a single server with deterministic service times and common no-show

probability for all patients. They show that overbooking increases with no-show probability and

overbooking is effective in mitigating the negative impact of no-shows. Liu (2010) formulated a
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dynamic programming model that takes into account future demand, and state dependent cancel-

lation and no-show rates. This model obtains the number of appointments to schedule on each day

in order to optimize the long-run average of the expected net reward, when cancellation and no-

show probability distributions are known. They show that a two-day booking window outperforms

same-day booking. Our paper focuses on achieving the balance between the holding effect and the

blocking effect by carefully allocating capacity to PFU patients.

A few papers have studied appointment scheduling with heterogeneous patient types, with dif-

ferent criteria for classifying patients, e.g., patients may be grouped by arrival pattern and/or

cost-structure. Patrick et al. (2008) developed an MDP model to dynamically schedule patients with

different priority classes based on different waiting costs. Saure et al. (2012) considered wait-time

dependent no-show rates and their simulation results demonstrated that a short booking window

with overbooking can provide greater benefit to a clinic than open access. Schuetz and Kolisch

(2013) considered the scheduling problem of two CT-scanners in a hospital’s radiology department

to provide medical service to three patient groups: scheduled outpatients, non-scheduled inpatients,

and emergency patients.

A number of papers have used slotted service times to model appointment booking systems.

Gupta and Wang (2008) studied the revenue maximization problem using a slotted-service frame-

work with patient choice. Gupta and Denton (2008) formulated the problem of determining optimal

appointment lengths as a two-stage stochastic linear program and used a sequential bounding

approach to determine upper bounds. Zhou et al. (2021) showed that under mild conditions, a

schedule consisting of equal-sized slots achieves near optimal performance. Green and Savin (2008)

modeled the appointment booking as an M/D/1 queue and studied the optimal panel sizing under

both an open access system and a traditional appointment booking system. Wang et al. (2020)

studied appointment scheduling with potential walk-in patients using a slotted queue and derived

properties of the optimal schedule. Robinson and Chen (2010) compared traditional and open-

access appointment scheduling policies using a slotted queue model.

In our model, patients who finish a consultation may re-enter the queue after the observation

period, and can go through infinitely many such loops. This model is referred to as queues with re-

entrant customers in the literature and has many applications in service operations; e.g., Armony

and Maglaras (2004) and Kostami and Ward (2009). Some papers use fluid or diffusion approxi-

mations to derive asymptotic characteristics for such systems (Huang et al. 2015, Chan et al. 2014,

Dobson et al. 2013). Exact analysis, however, is only available when the service time and observa-

tion period both follow exponential distributions; see e.g., Campello et al. (2017) and Yom-Tov and

Mandelbaum (2014). For appointment-based queue, however, exponential service time is usually
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not a valid assumption. Our paper develops a framework based on the returning-customer-see-

time-average approximation to analyze the steady-state performance of a non-Markovian queue

with re-entrant customers, which may be viewed as a contribution to the literature on re-entrant

queues.

3. Empirical Evidence

To motivate our model, we report empirical evidence from 75 outpatient clinics in urban, sub-

urban, and rural areas of Minnesota. The data consists of 623,592 appointment records over a

12-month study period. Variables include encrypted patient and physician IDs, time stamps for

the appointment request, the appointment booking, and the actual appointment, appointment sta-

tus (scheduled, completed, canceled, no show, etc.), patient demographics (age category, insurance

carrier status, and zip code), and clinic location.

We examine each patient’s consecutive appointments and find that some of those are booked on

the same date as the patient’s preceding appointment (called Type-1 appointments), while others

are booked on a later date (called Type-2 appointments). We also find that 92% of the Type-1

appointments are booked for a date within 60 days of the preceding appointment. Furthermore,

when the consecutive appointments are more than 60 days apart, only 2.16% of them are Type-1

and the rest are Type-2. Thus, the data reveals that Type-1 appointments are mostly booked for

consecutive appointments within a short time interval.

Type-1 appointments are most likely related to the previous appointment, whereas Type-2

appointments may be either related or independent. Because our data does not indicate which

appointments are related to which previous appointments, we used an inter-appointment time

threshold of 45 days to define FUAs. The choice of this threshold is guided by two considerations.

First, the objective of the paper is to study when doctors prioritize FUAs by booking them on

the same day, i.e., as Type-1 appointments, which are typically booked within 60 days. Second, we

want to focus on consecutive appointments that can be reliably classified as follow-ups rather than

independent new visits. By choosing the 45-day threshold, we ensure that Type-2 appointments

included in our study cohort are more likely to be FUAs.

Correspondingly, we define PFUs and regular follow-ups (RFUs) as the Type-1 and Type-2 FUAs

that fall within the 45-day cutoff, although this definition may count certain episode-initiating

(labeled as NEW) visits as RFUs. According to this definition, among a total of 623,592 appoint-

ments, there are 466,111 NEW visits, 128,130 RFUs, and 29,351 PFUs, which gives an estimated

mean revisit probability of 25.25%. This number is an upper bound on the true probability as it

may have overcounted the RFUs. By analyzing the appointments data, we further identified the

following patterns.



8

1. PFUs on average have a higher spoilage rate and a lower probability of same doctor balking

rate (i.e. the need to switch to another doctor).

Recall that late cancellations and no-shows are collectively referred to as spoilage because they

result in wasted slots (Gallucci et al. 2014). We refer to the probability of switching to a different

doctor or clinic as the (same-doctor) balking rate. We calculate the spoilage rates and same-doctor

balking rates for PFU, RFU, and NEW visits when FUAs are defined using a threshold of 30, 45,

60 days, respectively. We report the results in Table 1.

We find that the spoilage rate of PFU appointments is on average 8% higher than that of RFU

appointments while the chance that an RFU will not be matched with the same doctor is 30%

higher than that of a PFU. A plausible explanation is that by securing a patient’s access to her

doctor well in advance, there is increased probability that the patient can be seen by the same

doctor as her preceding appointment. In contrast, RFU patients may not be able to book with the

same doctor at a later date when they call and thus have a higher chance of balking and switching

to a different doctor.

Table 1 Comparison of Spoilage Rate and Same-Doctor Balking Rate for Different Types of Appointments

Cutoff PFU RFU New

30 days
Spoilage Rate 18.2% 10.5% 12.9%
Same-Doctor Balking Rate 15.0% 42.4% N/A

45 days
Spoilage Rate 19.1% 10.7% 12.9%
Same-Doctor Balking Rate 13.6% 42.3% N/A

60 days
Spoilage Rate 19.3% 10.8% 13.0%
Same-Doctor Balking Rate 13.3% 42.5% N/A

2. Patients are likely to book NEW and RFU appointments into earlier times.

We test this claim by examining a total of 594,241 NEW and RFU appointment requests booked

in our study period. We check how many of those requests booked the earliest slot, or a slot on the

first day or the first week that has an available slot (but might be not the first slot on that day or

week). Because the data does not indicate a doctor’s available times (but only the booked slots), We

determine whether an appointment was available or not by checking whether that appointment was

eventually booked by some other patient. This method might slightly overestimate the probability

of “booking the first slot/day/week”, because a small number of slots earlier than the booked one

might be available but remain unused in the end, in which case the booked appointments would

still be regarded as the earliest available one according to this method. We summarize the results

in Table 2. We find that the majority NEW and RFU appointments had booked a slot in the first

available week, while more than half had booked a slot in the first available day. Thus, we conclude

that patients are inclined to book a slot which is chronologically close to the earliest available one.
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Table 2 Percent of NEW and RFU requests being booked in the earliest slot/day/week

First Slot First Day First Week
Percent 35% 59% 74%

In our model, for analytic tractability, we need to make an even stronger assumption that the NEW

and RFU appointments always book the earliest available slot. Although the data shows that it is

not always the case, the literature (Green and Savin 2008) has shown that a slotted-service queue

will exhibit similar behavior as long as the booked slot is not far from the earliest available one.

3. PFUs usually can be booked into the desired slots without further delay.

To identify the above pattern, we calculated the empirical distribution of the lead time of PFU

appointments as well as the NEW and RFU appointments. The lead time of an appointment is

defined as the time between the appointment request date and the appointment completion date.

The empirical distribution of PFU lead times is plotted in Figure 1, and the empirical cumulative

probability distribution of the lead times for RFU and NEW appointments is plotted in Figure 2.

From Figure 1, we find that 65.6% and 41.8% PFU appointments have a lead time more than one

week and two weeks, respectively; whereas 80.5% and 89.3% of the NEW and RFU appointments

have lead time less than one week and two weeks, respectively. This implies that when a patient

attempts to book a PFU appointment in a slot one or two weeks from that day, NEW and RFU

appointment request for that slot likely have not arrived at the appointment system yet. Therefore,

PFU appointments usually can book the desired slot without being delayed by the backlogs of

NEW and RFU appointments. We thus assume that PFUs have head-of-line priority over the NEW

and RFU requests. Under this assumption, the system would behave similar to what we observed

from the data.
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4. Each patient’s revisit probability can be predicted with standard error for the log-odds being

no more than 0.537.
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We fit a logistic regression model to our administrative data to predict a patient’s revisit proba-

bility, i.e., the probability of needing an FUA. We have limited data elements, none of which contain

clinical information. The response in the logistic regression model is defined as 1 if the patient had

an FUA appointment in the next 45 days and 0 otherwise, and explanatory variables consist of

the cumulative time since the start of observation period, the number of previous appointments by

the same patient (which serves as a proxy for the patient’s health status), the lead time (difference

between appointment and book date converted to quantiles), and the insurance category. The first

and the last 45 days of data were not considered due to possible censoring. This left 9 months

of data, of which we used 6 months for training (269,133 observations) and 3 months for testing

(135,807 observations) our model. Upon fitting the model to the data, the AUC-ROC were 0.661

and 0.651 on the training and test sets respectively. In practice, the doctor would have access to

the entire medical history and clinical diagnoses for each patient, which were not included in our

data. Thus, the doctor should be able to predict each patient’s revisit probability with even greater

accuracy.

The revisit probability p̂ predicted by the above logistic regression has the following performance

guarantee,

Pr(| ln(
p̂

1− p̂)− ln(
p

1− p)|> 0.537z1−η/2)≤ η, (1)

where 0.537 is the maximal standard error of the log-odds among all observations in our data, and

z1−η/2 denotes the z-score at the 1−η/2 cutoff. For example, z1−η/2 = 1.96 when η= 0.05. Later in

the simulation experiments, we will show that even if the doctor predicts the revisit probability no

more accurately than p̂, the system behaves almost the same as the one in which the doctor can

determine p accurately.

4. Model Formulation

The main decision studied in this paper is whether to book PFUs, and if yes, for which patients.

The booking system used in practice is both dynamic and stochastic, making it difficult to identify

optimal policies. Models with re-entrant patients are more complicated than the typical appoint-

ment scheduling models because the demand for FUAs depends on the existing bookings on each

day as well as the patients that have received care but are likely to request an FUA in the future.

Because of the complicated relationship between each appointment and the potential FUA demand,

the optimal policy may not be of threshold type in the presence of FUAs and therefore may not

permit a simple characterization, which also raises obstacles for implementation in practice. For

this reason, we restrict our attention to an easy-to-implement policy that we call the need-based

FUA capacity-control policy. Under this policy, a doctor decides whether to recommend a PFU or
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not based solely on the probability that the patient will need an FUA. In particular, the doctor

does not consider the current backlog and anticipated bookings in the future.

Using the policy described above, we develop a model to calculate the throughput rate as a

function of the threshold for the doctor’s PFU recommendation. The model assumes that doctors

know each patient’s revisit probability at the end of an appointment with that patient. To test the

robustness of this assumption, we show by simulation that the system behaves almost the same if

the doctor can predict p with reasonable accuracy, which is supported by the empirical evidence

presented in Section 3. Therefore, a need-based policy in which a doctor books a PFU only when

the predicted revisit probability is above a certain threshold can be implemented.

Mathematical models of service systems need to balance model fidelity and tractability. We

make this tradeoff by approximating the appointment-based service system for a single doctor as

a single-server priority queue with re-entrant customers, which can be either PFUs or RFUs. Each

service, regardless of customer type, can be completed in a single slot. Time periods when the

service system is closed (e.g. nights, weekends, and holidays) are not considered, which results in a

model of the system in which a single server works continuously without vacation. Customers whose

requests cannot be served immediately are placed in a queue of backlogs. For modeling purposes,

there are two queues, one for PFU customers and the other for RFU and NEW customers. As

demonstrated in Table 2, the FCFS service priority applies to customers in the same queue.

Figure 3(a) provides a graphic illustration of the queueing system described above. FUAs are

modeled by entering each served customer into an orbit, which lasts for a random length of time

that we call the observation period. After the observation period, one of the following four outcomes

may occur: the service provider recommends a PFU and either (1) the customer needs an FUA, or

(2) the customer does not need an FUA; or the service provider does not recommend a PFU and

either (3) the customer needs an FUA, or (4) the customer does not need an FUA. The customer

joins the higher priority PFU queue in case (1) and the lower priority queue with RFUs and NEW

requests in case (3). In case (2), we further assume that with probability γ the slot may be rescued,

i.e. canceled sufficiently early to avoid spoilage, hence with probability p+ (1−p)(1−γ) that PFU

is actually booked; whereas in case (4) with probability one the customer leaves the system without

causing spoilage. According to the above discussion, if we assume that a regular appointment has

a spoilage rate η ≥ 0 (because of occasional no-shows), then the PFUs with revisit probability

p have spoilage rate pη+(1−γ)(1−p)
p+(1−γ)(1−p) , which is strictly greater than the spoilage rate η of a regular

appointment as long as γ < 1, i.e., not all unneeded PFUs could be rescued.

To summarize, after completion of a service, a customer’s health condition may improve, ending

the episode of care, or generate an FUA in the future with a random revisit probability p. The

generation of an FUA is memoryless and does not depend on how many visits the patient has
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Figure 3 The RTA Approximation for a Priority Queue with Orbits

already made. After each visit, the revisit probability p is randomly drawn from a distribution

with cumulative distribution function (cdf) F (·), and is also independent of the system state and

the number of previous visits made by that patient. We define G(x) :=
∫ x

0
pdF (p). Thus, p=G(1)

denotes the average revisit probability of a randomly drawn patient from the population. We further

assume that F (·) has a continuous density function f(·) on [0,1]. No-shows or late-cancellations

do not generate a follow-up visit.

The RTA Approximation The queueing system shown in Figure 3(a) includes multiple

streams of arrivals: the NEW visits as well as those returning from different orbits. Such a system

is difficult to analyze because of the complicated correlation between the number in the queue and

in orbits. Analytical results are only available in a few special cases, such as the M/M/1/1 queue

with geometric orbits (Cohen 1957), the M/M/1/2 queue with infinite orbits (Keilson et al. 1968),

and the M/G/1/1 queue with infinite orbits (Keilson et al. 1968, Aleksandrov 1974). The model

we consider is a discrete-time priority queue with heterogeneous customers and geometric orbits,



13

which is not included among the above-mentioned cases and happens to be analytically intractable.

Therefore, we utilize the RTA approximation from the literature on retrial queues.

According to Artalejo (1995), the RTA approximation “is equivalent to keeping constant the

expected number of customers in orbit when there are i customers at the waiting line”, that is,

putting Li =L for all i, where “Li is the expected number of customers in orbit when there are i

customers in the service facility”. A direct implication of RTA is that the returning customers (in

our paper, the RFUs and PFUs) arrive at the queue according to an independent Poisson process

with constant rate Lν, where ν is the rate for an in-orbit customer to return to the queue (so

ν−1 denotes the mean in-orbit time). Furthermore, extensive numerical experiments in Greenberg

(1989), Artalejo (1995), Greenberg and Wolff (1987) have shown that the RTA approximation

yields accurate estimation of mean throughput rate, particularly when the in-orbit time is much

larger than the service time. This condition is easily satisfied in our setting because the in-orbit

time is several days or weeks compared to the service time of one slot (typically less than 1/8th of

a day).

Under the RTA assumption, the appointment queueing system is equivalent to a single-server

priority queue with three independent Poisson arrival streams: PFUs, RFUs, and NEW visits, with

mean arrival rates λp, λr, and λn, respectively. An extra constraint resulting from RTA is that the

mean effective throughput rate λd should equal the mean arrival rate of the returning patients from

the orbits, which is captured by expressing λp and λr as functions of λd. Figure 3(b) illustrates the

simpler model that results from the RTA approximation.

In our model, the PFU customers have non-preemptive strict priority over other types of back-

logged appointments. The rationale behind this assumption is that PFUs are usually booked many

days before the appointment day, at which time the doctor’s appointment book is largely open as

shown in Section 3. A robustness test in Section 8 shows that imposing this assumption has minor

impact on system performance.

Let λd denote the average effective departure (or throughput or service) rate which counts the

average number of patients that receive service per time unit (1 unit of time = 1 slot), excluding

late cancellations and no-shows. The RTA approximation requires that the departure rate must

equal the arrival rate of returning patients, which leads to the following rate-balance equations,

λp = λd
∫ 1

w
f(p)(p+ (1− γ)(1− p))dp = λd((1− γ)(1−F (w)) + γ(p−G(w)))

λr = λd
∫ w

0
f(p)pdp= λdG(w).

(2)

where w is a threshold value chosen by the doctor. That is, a PFU is booked if and only if the

probability that the patient needs an FUA is larger than w.
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We define the virtual arrival rate λv as the total booking rate of all types of appointment,

including PFU, RFU, and NEW visits. Note that some of the PFUs may be booked by recovered

customers and turn out to be no-shows. The virtual arrival rate can be computed as

λv = λn +λp +λr = λn +λd((1− γ)(1 +G(w)−F (w)) + γp), (3)

where the second equality is obtained after plugging in the expression of λp and λr from (2).

Using a sample path argument, it can be shown that optimal need-based FUA capacity control

policies are always of the threshold type. That is, every need-based FUA capacity control policy

is characterized by a PFU control threshold w ∈ [0,1] such that a PFU is booked if and only if the

observed revisit probability p >w. In the rest of the paper, we will discuss how to find an optimal

threshold w that maximizes the average effect service rate λd. We investigate this question in three

different models: (1) an open access system with a limited buffer size for the total number of NEW,

RFU, and PFU patients; (2) a traditional appointment system in which the arrival rate of NEW

and RFU patients decreases with queue length due to state-dependent balking; and (3) a carve-out

system that consists of two parallel queues as described in (1) and (2), respectively. We will next

study how to characterize the steady-state effective throughput rate, and how to maximize it by

choosing an optimal PFU control threshold w in these models.

5. The Open-Access System

5.1. Steady State Characterization using RTA

An open-access service system, or advance-access service system (Murray and Tantau 2000),

attempts to “do all today’s work today”. The open-access system was proposed for outpatient care,

but the idea can be generalized to many other appointment-based service systems. An open-access

service system strives to keep a short waitlist by allowing customer to book their appointments

only one or two days in advance. Green and Savin (2008) modeled such an open-access system

using an M/D/1/K queue with K standing for limit of the booking horizon. We will use a similar

model to study the use of PFU strategy in an open-access system. We assume that service must

start at integer times t= 0,1, . . ., which differs from that in an M/D/1/K queue in which service

starts either upon the completion of the previous service or upon the arrival of the first customer

to an empty queue.

To analyze the open access system with a need-based PFU capacity control policy, we use X(t)

and Y (t) to denote the total number of appointments (regardless of their types) and the number of

PFU appointments waiting in the queue at time t, respectively, including the one currently being

served. We assume that the system has a finite capacity K > 0, such that the NEW and RFU

patients would balk when they arrive and see K patients in the system (X(t) = K). Since PFU
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patients enjoy head-of-line priority, whenever they arrive and see a full buffer, they would bump

out a non-PFU slot, if there is any; or balk if Y (t) = K (the buffer is full of PFU slots). The

assumption that a low-priority appointment (NEW or RFUs) can be bumped by PFUs builds on

the fact that the latter were actually booked much earlier.

Since X(t) has an upper bound K, {X(t) | t ≥ 0} is an ergodic continuous-time Markov chain

(CTMC). However, because the service completes only at integer times, this CTMC is time-

inhomogeneous and may not have a steady-state probability distribution in the conventional sense.

In particular, the distribution of X(t) always depends on t−btc, the specific time in the period (a

slot). However, if we define the limiting distribution as the proportion of time that X(t) resides

in each state, then it can be represented by a single vector π∗, with π∗i :=
∫ 1

0
πi(t)dt. We use a

random variable X∗ to represent the long-run average of X(t), which has a probability distri-

bution π∗. Throughout this paper, we refer to π∗ and X∗ as the steady-state distribution and

steady-state queue length, respectively, which may be viewed as a slight abuse of terminology.

Following the definition, given a reward function f(·), the average reward in the long run is defined

as Ef(X∗) := limT→∞
1
T

∫ T
0
f(X(t))dt. Its value, if finite, can be computed as

Ef(X∗) =
∑
i≥0

π∗i f(i) =π∗Tf , (4)

where π∗T denotes transpose of the vector π∗. Note that π0(1−) := limt↗1 π0(t) gives the probability

that the server will be idled in the next service slot, and thus 1−π0(1−) gives the average (virtual)

departure rate of the queue, including the no-show and late-cancelled slots. In a queue with buffer

sizeK and arrival rate λ, we use ρK(λ) = 1−π0(1−) to denote the corresponding average throughput

(departure) rate. Thus, the average departure rate of the stochastic process described by X(t) is

given by ρK(λv).

Since the PFU appointments have head-of-line priority, Y (t) has the same stochastic behavior as

the number of jobs in a queue with buffer limit K and mean arrival rate λp. Therefore, the average

departure rate of the stochastic process Y (t) can also be described by the function ρK(λp). The

effective throughput rate can be computed by the conservation law as

F (λd,w) = (ρK(λv)− ρK(λp))(1− η) + ρK(λp)

∫ 1

w
pf(p)dp∫ 1

w
(p+ (1− p)(1− γ))f(p)dp

(1− η) (5)

= ρK(λv)(1− η)− ρK(λp)

∫ 1

w
(1− p)(1− γ)f(p)dp∫ 1

w
(p+ (1− p)(1− γ))f(p)dp

(1− η). (6)

In the RHS of (5), (ρK(λv)− ρK(λp))(1− η) computes the effective throughput rate of NEW and

PFUs, and ρK(λp)
∫ 1
w pf(p)dp∫ 1

w(p+(1−p)(1−γ))f(p)dp
(1−η) computes the effective throughput rate of PFUs. Note
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that λv and λp are both functions of λd and w as defined in (2) and (36), so the RHS of (6) can

be represented as a function of λd and w.

The next Lemma shows that for any fixed w ∈ [0,1], the function F (·,w) has a unique fixed

point. Its proof is provided in Appendix EC.1.

Lemma 1. Under the RTA approximation, for any given w ∈ [0,1], there is a unique λd ∈ [0,1)

such that

F (λd,w) = λd. (7)

Suppose λd is the fixed point described in Lemma 1. If we use λd as the input rate of the returning

orbit to compute the arrival rates λp, λr, and λv according to (2) and (3), then the effective

throughput rate calculated from equation (5) is exactly λd. In other words, λd is the unique value

in [0,1] under which the returning orbit falls within the bounds of the conservation law. We thus

call the λd (and the associated λp, λr, λv) as the mean-preserving effective throughput rate (PFU

arrival rate, RFU arrival rate, total arrival rate). As discussed in the literature and validated in our

numerical study (Section 8), the mean-preserving effective throughput rate closely approximates

the true value of the effective throughput rate, which justifies our analytical framework built on

RTA.

5.2. Optimal PFU Control Threshold

Let λd(w) denote the effective throughput rate under RTA for a given PFU-control threshold w.

The next theorem shows that in an open access system, it is always optimal to never book any

PFU if the system designer’s objective is to maximize the effective throughput rate. The proof of

Theorem 1 is provided in Section EC.2.

Theorem 1. In an open-access system with buffer capacity K > 0, λd(w) has a unique maximizer

at wo = 1 (i.e., booking no PFUs).

Theorem 1 delivers a clear message – there is no need to book any PFU appointments, even

when the doctor is 100% sure that the patients will need an FUA. The rationale is that if a

patient needs an FUA, she can always book one if the buffer is not full. In case the buffer is full,

then some appointment requests have to be turned away anyway. Then, it makes no difference to

turn away a PFU request or another appointment request (NEW or RFU). This result is based

on our assumption that the service provider’s objective is to maximize long-run average effective

throughput rate, which also maximizes revenue. However, in some cases the service provider may

care about quality-related performance metrics. An important measure of quality is the same-

doctor matching rate (Hennen 1975, Rogers and Curtis 1980). In that case, the optimal policy will

choose some threshold wo < 1 and book some PFUs. See Appendix EC.3 for a rigorous proof.
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6. Traditional Appointment Booking System

6.1. Steady State Characterization using RTA

In a traditional appointment booking system, patients can book appointments well in advance so

we may assume that the buffer has infinite capacity. However, a patient is likely to balk and choose

a different service provider if there are no open slots in the near future. To count the demand loss

due to congestion, we assume that NEW and RFU patients have a state-dependent balking rate

b(i) when the current backlog X(t), including the one being served, equals i. The balking rates are

assumed to satisfy the following conditions:

(i) b(i) is strictly increasing for 1≤ i≤L for some constant L∈ [1,∞] and flattens after L;

(ii) λn( 1−b(∞)

1−p )< 1.

Condition (i) covers linear or concavely increasing functions, such as b(i) = min{ci, cL} or b(i) =

1−exp(−ci) for some constant c > 0. These functional forms of balking rates are widely used in the

queueing literature (Ancker Jr and Gafarian 1963a,b, Armony et al. 2009). Condition (ii) ensures

that the queue is stable, i.e., the backlogs will not converge to infinity. This condition is necessary

to establish positive recurrence of the Markov chain as shown in Proposition 1.

Similar to what we did in Section 5, the arrival rate of PFU and RFU (λp and λr) can be

computed according to equations (2) for a given input rate for the returning orbit, λd. The virtual

arrival rate λv depends on the state X(t) and has the following expression,

λv(X(t),w,λd) := (λn +λr)(1− b(X(t))) +λp
= (λn +λdG(w))(1− b(X(t))) +λd((1− γ)(1−F (w)) + γ(p−G(w))),

(8)

where the first term in the RHS counts the total arrival rates of NEW and RFUs, and the second

term counts the arrival rate of PFUs. Proposition 1 next summarizes some basic properties of the

time inhomogeneous CTMC {X(t)|t≥ 0}, with the proof attached in Appendix EC.4.

Proposition 1. Suppose the balking rate b(i) satisfies Condition (ii), then for any w ∈ [0,1],

{X(t)|t ≥ 0} is a positively recurrent and irreducible Markov process with period one. Its steady-

state distributions can be represented by unique probability distributions {π(t)|t∈ [0,1)}, such that

X(s)
d
=π(s−bsc) for all s > 0 provided that X(0)

d
=π(0).

We define the steady-state distribution π∗ and the steady-state queue length X∗ as we did in

Section 5. According to the RTA approximation, the effective throughput rate must satisfy the

following rate-balance equation,

λd = (1− η)Eπ∗ ((1− b(X∗))(λn +G(w)λd) + (1− η)(p−G(w))λd) , (9)

where the first term on the RHS represents the arrival rate of NEW and RFU requests, excluding

those that either balk, or no-show, or late-cancel, and the second term represents the arrival rate

of PFU requests, excluding no-shows and late-cancellations.

Analogous to Lemma 1, we prove in Lemma 2 that Equation (9) admits a unique fixed point.
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Lemma 2. Given any fixed w ∈ [0,1], there exists a unique feasible performance vector (λd, λr, λp,

λv, π
∗) with λd ∈ (0,1).

The proof of Lemma 2 requires Lemma 3, stated below. A proof of Lemma 3 is presented in

EC.5.

Lemma 3. Suppose λd is the expected effective throughput rate corresponding to a steady-state

distribution π∗. The following conditions hold for any non-decreasing sequence x := (xi).

∇w(π∗)Tx≤ 0, and ∇λd(π∗)Tx≥ 0. (10)

Proof of Lemma 2: It suffices to prove that there exists a unique λd which solves Equation

(9). Because the remaining variables in the feasible performance vector, i.e., λp, λr, and λv, can

be calculated from λd by (2), (3), and (9) and the existence and uniqueness of π∗ follow from

Proposition 1. Equation (9) holds if and only if λd solves the following equation,

(V (λd,π
∗(λd)) :=)Eπ∗ (1− b(X∗))(λn +G(w)λd) + (p−G(w))λd−

1

1− ηλd = 0. (11)

Therefore, it suffices to show that the above equation has a unique solution λd ∈ (0,1). To that

end, we prove that (i) function V (λd,π
∗(λd)) is positive at λd = 0 and is negative when λd→ 1,

and (ii) V (λd,π
∗(λd)) strictly decreases in λd in (0,1). The two claims imply that Equation (11)

has exactly one solution in (0,1).

We first show (i). It is straightforward to see that V (0,π∗(0)) > 0. To show

limλd→1 V (λd,π
∗(λd)) < 0, we first upper bound the first two terms of V (λd,π

∗(λd)) for all λd ∈
(0,1) as follows,

Eπ∗(λd) (1− b(X∗))(λn +G(w)λd) + (p−G(w))λd
≤ Eπ∗(λd) (1− b(X∗))(λn +G(w)λd) +λp
= Eπ∗ (λd)λ

∗
v(X

∗,w,λd)< 1,
(12)

where the first inequality follows from (p−G(w))λd ≤ λp because the latter also includes patients

that end up not needing an FUA but forget to cancel their bookings. The equality follows from

(8), and the fact that λ∗v(X
∗,w,λd)< 1 because {X(t)} has to be positive recurrent according to

Proposition 1. Then Inequality (12) implies that

limλd→1 V (λd,π
∗(λd)) = limλd→1

(
Eπ∗(λd) (1− b(X∗))(λn +G(w)λd) + (p−G(w))λd− 1

1−ηλd

)
≤ 1− 1

1−η < 0.
(13)

We next prove Claim (ii). The derivative of V (λd,π
∗(λd)) with respect to λd can be calculated

as
dV

dλd
=
∂V

∂λd
+ (∇π∗V )T∇λdπ∗. (14)
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For the first term, we have

∂V
∂λd

= Eπ∗ (1− b(X∗))G(w) + p−G(w)− 1
1−η

≤ G(w) + p−G(w)− 1
1−η

= p− 1
1−η < 0.

(15)

For the second term in the RHS of (14), since the i-th entry of the vector ∇π∗V is (1− b(i))(λn +

G(w)λd), the entries of −∇π∗V must form a non-decreasing sequence. Then by invoking Lemma 3

(using x=−∇π∗V ), we deduce that −(∇π∗V )T∇λdπ∗ ≥ 0. Thus, the RHS of (14) is negative and

V is strictly decreasing in λd. �

6.2. Optimal PFU Control Threshold

Similar to Section 5, we refer to the unique fixed point λd of the rate-balanced condition (9) as

the mean-preserving effective throughput rate. According to the RTA model, this λd approximates

the actual effective throughput rate of the system. Let λd(w) denote the mean-preserving effective

throughput rate in the feasible performance vector corresponding to a PFU control-threshold w ∈
[0,1]. The main result of this paper, presented in Theorem 2, characterizes the function λd(w). We

let Beta(α,β) denote the Beta distribution with parameters α and β, with mean p= α/(α+ β),

and let U [a, b] denote a uniform distribution over an interval [a, b]⊆ [0,1].

Theorem 2. Suppose 0≤ γ < 1 and the revisit probability p satisfies either of the following condi-

tions:

• p∼Beta(α,β) with β > 1 and α/(α+β)≤ 0.25.

• p∼U [a, b] with 2b2 ≤ b− a.

Then λd(w) is quasi-concave over [0,1]. There is a unique w∗ ∈ (0,1) such that λd(w) strictly

increases over [0,w∗) and strictly decreases over (w∗,1]. Consequently, w∗ is the unique PFU control

threshold that maximizes λd(w).

Before presenting its proof, we first make a few remarks concerning Theorem 2. Not only The-

orem 2 implies the existence and uniqueness of an optimal PFU control threshold w∗, but also

allows the system manager to search for such a w∗ without knowing the parameters of the system.

The manager may permit more PFUs to be booked, gradually decreasing w until the effective

throughput rate λd(w) stops increasing further. In this way, the manager can adopt the optimal

need-based FUA capacity control policy that maximizes the effective throughput rate.

To prove Theorem 2, we need to study the second-order properties of the holding effect and the

blocking effect of booking a PFU. When w increases, the marginal blocking effect has a diminishing

trend because the probability that a PFU will recover during the observation period increases.

A key step of the proof is to show that this trend dominates other factors, including the second
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derivative of the holding effect. For that purpose, we want the holding effect to be relatively small.

This can be achieved by imposing an upper bound on the average revisit probability, which is

largely proportional to the holding effect. For this reason, conditions in Theorem 2 require that if

p has a Beta distribution with β > 1, then p= α/(α+β)≤ 0.25; and if p has a uniform distribution

over [0, b], then b≤ 0.5, or equivalently p≤ 0.25. Our empirical analysis in Section 3 provides an

upper bound of 0.2525 for the mean revisit probability p, which is consistent with the assumption

of p≤ 0.25. When p > 0.25, despite the lack of theoretical results, our numerical experiments show

that the quasi-concavity property remains robust.

Before presenting a formal proof, we provide a sketch of our proof technique. We take the

derivative of w at both sides of (9) to obtain an expression for λ′d(w). We show that λ′d(w)> 0 at

w= 0 and λ′d(w)< 0 at w= 1. To show quasi-concavity, we need to study the second-order partial

derivative λ′′d(w), which, however, is difficult to analyze. In fact, we are unable to determine the

sign of λ′′d(w) for any w, and thus cannot deduce concavity of λd(w). However, we can show that

at any w∗ such that λ′d(w
∗) = 0, the second derivative λ′′d(w

∗) must be negative. This observation,

along with the fact that the continuous function λ′d(w) is positive at w= 0 and negative at w= 1,

implies that once λd(w) stops increasing in w, it must keep decreasing when w increases further. In

other words, λd(w) is quasi-concave in w and the w∗ at which λ′d(w
∗) = 0 is the unique maximizer

of λd(w).

The challenge of the proof is to analyze the second derivative λ′′d(w) and show that its value at w∗

is upper bounded by zero. One of the term in the expansion of λ′′d(w) is (λn+G(w)λd)
∑

i≥0

∂π∗i
∂w

(1−
b(i)), which can be interpreted as the change rate of the virtual arrival rate with respect to w. To

analyze this term, we use infinitesimal perturbation analysis (IPA) method, which has been used

in the queuing literature for performance evaluation (e.g., Ho et al. 1983, Wardi et al. 2009). We

use the IPA method to bound the second derivative. This proof technique may be of independent

interest to researchers.

Proof of Theorem 2: We modify the definition of V function in Equation (11) by allowing it to

change with w, i.e.,

V (λd,π
∗(λd,w),w) :=Eπ∗(λd,w) (1− b(X∗))(λn +G(w)λd) + (p−G(w))λd−

1

1− ηλd. (16)

In Lemma 2, we have shown that given any w, there is a unique λd that solves the equation

V (λd,π
∗(λd,w),w) = 0. Therefore, the function λd(w) is well defined. Furthermore, as we have

shown ∂V
∂λd

< 0 for all w in the proof of Lemma 21, the implicit function theorem states that λd(w)

1 In equation (14), ∂V
∂λd

was expressed in the form of complete derivative dV
dλd

, because at that time we had not assumed
that w is a variable of the function V .
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has continuous derivative λ′d(w). The specific expression of λ′d(w) can be obtained by taking implicit

derivative of V (λd,π
∗(λd,w),w) = 0, which gives

0 ≡ dV
dw

= [
∑

i
∂V
∂π∗i

∂π∗i
∂w

+ ∂V
∂w

] + [ ∂V
∂λd

+
∑

i
∂V
∂π∗i

∂π∗i
∂λd

]λ′d(w)

=: Ξ1(λd,w) + Ξ2(λd,w)λ′d(w),

(17)

where Ξ1(λd,w) and Ξ2(λd,w) denote the two terms enclosed in square brackets [·] in equation

(17). We can then express λ′d(w) as

λ′d(w) =
Ξ1(λd,w)

−Ξ2(λd,w)
. (18)

Since Ξ2(λd,w)< 0 for all w ∈ [0,1] as we show in the proof of Lemma 2, λ′d(w) must possess the

same sign as that of Ξ1(λd,w). The rest of the proof focuses on the function Ξ1(λd,w).

Ξ1(λd,w) =
∑

i
∂V
∂π∗i

∂π∗i
∂w

+ ∂V
∂w

=
∑

i(1− b(i))(λn +G(w)λd)
∂π∗i
∂w
−wf(w)λd

∑
i π
∗
i b(i)

= −(λn +G(w)λd)
∂Eπ∗b(X∗)

∂w
−wf(w)λdEπ∗b(X∗),

(19)

where the last equality follows from
∑

i(λn + G(w)λd)
∂π∗i
∂w

= 0 and the fact that
∑

i π
∗
i ≡ 1. We

next provide some intuition behind the RHS of the above expression. Increasing w reduces the

proportion of PFUs, which affects the effective throughput rate λd in two ways. First, if there are

more RFUs and fewer PFUs, then the virtual arrival rate λv will decrease because RFUs might

balk. As a result, the steady-state queue length may be shorter and the balking rate may decrease

when w increases. In this scenario, increasing w may increase the effective arrival rate as there

are fewer balked visits. This reduces blocking effect as captured by the first term in the RHS

of (19). In contrast, when more follow-up visits are booked as RFUs rather than PFUs, some

RFUs may balk. Therefore, increasing w (i.e., booking fewer PFUs) may have a negative effect on

effective throughput by diminishing the holding effect, as captured by the second term in the RHS

of Equation (19).

The first term in the RHS of (19) contains a partial derivative of the steady-state probability

with respect to w. In order to analyze this term, we analyze the stochastic process X(t) and derive

an alternative expression for ∂Eπ∗b(X∗)/∂w in the following lemma. The proof of Lemma 4, which

uses the IPA method, is provided in Appendix EC.6.

Lemma 4. At all w ∈ [0,1],

∂Eπ∗b(X∗)

∂w
= 1

λdG(w)+λn

∑
i
∂λv(i,w,λd)

∂w

[∫ 1

0
πi(s)qi(s,w)ds

]
= − λdf(w)

λdG(w)+λn

∑
i(1−w(1− b(i))− γ(1−w))

[∫ 1

0
πi(s)qi(s,w)ds

]
,

(20)
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and
∂Eπ∗b(X∗)

∂λd
= 1

λdG(w)+λn

∑
i
∂λv(i,w,λd)

∂λd

[∫ 1

0
πi(s)qi(s,w)ds

]
=
∑

i
G(w)(1−b(i))+1−F (w)−γ(1−F (w)−p+G(w))

λdG(w)+λn

[∫ 1

0
πi(s)qi(s,w)ds

]
,

(21)

where qi(s,w) is a continuous function that increases in i. Moreover, qi(s,w) ∈ (0,1) for all s ∈
[0,1), and

∂qi(s,w)

∂w
≤ f(w)wλd
λdG(w) +λn

qi(s,w). (22)

Lemma 4, particularly (20), allows us to reformulate Ξ1(λd,w) as

Ξ1(λd,w) =
∑
i

f(w)λd(1−w(1−b(i))−γ(1−w))

[∫ 1

0

πi(s)qi(s,w)ds

]
−wf(w)λd

∑
i

π∗i b(i). (23)

Since qi(s,w) is differentiable in w, Ξ1(λd,w) is also differentiable in w. Using the above expression

for Ξ1(λd,w), we can determine the sign of Ξ1(λd(w),w) at the two end points, w = 0 and w = 1,

respectively.

If we plug w= 0 into the expression (23), the second term vanishes. As γ < 1, we get

Ξ1(λd,0) =
∑
i

f(0)λd(1− γ)

[∫ 1

0

πi(s)qi(s,0)ds

]
> 0. (24)

By plugging w= 1 into expression (23), we get

Ξ1(λd,1) =
∑

i f(1)λdb(i)
[∫ 1

0
πi(s)qi(s,1)ds

]
− f(1)λd

∑
i π
∗
i b(i)

= f(1)λd
∑

i b(i)
[∫ 1

0
πi(s)(qi(s,1)− 1)ds

]
< 0.

(25)

The above facts imply that λ′d(w) is positive at w = 0, and negative at w = 1. Since λ′d(w) =

−Ξ1(λd,w)/Ξ2(λd,w) is continuous, there must be at least one w∗ ∈ (0,1) at which λ′d(w
∗) = 0.

Furthermore, since Ξ1(λd,w) is differentiable on w ∈ [0,1], and Ξ2(λd,w), with its expression given

in (14), is also differentiable in w, equation (18) then implies that the second derivative λ′′d(w) exists

everywhere on [0,1]. We next show that at any λ′′d(w
∗)< 0 at any w∗ at which λ′d(w

∗) = 0. This fact

implies that w∗ is a maximizer on [0,1] and there is no minimizer in the interior (0,1). Furthermore,

we deduce that such a minimizer must be unique, because a twice differentiable function cannot

have two maximizers without a minimizer in between. This completes the proof of quasi-concavity

of λd(w).

To estimate λ′′d(w
∗), we first multiply both sides of (17) by 1

f(w)
and obtain the following identity

0≡ 1

f(w)
Ξ1(λd,w) +

1

f(w)
Ξ2(λd,w)λ′d(w). (26)
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At both sides of the above identity, take the derivative of w at w∗ and get

0 = ∂
∂w
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
+ ∂

∂λd
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
λ′d(w

∗)

+ d
dw
|w=w∗

(
1

f(w)
Ξ2(λd,w)

)
λ′d(w

∗) + 1
f(w∗)

Ξ2(λd,w
∗)λ′′d(w

∗)

= ∂
∂w
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
+ 1

f(w∗)
Ξ2(λd,w

∗)λ′′d(w
∗),

(27)

where the second equality follows from the assumption that λ′d(w
∗) = 0. Since Ξ2(λd,w

∗) < 0,

equation (27) implies that λ′′d(w
∗) and ∂

∂w
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
share the same sign. Thus, to

show λ′′d(w
∗)< 0, it suffices to show that ∂

∂w
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
< 0. To do that, we plug in the

expression (23) of Ξ1 and get

∂
∂w
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
= ∂

∂w
|w=w∗

(∑
i≥0 λd(1−w(1− b(i))− γ(1−w))

[∫ 1

0
πi(s)qi(s,w)ds

]
−wλd

∑
i π
∗
i b(i)

)
=
∑
i

λd(1−w∗(1− b(i))− γ(1−w∗))(
∫ 1

0

∂qi(s,w)

∂w
|w=w∗πi(s)ds)︸ ︷︷ ︸

C1

−
(∑

i

(1− b(i)− γ)λd(

∫ 1

0

πi(s)qi(s,w
∗)ds) +

∑
i

π∗i b(i)λd

)
︸ ︷︷ ︸

C2

+
∑
i

(

∫ 1

0

∂πi(s)

∂w
|w=w∗qi(s,w

∗)(1−w∗(1− b(i))− γ(1−w∗))λd)ds)︸ ︷︷ ︸
C3

−
∑
i

∂π∗i
∂w
|w=w∗b(i)λdw

∗

︸ ︷︷ ︸
C4

,

(28)

where C1, C2, C3, and C4 are expressions involving w∗ and λd. Because of Lemma 3 and the fact

that {qi(s,w∗)(1−w∗(1− b(i))− γ(1−w∗))} is a non-decreasing sequence of i for all s ∈ [0,1], C3

is nonnegative. Consequently,

∂

∂w
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
≤C1−C2 +C4. (29)

To analyze the rest terms at the RHS of (28), we use the fact that λ′d(w
∗) = 0, which implies

Ξ1(λd,w
∗) = 0. Therefore,

0 = Ξ1(λd,w
∗)

=
∑

i f(w∗)λd(1−w∗(1− b(i)) + γ(1−w))
[∫ 1

0
πi(s)qi(s,w

∗)ds
]
−w∗f(w∗)λd

∑
i π
∗
i b(i)

=
∑

i f(w∗)λd(1 + γ)
[∫ 1

0
πi(s)qi(s,w

∗)ds
]

−w∗f(w∗)λd

(∑
i(1− b(i)− γ)

[∫ 1

0
πi(s)qi(s,w

∗)ds
]

+
∑

i π
∗
i b(i)

)
=
∑

i f(w∗)λd(1 + γ)
[∫ 1

0
πi(s)qi(s,w

∗)ds
]
−w∗f(w∗)C2,

(30)

which leads to an important equality

C2 =
λd(1 + γ)

w∗

∑
i

[∫ 1

0

πi(s)qi(s,w
∗)ds

]
> 0. (31)
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Using the upper bound for ∂qi(s,w)

∂w
derived in Lemma 4, i.e., Equation (22), we can upper bound

C1 at w∗ as

C1 =
∑

i(
∫ 1

0

∂qi(s,w
∗)

∂w
|w=w∗πi(s)ds)(1−w∗(1− b(i))− γ(1−w∗))λd

≤ λdw
∗f(w∗)

λn+G(w∗)λd
λd

[∫ 1

0

∑
i πi(s)(1−w∗(1− b(i))− γ(1−w∗))qi(s,w∗)ds

]
< λdw

∗f(w∗)

λn+G(w∗)λd
λd

[∫ 1

0

∑
i πi(s)qi(s,w

∗)ds
]

= λd(w∗)2f(w∗)

(1+γ)(λn+G(w∗)λd)
C2,

(32)

where the first inequality follows from the upper bound for ∂qi(s,w)

∂w
derived in Lemma (4), and the

last equality follows from equation (31).

We can also obtain an upper bound for C4 at w∗ as

C4 = −∑i

∂π∗i
∂w
|w=w∗b(i)λdw

∗

= w∗λd
G(w∗)λd+λn

∑
i f(w∗)λd(1−w∗(1− b(i))− γ(1−w∗))

[∫ 1

0
πi(s)qi(s,w

∗)ds
]

< λd(w∗)2f(w∗)

(1+γ)(λn+G(w∗)λd)
C2,

(33)

where the second equality follows from equation (20) of Lemma 4, and the last equality follows the

same logic as that we used in equation (32).

Plugging the upper bound for C1 and C4 into inequality (29) leads to

∂

∂w
|w=w∗

(
1

f(w)
Ξ1(λd,w)

)
< (−1 +

2λd(w
∗)2f(w∗)

(1 + γ)(G(w∗)λd +λn)
)C2 ≤ 0, (34)

where the last inequality follows from the fact that C2 is positive at w∗ and Lemma 5. Inequality

(34), according to our previous argument, implies that λ′′d(w
∗)< 0 and that concludes the proof. �

Lemma 5. If the distribution of p satisfies either one of the two conditions specified in Theorem

2, then for all w ∈ [0,1],
2λdw

2f(w)

(1 + γ)(G(w)λd +λn)
≤ 1. (35)

The proof of Lemma 5 is presented in Appendix EC.7.

Finally, we provide an algorithm to compute the stationary distribution π∗(w) for any fixed w

and prove convergence of this algorithm in EC.8.

7. A Carve-Out Appointment Booking System

7.1. The Setting

Some doctors use a “carve-out” scheduling approach to manage their service capacity (Robinson

and Chen 2010). A carve-out system operates similarly to a traditional appointment system except

that it reserves a certain portion of slots for walk-in patients. The queueing model developed earlier

in this paper can be adapted to fit a carve-out system by allowing two parallel queues that share

the same server (doctor), with one queue (Queue A) modeling the backlog of appointment bookings
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and the other queue (Queue W) representing walk-in patients who have arrived at the clinic for

same-day service; see Figure 4 for a graphical illustration.

Because both queues share the same server (doctor), the care provider has to split the service

capacity between the two queues. Let R ∈ (0,1) denote the portion of service capacity that is

allocated to Queue A. For example, if R= 3/5, then three out of every five slots are allocated to

Queue A and the remaining two slots are reserved for the walk-in queue. For analytical tractability,

we do not consider how these service slots are sequenced (e.g., whether 3 consecutive slots for Queue

A and 2 consecutive ones for Queue W, or A-W-A-W-A) because different appointment sequences

will result in similar patient wait times. Instead, we simply assume that the service slots for each

queue are distributed uniformly over time. Consequently, the service times for each appointment

in Queue A and Queue W are 1/R slots and 1/(1−R) slots, respectively.

λp

Service
λr

λn

Balking

PFU

NEW

No-shows

λd

Recovered

RTA

λA

λW

Appointment

Walk-in

Balking

Patient Choice

R

1−R

Capacity K

RFU

Figure 4 A Hybrid System under RTA

For the arrival process, we assume that among the doctor’s NEW and RFU patients, a fixed

portion r choose to book an appointment in advance by joining Queue A, and the rest walk in. i.e.,

join Queue W. Since our focus is the optimal PFU capacity management policy, we do not consider

the patients’ strategic behavior. Therefore, we assume that r is exogenous and independent of

system states as well as control parameters such as w and R. A careful study of the carve-out

system considering patient strategic behavior would require extensive empirical evidence, which is

beyond the scope of this paper.

We assume that the arrival of new patients follows a time-stationary Poisson process with mean

rate λn. Furthermore, because of the RTA assumption, the RFUs also arrive according to a time-

stationary Poisson process with mean rate λr. Then, by Poisson thinning theorem, the arrivals for

Queue A and Queue W also follow a time-stationary Poisson process with mean rate r(λn + λr)

and (1−r)(λn+λr), respectively. Nevertheless, not all of these patients will join the queue as some
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will balk. We make the same set of assumptions on patient balking behavior as in the previous

sections. That is, patients who choose to join Queue A have a state-dependent balking rate b(i),

which satisfies Conditions (i) and (ii) given in Section 6; whereas walk-in patients balk only if the

number of people in Queue W has reached its upper limit K. As a result, the walk-in queue is

modeled as a single-server slotted service queue with finite capacity.

Although the walk-in queue in the carve-out system is modeled in the same way as the open-

access queue in Section 5, they represent different entities in reality. The backlogs in the open-access

queue represent appointments that have been booked in advance, with the extra constraint that

patients by themselves can only book appointments within a short lead time (e.g., at most 24-48

hours in advance), except PFUs who are allowed to book well in advance. Whereas, the backlogs

in Queue W in the carve-out system represent walk-in patients physically present at the clinic.

Therefore, in a carve-out system, the PFUs can only join Queue A as they represent appointments

being booked in advance.

We still consider need-based PFU capacity management policies. That is, the doctor observes the

patient’s probability p of needing an FUA and decides whether to book a PFU or not. As we have

shown earlier, such a policy is characterized by a control threshold w such that PFUs are booked

only for patients with p ≥ w. In this section, we characterize the optimal control threshold w in

a carve-out system in certain cases. Our study complements the existing literature on carve-out

systems (Dobson et al. 2011, Qu et al. 2007) by studying the management of FUAs.

One important feature relevant to the management of FUA is that no-show and late cancellation

causes less damage in a carve-out system, because the care provider can redirect some of those slots

to walk-in patients, if there are any walk-in patients in the queue. To underscore this important

feature, we assume that γ = 1 so that all recovered PFUs can be rescued2. We do not model in

detail the processes by which those slots are rescued and redirected to the walk-in queue because

that will introduce complicated interactions between the two queues. Instead, in our aggregate-

level model, these slots can be rescued by the system, and then 1−R portion of the total slots are

allocated to walk-in queue. This setting accommodates the possibility that some rescued slots will

be wasted because the walk-in queue may be empty.

When γ = 1, there is no cost to book a PFU because if the patient does not need an appointment,

then the care provider can safely rescue the slot. It might be plausible to book all potential FUAs

as PFUs by setting w= 0. In fact, in a traditional appointment system, Equation (23) in the proof

of Theorem 2 implies that w= 0 is a dominant strategy when γ = 1. Contrary to this intuition, a

rigorous analysis shows that letting w= 0 is not optimal in a carve-out system. The optimal value

2 We do not impose any assumption on the spoilage rate η for regular slots because it has no significant impact on
our conclusion, but it would be fair to assume η= 0 in a carve-out system.
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of w depends mostly on the arrival rates of Queue A and Queue W. To enable a rigorous analysis,

we first introduce the RTA framework which allows us to derive an approximate characterization

for the steady-state of the carve-out system.

7.2. Steady-State Characterization using RTA

Under the RTA assumption, the arrival of RFUs and PFUs both follow independent Poisson pro-

cesses. Let XA(t) and XW (t) denote the number of patients in Queue A and Queue W at the

beginning of slot t, respectively, including the one being served. Since both arrival and service pro-

cesses for the two queues are independent under the RTA assumption, we consider each process as

an independent process and characterize its steady state distribution. The next proposition shows

that the steady-state distributions3 of XA(·) and XW (·) both exist regardless of r, R, and K, and

are unique. The intuition is that since Queue A has state-dependent balking and Queue W has a

finite buffer, both queues are stable regardless of the arrival rates.

Proposition 2. Suppose the balking rate b(i) satisfies conditions (i) and (ii) in Section 6.1. Then

for all w ∈ [0,1], R ∈ (0,1), XA(·) and XW (·) are positively recurrent and irreducible Markov

chains with periods 1/R and 1/(1−R), respectively. Consequently, there exist unique probability

distributions {πA(t)|t ∈ [0,1/R)} and {πW (t)|t ∈ [0,1/(1−R))} such that XA(s)
d
=πA(s−dse) and

XW (s)
d
=πW (s−dse) for all s > 0 provided that XA(0)

d
=πA(0) and XW (0)

d
=πW (0). The steady state

distribution πA,∗ =
∫ 1/R

0
πA(t)dt and πW,∗ =

∫ 1/(1−R)

0
πW (t)dt both exist and are unique.

The proof of Proposition 2 is similar to that of Proposition 1 and is provided in Appendix EC.9.

We use X∗A and X∗W to denote the steady-state queue lengths in the two queues (with some

abuse of notation), which have probability distributions πA,∗ and πW,∗, respectively. Then, we can

express the virtual arrival rates of the two queues λA and λW as functions of the total effective

throughput rate λd and queue lengths. Considering γ = 1, the expressions are given by

λA(w,λd) = r(λn +λr)EπA,∗(1− b(X∗A)) +λp
= r(λn +λdG(w))EπA,∗(1− b(X∗A)) + (p−G(w))λd,

λW (w,λd) = (1− r)(λn +λr)(1−πW,∗K ) = (1− r)(λn +λdG(w))(1−πW,∗K ),
(36)

where the expressions of λr and λp follow Equation (2) in the case of γ = 1, and πW,∗K denotes the

steady-state probability that an arrived patient finds a full buffer (i.e., queue length = K) and

balks.

3 As before, we define steady-state distribution as the long-run average of the stochastic process by abuse of termi-
nology.
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As before, we define a performance vector for the carve-out system (λd, λr, λp, λA, λW ) and any

feasible performance vector must satisfy Equation (36) as well as the following equation, which is

analogous to Equation (11),

V r(λd, π
A,∗(λd), π

W,∗(λd))

:= rEπA,∗(1− b(X∗A))(λn +G(w)λd) + (p−G(w))λd + (1− r)(λn +λdG(w))(1−πW,∗K )− λd
1−η

= 0.
(37)

Our next result, which is analogous to Proposition 2, shows that there always exists a unique

solution to Equation (37) for all w, r, and R.

Lemma 6. Given any w ∈ [0,1], R, r ∈ (0,1) and K > 0, there exists a unique feasible performance

vector (λd, λr, λp, λA, λW ) with λd ∈ (0,1).

Proof of Lemma 6: The proof is similar to that of Lemma 2. To show that Equation (37) has a

unique solution λd ∈ (0,1), it suffices to prove that

V r(0, πA,∗(0), πW,∗(0))> 0>V r(1, πA,∗(1), πW,∗(1)), (38)

and that V r(λd, π
A,∗(λd), π

W,∗(λd)) is strictly decreasing in λd. It is straightforward to show that

V r(0, πA,∗(0), πW,∗(0))> 0. To show V r(1, πA,∗(1), πW,∗(1))< 0, because Proposition 2 ensures sta-

bility of both queues, we have rEπA,∗(1−b(X∗A))(λn+G(w)λd)+(p−G(w))λd = λA(w,λd)<R, and

(1− r)(λn + λdG(w))(1− πW,∗K ) = λW (w,λd)≤ 1−R. Finally, V r(λd, π
A,∗(λd), π

W,∗(λd)) is strictly

decreasing in λd because

dV r

dλd
= −r∑i(π

A,∗
i (λd))

′b(i)(λn +G(w)λd) + rEπ∗ (1− b(X∗))G(w) + p−G(w)

+(1− r)G(w)(1−πW,∗K )− (1− r)(λn +λdG(w))(πW,∗K (λd))
′− 1

1−η
≤ rG(w) + p−G(w) + (1− r)G(w)− 1

1−η
= p− 1

1−η < 0,

(39)

where the inequality follows from r
∑

i(π
A,∗
i (λd))

′b(i)G(w)λd ≥ 0 as a result of Lemma 3 and the

fact that (πW,∗K (λd))
′ ≥ 0. �

7.3. Optimal PFU Control Threshold

For a given set of parameters including λn, r, R, b(·), and f(·), we let λd(w) denote the unique

solution to Equation (37), which represents the steady-state effective throughput rate. We are

interested in solving the throughput maximization problem, maxw∈[0,1] λd(w), and derive some

structural properties of the optimal threshold wC . However, this is challenging even under the

RTA assumption. We can characterize wC only in two extreme cases, that is, when R→ 0 and

when R→ 1. In the first case, almost all service capacity is allocated to Queue W. As a result,

Queue A becomes extremely crowded, in which case we show that wC = 1 if Queue W is not too
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crowded. In the second case when R→ 1, Queue W becomes extremely crowded, in which case we

prove wC = 0, so the care provider should use the PFU strategy whenever possible. Although the

analytical results are limited to the two special cases, they show that the choice of the optimal

threshold varies by system parameters, particularly the demand-supply ratio in each queue. We

formally state the result in the following theorem and attach its proof in Appendix EC.10.

Theorem 3. In a carve-out system with r ∈ (0,1), we have

λd(w) increases in w and wC→ 1 when R→ 0 and (1−r)λn
1−p ≤ 1,

λd(w) decreases in w and wC→ 0 when R→ 1.
(40)

Despite the complex algebra involved in the proof of Theorem 3, the underlying intuition is not

difficult to explain. When Queue A is crowded but Queue W is less crowded, the holding effect of

booking a PFU diminishes because even if a PFU is not booked, 1− r portion of the RFU will join

Queue W without balking because Queue W is less congested. Meanwhile, even though γ = 1, the

blocking effect remains in effect because by booking PFUs, the care provider directs more patients

to Queue A and exacerbates the congestion there. On the other hand, if Queue W is crowded, the

holding effect becomes dominant. Then, if the care provider does not book a PFU and that patient

joins the walk-in queue, that patient will likely see a full buffer and balk. Thus, PFU appointments

not only help secure slots for FUAs (without the cost of increasing the number of no-shows as much

as in the traditional system), they also play a role in helping to balance the supply and demand

in each queue.

In certain scenarios, the care provider is able to select a capacity split R to balance the workload

in the two queues. In this case, our RTA framework provides a way to numerically search for a

pair (R,w) that jointly maximizes the effective throughput rate. We conjecture that the optimal

policy will book a portion of FUAs as PFUs, similar to the traditional system, though we were not

successful in proving quasi-concavity in this case. We explore the selection of the optimal pair in

our simulation study in Section 8.

8. Numerical Study

We present a numerical study that serves several purposes: (1) Validate the RTA approximation

by comparing the fixed point λd(w) calculated from the RTA algorithm with the simulation result.

(2) Check robustness of our claims upon relaxing the assumption “PFUs have strict head-of-line

priority”. (3) Check robustness of our claims upon relaxing the assumption “doctors know exactly

each patient’s revisit probability p”. (4) Compute λd(w) and check robustness when the distribution

of p does not satisfy the assumptions in Theorem 2. (5) Investigate how λd(w) varies in w and

R in the carve-out system and to identify an optimal (R,w) pair. We focus on the traditional

appointment booking system and the carve-out system because in the open-access system, the

optimal policy is simple and has been fully characterized in Theorem 1.
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8.1. Test of the RTA Assumption

We develop a simulation model for an appointment booking system and compute its effective

throughput rate λSimd (w) for different values of w. The simulation model is coded within the Arena

platform Version 16.10.00001 (Kelton 2002). Instead of simulating the original appointment system,

we simulate an FCFS queue with slotted service time. The difference between the two systems is

that patients in the former system do not always take the first available slot. Despite this difference,

Green and Savin (2008) have shown that the latter provides a close approximation to the former

system when a majority of the patients prefer an earlier slot, which is consistent with our data; see

Section 3. We also compute λRTAd (w), the fixed point to Equation (9), using the RTA algorithm

presented in Appendix EC.8. The computation of λRTAd (w) is performed using Matlab (MATLAB

2020).

In the base case of the slotted queuing model, we set the length of each appointment equal

to 30 minutes. New appointment booking requests arrive according to a Poisson process and the

mean inter-arrival time is 50 minutes, corresponding to λn = 30/50 = 0.6 per slot. Other base case

parameters are w= 0.6, f(·) = Beta(0.5,0.5), and b(i) = 1−e0.1i. In subsequent experiments, one or

more of these parameters is varied and we compute λRTAd (w) and λSimd (w). A complete list of input

parameters can be found in Table 3, Columns 1–4. If p≥w, then the patient is routed to the PFU

orbit and stays there for an observation period Lo1, which is simulated according to the empirical

distribution of the PFU lead times as plotted in Figure 1, assuming 1 day = 6 hours = 12 slots.

After the observation period, with probability p that PFU needs another visit and returns to the

queue as prioritized patient, and with probability (1− p) the PFU patient recovers. If the patient

recovers, then with probability (1− γ) that a patient is a no-show and the slot is wasted and with

probability γ the slot is rescued (equivalent in our model to not booking that slot). The latter

can happen, for example, when the patient cancels early realizing that he or she is on the path to

recovery. If p <w, then the patient is routed to the RFU orbit and stays there for an observation

period Lo2, which is also simulated according to the empirical distribution of inter-appointment

times for RFUs. After the observation period, with probability p the RFU will return the queue,

and with probability (1− p) she recovers and leaves the system permanently. Each NEW or RFU

patient balks with probability b(i) upon arrival. Each booked slot has a probability η to be a

spoilage.

In each parametric setting, we run the simulation for 50 replications to obtain a robust evaluation.

The choice of 50 replications is based on the observation that the standard error (half-width of the

95% confidence interval) is within 1% of the simulated value. This is a recommended method for

determining the number of replications of simulation runs; see for example Law (2007). In each

replication, we run the simulation for 2000 slots, and record the average effective throughput rate
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in the last 1000 slots. The first 1000 slots are used as a warm-up period to allow the stochastic

process to reach a steady state.

Table 3 Numerical Results

Parameters* Effective Throughput Rate

w λn f(·) b(i) λRTAd (w) λSIMd (w) λNoPrd (w) λNoAcd (w)
0.6 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5892 0.5918 (0.0045)** 0.5888 (0.0063) 0.5838 (0.0054)
0 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5084 0.5129 (0.0051) 0.5132 (0.0045) 0.5146 (0.0040)

0.1 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5486 0.5503 (0.0043) 0.545 (0.0053) 0.5541 (0.0045)
0.2 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5634 0.565 (0.0047) 0.566 (0.0055) 0.5658 (0.0060)
0.3 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5734 0.5766 (0.0057) 0.5772 (0.0061) 0.5746 (0.0053)
0.4 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5805 0.5823 (0.0054) 0.5857 (0.0057) 0.5779 (0.0070)
0.5 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5857 0.5844 (0.0063) 0.5913 (0.0064) 0.5877 (0.0050)
0.7 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5913 0.5949 (0.0062) 0.5925 (0.0061) 0.5896 (0.0052)
0.8 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5920 0.5979 (0.0074) 0.5965 (0.0071) 0.5893 (0.0064)
0.9 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5910 0.5916 (0.0067) 0.5939 (0.0066) 0.5888 (0.0063)
1 0.6 Beta(0.5,0.5) 1− e−0.1i 0.5843 0.5858 (0.0078) 0.5901 (0.0068) 0.5887 (0.0059)

0.6 1 Beta(0.5,0.5) 1− e−0.1i 0.6972 0.6952 (0.0044) 0.6956 (0.0049) 0.6850 (0.0037)
0.6 0.95 Beta(0.5,0.5) 1− e−0.1i 0.6931 0.6937(0.0044) 0.6926 (0.0040) 0.6845 (0.0042)
0.6 0.9 Beta(0.5,0.5) 1− e−0.1i 0.6874 0.686 (0.0044) 0.6889 (0.0047) 0.6765 (0.0035)
0.6 0.8 Beta(0.5,0.5) 1− e−0.1i 0.6692 0.6721 (0.0044) 0.6705 (0.0054) 0.6646 (0.0050)
0.6 0.75 Beta(0.5,0.5) 1− e−0.1i 0.6555 0.6583( 0.0053) 0.6578 (0.0051) 0.6521 (0.0053)
0.6 0.5 Beta(0.5,0.5) 1− e−0.1i 0.5210 0.5227 (0.0069) 0.5243 (0.0066) 0.5143 (0.0075)
0.6 0.4 Beta(0.5,0.5) 1− e−0.1i 0.4353 0.4384 (0.0061) 0.4357 (0.0066) 0.4355 (0.0071)
0.6 0.6 Beta(5,1) 1− e−0.1i 0.6627 0.6648(0.0046) 0.6656 (0.0043) 0.6705 (0.0045)
0.6 0.6 Beta(1,3) 1− e−0.1i 0.4951 0.4918(0.0051) 0.4923 (0.0048) 0.4941 (0.0064)
0.6 0.6 Beta(2,2) 1− e−0.1i 0.5793 0.5800(0.0064) 0.5823 (0.0063) 0.5739 (0.0064)
0.6 0.6 Unif(0,1) 1− e−0.1i 0.5835 0.5879 (0.0066) 0.5901 (0.0057) 0.5788 (0.0058)
0.3 0.6 Unif(0,0.5) 1− e−0.1i 0.4806 0.4862 (0.0057) 0.4857 (0.0055) 0.4907 (0.0058)
0.6 0.6 Beta(0.5,0.5) 1− e−i 0.464 0.4757 (0.0050) 0.4760 (0.0045) 0.4674 (0.0057)
0.6 0.6 Beta(0.5,0.5) min{1,0.1i} 0.5823 0.5856 (0.0066) 0.5849 (0.0064) 0.5803 (0.0052)
0.6 0.6 Beta(0.5,0.5) min{1,0.2i} 0.5416 0.5465 (0.0056) 0.5409 (0.0071) 0.5450 (0.0055)
*Other Parameters: ε= 10−5 (tolerance of Matlab code), η= 0.26, γ = 0, Lo1 and Lo2 follow empirical distribution.

**The number in () denotes the standard error of the simulation results in 50 replications.

The outputs of the RTA algorithm and the simulation experiments are summarized in Table 3

(Column 5 and 6). For most instances, the absolute error |λRTAd (w)−λSimd (w)| is within 0.006, and

the relative error |λRTAd (w)−λSimd (w)|/λSimd (w) is within 1.2%, except for the instance in which the

balking rate is determined by the expression (1− exp(−i)). In that case, the error is 2.5%, which

is still reasonable. Overall, the results support the accuracy of our analytical framework based on

the RTA assumption.
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8.2. Test of Robustness of PFUs’ Head-of-Line Priority

We assume that the PFU slots have head-of-line priory over NEW and RFUs. The empirical

evidence supporting this assumption has been provided in Section 3, showing that the request for

PFU bookings usually arrive earlier than those of the NEW and RFU appointments for the same

slot. To further check if a violation of this assumption would have a significant impact on system

throughput, we performed a simulation experiment in Arena. In the simulation, which closely

matches the real system, when the PFU patient returns to the queue, then that and other patients

already in the queue will be served in an FCFS fashion. Because the PFU’s slot is typically requested

early, the PFU patient will most likely be placed at the head-of-queue just as our theoretical model

assumes. However, with a small probability, there can be NEW or RFU patients in the queue who

have requested their appointment even before the PFU patient, and then the PFU patient will not

have the head-of-line priority.

We ran the above simulation model with 50 replications for each parameter setting and report

the mean effective throughput rate λNoPrd (w) in Column 7 of Table 3. We compare the reported

values to the values of λSIMd (w) in Column 6, the output of the simulation model which assumes

head-of-line priority for PFUs. The comparison shows that the difference between the λNoPrd (w)

and λSIMd (w) is always less then 0.01 or 2% across all instances. Therefore, the assumption that

PFU patients have head-of-line priority over RFU and NEW patients has a relatively minor impact

on the system performance.

8.3. Test of Robustness of the Assumption that Revisit Probability is Observable

Our model assumes that a doctor knows each patient’s precise probability of needing an FUA

later. We tested the robustness of this assumption by simulating a system in which a doctor’s

estimate is imprecise. We let p denote a patient’s true probability of needing an FUA and let p

denote an estimation of p that will be used in the simulation. We assume that ln( p
1−p) follows a

normal distribution with mean ln( p
1−p) and standard deviation 0.537, where the latter is the largest

standard error observed upon fitting a logistic regression model to our data; see Section 3. Then,

if we were to use p̄ in Inequality (1), it would be an equality.

From the resulting equation and the monotonicity of the log-odds function, we deduce that |p−p|
stochatically dominates |p̂−p|, where p̂ is the revisit probability predicted by the logistic regression

for our data. Therefore, applying a logistic regression to our data will lead to a more accurate

prediction than p. In reality, the doctor observes much more information than that recorded in the

data, can make a more accurate prediction than p̂, and thus p.

Therefore, is suffices to show λNoAcd (w), the effective throughput rate in a system that uses p, is

close to λSIMd (w), the effective throughput rate in the original system. If that were true, then the
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effective throughput in the real system in which a doctor had a more accurate prediction would be

even closer to λSIMd (w). To estimate λNoAcd (w), we run 50 replications of the simulation model for

each of the parametric setting in Table 3, and report the mean effective throughput rate λNoAcd (w)

in the last column of Table 3. The comparison shows that the difference between λNoAcd (w) and

λSIMd (w) is small and the relative error is less than 2% across all instances.

8.4. λd(w) in a Traditional Appointment System for Large p

In Theorem 2, we proved that λd(w) is a quasi-concave function when the revisit probability p

follows a Beta(α,β) distribution with mean p= α/(α+β)≤ 1/4 and β > 1, or uniformly distributed

over [a, b] with 2b2 ≤ b − a. Next, we plot λd(w) for parameters that violate the assumption of

Theorem 2 with beta distributed p to check whether the conclusion still holds. We use the RTA

algorithm to compute and plot λd(w) under different parameters of α, β, c, where c is a coefficient

in the balking rate function b(i) = 1− exp(−ci). The plots are presented in Figure 5.
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Figure 5 λd(w) as a function of w

Note that the two figures in the first row correspond to p = α/(α+ β) = 0.5 > 0.25. So these

plots do not satisfy the assumption of Theorem 2, but λd(w) exhibits quasi-concave property. We

then increase p to α/(α+β) = 5/6 and plot λd(w) in the second row of Figure 5. Over the interval

w ∈ [0,0.4], λd(w) is nearly flat, so quasi-concavity is not evident. Across all our experiments, we

did not find a counter-example in which quasi-concavity was violated.
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8.5. λd(w) in a Carve-Out System

In Theorem 3, we show that in some special cases the total effective throughput rate in a carve-out

system is monotonically increasing or decreasing in w. As a result, the optimal wC is attained at

0 (no PFU) or at 1 (no RFU). However, these special cases require R→ 0 or R→ 1, which are not

typical scenarios in practice. In this section, we run simulation experiments to compute the function

λd(w) under different values of R. These experiments serve three purposes. First, they show that

the results of Theorem 3, i.e., the monotonicity of λd(w), are robust when R is reasonably close

to 0 or 1. Second, the simulation results characterize the optimal wC for intermediate values of R,

which is not covered by our analytical results. Third, the experiments provide intuition regarding

how clinic managers should select R when R is a decision variable.

We choose the same parameters as in Table 3, except that we set γ = 1 and η = 0 to be

consistent with the carve-out setting. We chose r = 0.5 and tested five different values of R:

{0.1,0.3,0.5,0.7,0.9}. For each R, we computed λd(w) for different values of w and plotted their

relationship in Figure 6.

Figure 6 Total Effective Throughput Rate in a Carve-out System λd(w)

Note that for R= 0.1,0.3, λd(w) is increasing in w and the optimal threshold for booking PFUs is

wC = 0; whereas for R= 0.9, λd(w) is decreasing and its maximum value is attained at wC = 1, i.e.,

by not booking any PFUs. These observations show that the results of Theorem 3 are valid even

for somewhat larger (or smaller) values of R. Second, Figure 6 shows that for R= 0.5,0.7, λd(w)

is non-monotone and quasi-concave. This is what one would expect although it is difficult to prove

this observation via formal arguments. Finally, the figure shows that for the problem parameters

chosen for these experiments, the overall highest λd(w) is attained when R is 0.5 (approximate

load balance holds) and w is high but less than 1.
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9. Concluding Remarks

Appointment systems are ubiquitous, especially in health care. Inspired by the empirically observed

practice in outpatient clinics of giving priority to some follow-up appointments, we analyze three

representative appointment systems. The objective of our investigation is both to establish the

structure of a need-based priority rule and to develop a method to compute the optimal policy

parameters when the health system wants to maximize throughput rate. We show that the optimal

policy is to not have PFUs in an open access system, and that the optimal policy is of threshold-

type with a single parameter in the other two systems. This parameter is such that if the patient’s

need exceeds a critical probability threshold, then he or she will be designated a priority follow-up,

otherwise not.

On the methodological front, the paper presents an analysis of slotted-service queues with orbits

under the RTA assumption. In this way, it adds to both the literature on queueing systems with

feedback, and to the literature on appointment scheduling with follow-up visits. On the practitioner

front, the contribution of this paper is that it provides implementable operating guidelines for

appointment systems that aim to maximize throughout, and a tractable method for calculating

the optimal probability threshold. We show that the optimality of this threshold is robust against

estimation errors associated with the revisit probability. Therefore, even if the doctor cannot know

exactly each patient’s revisit probability, the suggested threshold policy is still implementable and

provides near optimal performance.

In practice, the appointment booking system in place may not allow doctors to book follow-up

appointments for the patients. An alternative in those cases would be for doctors to tell some

patients that FUAs likely would be needed based on their diagnoses and typical courses of treat-

ment, and to encourage those patients to book FUAs immediately after their earlier appointments.

This would be tantamount to prioritizing some FUAs.

The paper focuses on throughput rate maximization, which is a realistic objective for many

revenue-oriented care providers. Other prevalent objectives may incorporate concern for quality of

care and continuity of care. We hope that these objectives would be incorporated into the RTA

framework and that their analyses would provide promising topics for future work.
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e-companion to ec1

EC.1. Proof of Lemma 1

Proof. Given w ∈ [0,1], F (·,w) maps a given λd ∈ [0,1] to an effective throughput rate. Since

F (·,w) is continuous and maps the closed convex set [0,1] to itself, the Brouwer fixed-point theorem

guarantees the existence of a fixed point λd in [0,1] such that F (λd,w) = λd. Moreover, since the

image of F (·,w) must be strictly smaller than 1, the fixed point must lie in [0,1).

To show that the fixed point is unique, it suffices to show that 0≤ ∂F (λd,w)/∂λd < 1 so that

F (·,w) is a contracting map. If the arrival rate of a queue with finite buffer size K has increased

by ε, we know that the increment to the average departure rate of that queue will be between 0

and ε, because some would have balked. Therefore, a sample path argument leads to the inequality

0≤ ρ′K(·)≤ 1.

By expressing λv and λp as functions of λd as in (2) and (3), Equation (5) implies that

∂F (λd,w)

∂λd
= ρ′K(λv)((1− γ)(1 +G(w)−F (w)) + γp)(1− η)

−ρ′K(λp)((1− γ)(1−F (w)) + γ(p−G(w)))
∫ 1
w(1−p)(1−γ)f(p)dp∫ 1

w(p+(1−p)(1−γ))f(p)dp
(1− η)

≤ ρ′K(λv)((1− γ)(1 +G(w)−F (w)) + γp)(1− η)
< 1,

(EC.1)

where the second inequality follows from G(w)−F (w)≤ 0 and ρ′K(·)≤ 1. It is straightforward to

see that F (λd,w) is non-deceasing in λd, so we have 0≤ ∂F (λd,w)/∂λd < 1. �

EC.2. Proof of Theorem 1

Proof. We consider three systems: (1) a system with a control threshold w ∈ (0,1) and γ ∈ (0,1);

(2) a system with a control threshold w ∈ (0,1) and γ = 1 (all recovered PFUs can be rescued); (3)

a system with w = 1 (no PFUs so the parameter γ is moot). Let λγd(w), λ1
d(w), and λd(1) denote

the mean-preserving effective throughput rates corresponding to the three systems, respectively.

We will prove that

λγd(w)<λ1
d(w) = λd(1). (EC.2)

That is, the effective throughput rate is always larger when the recovered PFUs can be fully rescued,

while the latter has the same mean-preserving service rate as a system with no PFUs.

To prove λγd(w)<λ1
d(w), we couple the arrival process of the effective appointments (not including

the recovered PFUs) in system (1) and (2). Let Z1(t) (X1(t)) and Z2(t) (X2(t)) denote the number

of effective backlogged slots (virtual slots) in the coupled systems. We next prove Z1(t)≤Z2(t) at

all t by contradiction. Let τ := inf{t≥ 0 | Z1(t)>Z2(t)}. If τ <∞, then because we have coupled

the arrival processes, either of the following must happen at τ− (an infinitesimal time period right

before τ): (a) A customer balks in system (2) but not in system (1) at τ−; (b) a customer was
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bumped in system (2) by a PFU but not in system (1) at τ−. We next show that neither (a) nor

(b) could happen. For (a), if a customer balks in system (2) at τ−, then X2(τ−) =K. Since system

(2) has fewer virtual slots as more PFUs have been rescued, we always have X1(t)≥X2(t) for all t,

so X1(τ−)≥K. Thus, the customer must also balk in system (1). Therefore, (a) is impossible. For

(b), by the definition of τ , we have Z1(τ−) =Z2(τ−). Then if a PFU arrives at τ , it has an equal

chance to bump out an effective slot (non-effective slot must be booked also as PFUs so cannot be

bumped out). Thus, by coupling the two systems, we can ensure that an effective slot is bumped

out in (2) only if it has also be bumped in (1). By ruling out the two cases (a) and (b), we conclude

that such a τ does not exist and Z1(t)≤Z2(t) for all t. This implies that

λγd(w) = Pr(Z1(t)> 0)<Pr(Z2(t)> 0) = λ1
d(w). (EC.3)

To show λ1
d(w) = λd(1), we note that in both systems all appointments in the queue have the

same no-show rate. The only difference is that system (3) is FCFS, and customers balk upon seeing

a full buffer, whereas in system (2), the PFUs can bump out a non-PFU slot when it arrives and sees

a full buffer. Whichever the case, the system loses one regular slot. If we consider all customers as

a homogeneous class, the two systems are equivalent and thus have the same effective throughput

rate. �

EC.3. Incorporating Same-Doctor Matching into the Objective Function

We consider the case when the care provider tries to maximize same-doctor matching as well

as effective throughput rate. We analyze the case of an open-access system and a traditional

appointment system and reach similar conclusions.

EC.3.1. Open Access Systems

To improve same-doctor matching, we try to avoid cases when an FUA has to balk and look for

service at other places. This leads to a multi-objective problem of maximizing throughput and

simultaneously minimizing the number of FUAs that balk, which can be scalarized by utilizing a

cost c > 0 associated with each FUA balking. Mathematically, it leads to the following objective

function,

maxw∈[0,1] λd(w)− c(RFU balking + PFU balking)

= maxw∈[0,1] λd(w)− c(πXK(λr +λp
λr

λn+λr
) +πYKλp(

∫ 1
w pf(p)dp∫ 1

w(p+(1−p)(1−γ))f(p)dp
− λr

λn+λr
)).

(EC.4)

In the above formulation, πXK := Pr(X(∞) =K) and πYK := Pr(Y (∞) =K) denote the steady-state

probability that the buffer is fully occupied by appointments of all types, and by PFU appointments,

respectively. Thus, the term πXK(λr + λp
λr

λn+λr
) computes the expected number of FUA balkings
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when X(∞) =K. If a PFU arrives and finds a full buffer and if Y (∞)<K, then she can bump out

the last non-PFU patient in the queue. Since the arrival time is independent of patient type, the

probability that the last non-PFU patient is an RFU (versus a NEW visit) equals λr/(λn + λr).

However, if Y (∞) =K, then the PFU cannot find a non-PFU in the queue and has to balk. The

probability that PFU will be an effective slot is
∫ 1
w pf(p)dp∫ 1

w(p+(1−p)(1−γ))f(p)dp
. Thus, the last term corrects

the balking rate of FUAs when Y (∞) =K.

The following proposition shows that the care provider always books a few PFUs when same-

doctor matching has been incorporated into the objective function. The main idea of the proof

is to show that the derivative of the multi-objective function (EC.4) is always negative at w = 1

regardless of the value of c. Unfortunately, we cannot easily determine the sign of the derivative

when w< 1 nor the monotonicity of the objective function with respect to w. Therefore, we do not

know whether the optimal threshold wO could be further decreased if a larger weight c was chosen.

Proposition EC.1. If c > 0 and f(1)> 0, then the optimal solution to (EC.4), denoted by wO,

is strictly less than 1.

Proof. The derivative of (EC.4) is given by

λ′d(w)− cdπ
X
K

dw
(λr +λp

λr
λn+λr

) + cπXK
d
dw

(λr +λp
λr

λn+λr
)

+ c
dπYK
dw

(
λp

∫ 1
w pf(p)dp∫ 1

w(p+(1−p)(1−γ))f(p)dp
− λpλr

λn+λr
) + cπYK

d
dw

(
λp

∫ 1
w pf(p)dp∫ 1

w(p+(1−p)(1−γ))f(p)dp
− λpλr

λn+λr
).

(EC.5)

We now evaluate each term in the above equation when w = 1. The first term λ′d(1) = 0 because

there is neither blocking nor holding effect to book a PFU when w= 1 by the proof of Theorem 1.

Since λp = 0 and πYK = 0 when w= 1, the last two terms vanish. So only the second and the third

term remain non-zero and can be evaluated as

−cdπ
X
K

dw
|w=1(λr +λp

λr
λn+λr

) + cπXK
d
dw

(λr +λp
λr

λn+λr
)|w=1

= −cdπ
X
K

dw
|w=1λr− cπXKλdf(1) 2λdp+λn

λdp+λn

= −cπXKλdf(1) 2λdp+λn
λdp+λn

.

(EC.6)

The last equality follows from
dπXK
dw
|w=1 = 0 as dλv

dw
|w=1 = 0 (there is no blocking effect by booking a

patient with w= 1 as PFU). Therefore, as long as c > 0 and f(1)> 0, the objective function has a

strictly negative derivative at w= 1, which implies the optimal PFU threshold wo < 1. �

EC.3.2. Traditional Appointment System

In a traditional appointment system, the PFU will never balk. So we only need to penalize the

number of RFUs that balk in order to improve same-doctor matching. That leads to the following

objective function,
maxw∈[0,1] λd(w)− c(RFU balking )

= maxw∈[0,1] λd(w)− c∑i π
∗
i (w)b(i)λd(w)G(w).

(EC.7)
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We can prove a conclusion similar to that in an open access system – if one wants to maximize the

effective throughput rate as well as same-doctor matching, then one should use a control threshold

smaller than w∗, the optimal threshold for solely maximizing the effective throughput rate.

Proposition EC.2. Suppose the revisit probability p satisfies either of the two conditions in The-

orem 2. If 1 ≥ c > 0, then the optimal solution to (EC.7) is strictly less than w∗, the unique

maximizer of λd(w).

Proof. At any w≥w∗, the derivative of (EC.7) can be bounded as follows,

Derivative of (EC.7)

= λ′d(w)−λ′d(w)c
∑

i π
∗
i b(i)G(w)− cλd(w)G(w)

∑
i

∂π∗i
∂w
b(i)− cwf(w)λd

∑
i π
∗
i b(i)

< −c∑i

∂π∗i
∂w
b(i)λd(w)G(w)− cwf(w)λd

∑
i π
∗
i b(i)

= cλdG(w)

λn+λdG(w)

∑
i λdf(w)(1−w(1− b(i))− γ(1−w))

[∫ 1

0
πi(s)qi(s,w)ds

]
− cwf(w)λd

∑
i π
∗
i b(i)

< cΞ1(λd,w)
≤ 0,

(EC.8)

where the first inequality follows from c
∑

i π
∗
i b(i)G(w)< 1 for all w and λ′d(w)≤ 0 for w ∈ [w∗,1],

the second equality follows from Equation (20) in Lemma 4, the second inequality follows from
λdG(w)

λn+λdG(w)
< 1 and the expression of Ξ1(λd,w), i.e., Equation (23), and the last inequality follows

the fact that Ξ1(λd,w)≤ 0 for all w ≥ w∗, which is implied by the proof of Theorem 2. We thus

deduce that the multi-objective function (EC.7) is strictly decreasing over [w∗,1]. Therefore, the

maximizer of (EC.7) must be smaller than w∗. �

EC.4. Proof of Proposition 1

Proof. {X(t)|t ≥ 0} is a time-inhomogeneous Markov process with period one, as the service

completes at integer times t= 1,2, . . .. Also, X(t) is irreducible because any pair of states commu-

nicate with each other. The key to proving positive recurrence of X(t) is to show that the virtual

arrival rate is less than 1 for all w and sufficiently large X(t). To that end, we note that the virtual

arrival rate increases when more FUAs are designated as PFUs. Thus, it suffices to bound arrival

rate when w = 0, i.e., all FUAs are booked as PFUs. When the queue length approaches infinity,

the average balking rate converges to b(∞), which gives virtual arrival rate as

λn(1− b(∞)) +λn(1− b(∞))p+λn(1− b(∞))p2 + . . .=
λn(1− b(∞))

1− p < 1, (EC.9)

where λn(1− b(∞)) counts the average arrival rate of the new arrivals excluding those that balk,

λn(1− b(∞))p denotes the PFUs generated by those new visits, and λn(1− b(∞))p2 counts the

next generation of PFUs, etc. The last inequality follows from Condition (ii). We have thus proved

that the virtual arrival rate is upper bounded by 1 when X(t)→∞ when w= 0. This implies that

the virtual arrival rate is bounded away from 1 for all w when X(t) is sufficiently large. This proves

that the queue is stable and X(t) is positive recurrent. Therefore, X(t) must possess a steady-state

distribution (in the periodic sense) {π(t)|t∈ [0,1)}, which is unique by irreducibility. �
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EC.5. Proof of Lemma 3

Proof. Let Xw(t), Aw(t) denote the number of jobs in the system at time t and the cumula-

tive number of arrived jobs up to time t, respectively, given a PFU control threshold w. Since
∂λv(i,w,λd)

∂w
= f(w)λd(−b(i)w−(1−w)(1−γ))< 0, for sufficiently small ∆w> 0 and all i≥ 0, the vir-

tual arrival rate in the system with threshold w−∆w must be larger than that with threshold w by

an amount equal to |∂λv(i,w,λd)

∂w
|∆w+o(∆w). Thus, the process Aw−∆w stochastically dominates Aw,

which implies that Xw−∆w stochastically dominates Xw. The stochastic dominance implies that

EXw−∆w(t)≥EXw(t) for all t and consequently ∇w(π∗)Tx≤ 0. A similar argument can be applied

to prove that ∇λd(π∗)Tx≥ 0 by noting that ∂λv(i,w,λd)

∂λd
=G(w)(1− b(i)) + (1−γ)(1−F (w))≥ 0 for

all i. �

EC.6. Proof of Lemma 4

In order to streamline the proof of Lemma 4, we present some intermediate results in the following

propositions.

Proposition EC.3. For all i= 1,2, . . ., and for all w and ∆w such that 0≤w−∆w≤w≤ 1,

E ω(i, s) =− qi(s,w)

λn +G(w)λd
. (EC.10)

where qi(s,w) is a continuous function that increases in i. Moreover, qi(s,w) ∈ (0,1) for all s ∈
[0,1), and ∂qi(s,w)

∂w
≤ f(w)wλd

λdG(w)+λn
qi(s,w) for all s∈ [0,1).

Proposition EC.4. If we randomly pick Tk−1, Tk ∈ T , then with probability 1−o(1), (Tk−1, Tk) is

a regular interval.

Proposition EC.5. For all sufficiently small ∆w> 0 and ds > 0,

Pr([Tk−1, Tk]∈ Γi,ds) = ∆λv(i)πi(s)ds

∆λ∗v
+ o(1), (EC.11)

where o(1)→ 0 when ∆w→ 0.

Proofs for Propositions EC.3, EC.4, and EC.5 are provided in EC.6.1, EC.6.2, and EC.6.3,

respectively. We next prove Lemma 4 using these propositions.

Proof of Lemma 4: To provide an overview of the proof, we will use the IPA method by consider-

ing two queue backlog processes Xw and Xw−∆w, and their corresponding stationary distributions

π∗(w) and π∗(w−∆w), respectively. By the definition of π∗, we have

∂Eπ∗(w)b(X
∗)

∂w
= lim

∆w→0

1

∆w
lim
T→∞

1

T

∫ T

0

(b(Xw(t))− b(Xw−∆w(t)))dt. (EC.12)

Since the virtual arrival rate decreases in w, we may couple Xw and Xw−∆w such that Xw−∆w ≥Xw

for almost all the sample paths. We can also show that most of the time, Xw−∆w − Xw = 0;
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but occasionally, the difference process ∆X(w,∆w) := Xw−∆w −Xw may jump upward by one,

which is caused by the difference in the virtual arrival rates of the two processes, say, ∆λv(t).

The difference ∆X(w,∆w) follows a nonhomogeneous Poisson process with time-varying arrival

intensity ∆λv(t). Let T1, T2, . . . , denote the arrival epochs of ∆X(w,∆w). Then the long-run average

difference in the balking rates, 1
T

∫ T
0

1
∆w

(b(Xw(t))− b(Xw−∆w(t)))dt, can be expressed as the sum

of E[ 1
∆w

(b(Xw(t))− b(Xw−∆w(t)))] in all intervals [Tk−1, Tk] (k= 1,2, . . . , ). Fortunately, in most of

the intervals, the expected difference can be efficiently characterized.

Formally, let Xw and Xw−∆w denote two backlog queue-length processes with PFU control-

thresholds w and w−∆w, respectively. Because of equation (EC.12), it suffices to characterize the

limit of 1
∆w

limT→∞
1
T

∫ T
0

(b(Xw(t))− b(Xw−∆w(t)))dt when ∆w→ 0. As we argued in Lemma 3,

Xw−∆w stochastically dominates Xw, thus by coupling4 the sample paths of Xw and Xw−∆w, it can

be argued that ∆X(w,∆w, t) := Xw−∆w(t)−Xw(t) ≥ 0 for all t ≥ 0 almost surely. Furthermore,

since the long-run average does not depend on the initial distribution of the stochastic processes,

we can assume both the initial distribution of Xw and Xw−∆w to be exactly their steady-state

distribution at time zero, i.e., πw(0) and πw−∆w(0), respectively, so that the two processes are

periodic stationary processes with period one (having the same distribution at time points k+ s

for all s∈ [0,1) and k= 0,1, . . .). Figure EC.1 plots an example of coupled sample paths of Xw and

Xw−∆w.
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Xw(t)
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∆X(w-∆w,t)

A regular cycle

Figure EC.1 Sample paths for Xw, Xw−∆w. Their difference gives ∆X(w,∆w, t). According to the plot, [T0, T1]

is a regular interval.

4 Coupling means that we redefine the mapping from the probability space to the space of sample paths, ω 7→Xw(ω)(·)
and ω 7→ Xw−∆w(ω)(·). Since the result of lemma only depends on the expected values of E

∫ T
0
b(Xw(s))ds and

E
∫ T

0
b(Xw−∆w(s))ds, coupling will not change the conclusion of the lemma.
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The RHS of equation (EC.12) represents the long-run average value of 1
∆w

(b(Xw(t)) −
b(Xw−∆w(t))), which, however, is difficult to calculate. Instead of calculating the long-run average

directly, we first identify certain time intervals during which the average value of 1
∆w

(b(Xw(t))−
b(Xw−∆w(t))) is easier to calculate and can approximate the long-run average.

We consider possible time points t at which the gap ∆X(w,∆w, t) could possibly increase by

one, that is, when Xw−∆w has extra arrival compared to queue Xw. This happens only when

1. λv(X
w−∆w(t),w−∆w,λd)−λv(Xw(t),w,λd)> 0;

2. the above difference in their arrival rates leads to an actual arrival.

According to our coupling, Xw−∆w(t)≥Xw(t) at all t, so

λv(X
w−∆w(t),w−∆w,λd)−λv(Xw(t),w,λd) < λv(X

w(t),w−∆w,λd)−λv(Xw(t),w,λd)
=: ∆λv(X

w(t)).
(EC.13)

Therefore, the arrival process of ∆X(w,∆w, t) can be dominated by a non-homogeneous Poisson

process N∆w with time-varying arrival rate given by ∆λv(X
w(t)), which is the difference in the

arrival rates of the two processes upon ignoring the possible difference in their backlogs and balking

rates. Let T := {T0, T1, . . .} denote the sequence of arrival epochs of N∆w. Then the arrival epochs

of ∆X(w,∆w, t) must be a subset of the arrival epochs of N∆w. Nevertheless, ∆X(w,∆w, t) does

not have to increase at every time point in T , because at some Tk ∈ T , Xw−∆w(Tk) may be strictly

larger than Xw, in which case the λv(X
w−∆w(t),w−∆w,λd)− λv(Xw(t),w,λd) may be negative

due to the extra balking in queue Xw−∆w.

The time points in T partition any horizon [0, T ] into countably many intervals in the form of

[Tk−1, Tk). Within each interval, ∆w cannot contribute to any extra arrival to the queue Xw−∆w

compared to queue Xw. We then reformulate the long-term average of 1
∆w

(b(Xw(t))−b(Xw−∆w(t)))

according to this partition,

limT→∞
1
T

∫ T
0

1
∆w

(b(Xw(t))− b(Xw−∆w(t)))dt

= limT→∞
1

∆wT

∑N∆w(T )

k=1

∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt

= limT→∞[N
∆w(T )

∆wT
][ 1
N∆w(T )

∑N∆w(T )

k=1

∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt].

(EC.14)

Since N∆w(T ) is a Poisson random variable with intensity
∫ T

0
∆λv(X

w(s))ds, and Xw(s) is a

stationary process with distribution π(s−bsc) at any s. When T →∞, by ergodicity of Xw(t), we

have

N∆w(∆wT )

T
=

∫ T
0

∆λv(X
w(s))ds+ o(T )

T
→
∫ 1

0

E(∆λv(X
w(s)))ds := ∆λ∗v, (EC.15)

where ∆λ∗v denotes the average virtual arrival rate for queue Xw(·), similar to the definition of π∗.
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We then continue to express the long-term average of 1
∆w

(b(Xw(t))− b(Xw−∆w(t))) as

limT→∞
1
T

∫ T
0

1
∆w

(b(Xw(t))− b(Xw−∆w(t)))dt

= [∆λ∗v
∆w

] limT→∞[ 1
N∆w(T )

∑N∆w(T )

k=1

∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt].
(EC.16)

We call a time point s∈ T a regular point if

∆X(w,∆w,s−) := lim
t↑s

∆X(w,∆w, t) = 0. (EC.17)

Intuitively, a regular point refers to a time right before which the sample paths of Xw and Xw−∆w

stick together. As a result, at time s, ∆X(w,∆w,s) must increase by one due to the extra arrival

to queue Xw−∆w led by the arrival-rate difference ∆λv(X
w(s)). An interval [Tk−1, Tk] is called a

regular interval by having both its end points Tk−1 and Tk as regular points; if at least one of the

two endpoints of interval [Tk−1, Tk] is non-regular, then we call [Tk−1, Tk) a non-regular interval. A

non-regular means that the sample paths of Xw and Xw−∆w already have a gap before Tk−1, or

the gap has not been closed before Tk. One may refer to Figure EC.1 for a graphic illustration of

a regular interval.

In general, the term
∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt is difficult to calculate. However, we can

calculate this term if both Tk−1 and Tk are both regular points. We define τ= := inf{t > Tk−1|Xw(t) =

Xw−∆w(t)}. Since Tk−1 is a regular point, the two processes must be coupled before Tk−1, in which

case an actual arrival would be triggered at Tk−1 due to the difference in their arrival rates. So

we have Xw−∆w(t)≡Xw(t) + 1 at t∈ [Tk−1, τ=), and the virtual arrival rate of Xw−∆w is given by

λv(X
w + 1,w,λd), which does not depend on ∆w (because the next extra arrival caused by ∆w

would occur not earlier than Tk). On the other hand, since Tk is a regular point, we must have

τ= < Tk. So Xw−∆w(t)≡Xw(t) at t ∈ [τ=, Tk). Thus, we can define the following random variable,

which is the difference in the balking rates during a regular interval,

ω(i, s) :=
∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt|(Tk−1, Tk) regular, Xw(T−k−1) = i, Tk−1−bTk−1c= s

=
∫ τ=
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt|(Tk−1, Tk) regular, Xw(T−k−1) = i, Tk−1−bTk−1c= s

=
∫ τ=
Tk−1

(b(Xw(t))− b((Xw + 1)(t)))dt| Xw(T−k−1) = i, Tk−1−bTk−1c= s.

(EC.18)

The expected value of ω(i, s), which represents the expected difference in the balking rates of

the two processes in regular intervals, can be expressed as Equation (EC.10) according to Propo-

sition EC.3. However, when [Tk−1, Tk] are non-regular intervals, we are unable to characterize∫ Tk
Tk−1

(b(Xw(t)) − b(Xw−∆w(t)))dt. But good news is that only a negligible amount of intervals

[Tk−1, Tk] are non-regular intervals, which is formally stated in Proposition EC.4.

We next reformulate the RHS at equation (EC.16) by separating the sum of regular intervals

and non-regular intervals. For each non-regular interval [Tk−1, Tk], we simply replace the integral
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with ω(Xw(Tk−1), Tk−1 − bTk−1c). Such a replacement will only cause a difference of o(1) to the

average, because the non-regular intervals only take a proportion of o(1).

limT→∞
1
T

∫ T
0

1
∆w

(b(Xw(t))− b(Xw−∆w(t)))dt

= ∆λ∗v
∆w

limT→∞
1

N∆w(T )
(
∑

[Tk−1,Tk] regular
∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt

+
∑

[Tk−1,Tk] not regular
∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt)

= [∆λ∗v
∆w

] limT→∞[ 1
N∆w(T )

(
∑

All [Tk−1,Tk]
ω(Xw(Tk−1), Tk−1,∆w)

+
∑

[Tk−1,Tk] not regular (
∫ Tk
Tk−1

(b(Xw(t))− b(Xw−∆w(t)))dt−ω(Xw(Tk−1), Tk−1,∆w)))

= [∆λ∗v
∆w

] limT→∞[ 1
N∆w(T )

(∑
All [Tk−1,Tk]

ω(Xw(Tk−1), Tk−1,∆w)
)

] + o(1).

(EC.19)

Computing the RHS of the above equation is not straightforward, because the process is time

inhomogeneous (but periodic) and Eω(Xw(Tk−1), Tk−1,∆w) depends on Tk−1 − bTk−1c. We need

to classify the intervals by the values of Tk−1−bTk−1c and count the proportion in each class. To

facilitate the computation, we define the following partition of the intervals:

Γi,ds = {[Tk−1, Tk]|Tk−1−bTk−1c ∈ ds,Xw(Tk−1) = i}, for all i≥ 0, s∈ [0,1). (EC.20)

where ds denotes a neighborhood centered at time s ∈ (0,1). For intervals in the same class Γi,ds,

the corresponding random variables {ω(Xw(Tk−1), Tk−1 − bTk−1c,∆w)|[Tk−1, Tk] ∈ Γi,ds} are inde-

pendently and identically distributed, with an expected value Eω(i.s) as characterized in (EC.10).

Therefore,

limT→∞
1

N∆w(T )

(∑
All [Tk−1,Tk]

ω(Xw(Tk−1), Tk−1,∆w)
)

= limT→∞
1

N∆w(T )

∫ 1

0

∑
i≥0 |Γi,ds|[ 1

|Γi,ds|

∑
[Tk−1,Tk]∈Γi,ds

ω(Xw(Tk−1), Tk−1−bTk−1c,∆w)]

= limT→∞
1

N∆w(T )

∫ 1

0

∑
i≥0 |Γi,ds|E[ω(Xw(Tk−1), Tk−1−bTk−1c ∈ ds,∆w)|[Tk−1, Tk]∈ Γi,ds]

=
∫ 1

0

∑
i≥0 limT→∞

|Γi,ds|
N∆w(T )

]E[ω(Xw(Tk−1), Tk−1−bTk−1c ∈ ds,∆w)|[Tk−1, Tk]∈ Γi,ds]

=
∫ 1

0

∑
i≥0 Pr([Tk−1, Tk]∈ Γi,ds)E[ω(i, s,∆w)]

=
∫ 1

0

∑
i≥0

∆λv(s)

∆λ∗v
πi(s)E[ω(i, s,∆w)]ds+ o(1),

(EC.21)

where both the second and fourth equations follow from the strong law of large number, and the

last equation follows from Proposition EC.5.

By plugging equation (EC.21) into equation (EC.19), we obtain that

limT→∞
1
T

∫ T
0

1
∆w

(b(Xw(t))− b(Xw−∆w(t)))dt

= ∆λ∗v
∆w

∫ 1

0

∑
i≥0 πi(s)

∆λv(i)

∆λ∗v
E[ω(i, s,∆w)]ds+ o(1)

=
∫ 1

0

∑
i≥0 πi(s)

∆λv(i)

∆w
E[ω(i, s,∆w)]ds+ o(1)

→ −1
λn+λdG(w)

∫ 1

0

∑
i≥0 πi(s)

∂(−λv(i,s,w)

∂w
)qi(s,w)ds,

(EC.22)

as ∆w→ 0, which completes the proof of Equation (20). The proof of Equation (21) follows the

same logic except for taking the derivative with respect to λd instead of w, and is therefore omitted.

�
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EC.6.1. Proof of Proposition EC.3

Throughout this proof, we use a simplified notation (i, s) to represent the condition of Xw(Tk−1) =

i, Tk−1−bTk−1c= s. By multiplying and dividing −(λn+G(w)λd) at the RHS of (EC.18), we obtain

the following alternative expression for E[ω(i, s)],

E[ω(i, s)]
= − 1

λn+G(w)λd
E[
∫ τ=
s

(λn +G(w)λd)(b((X
w + 1)(t))− b(Xw(t)))dt|(i, s)]

= 1
λn+G(w)λd

E[
∫ τ=
s

(λv(X
w(t) + 1,w,λd)−λv(Xw(t),w,λd))dt|(i, s)],

(EC.23)

where the last equality follows from the fact that (λn+G(w)λd)(b(X
w(t)+1)−b(Xw(t))) represents

the difference in the virtual arrival rates of the two processes. Therefore, the expectation E[
∫ τ=
s

(λn+

G(w)λd)(b(X
w(t) + 1)− b(Xw(t)))dt] has an interesting interpretation: how many extra customers

balk in queue Xw + 1 compared to queue Xw during the time interval [Tk−1, τ=]?

To answer this question, we notice that during interval [Tk−1, τ=], X̃w has lost an extra backlog

compared to Xw. This happens only in either of the two cases:

Case 1 An extra customer is served in queue X̃w :=Xw + 1 during [Tk−1, τ=] compared to queue Xw.

This could happen because of the extra backlog, so even when queue Xw is empty and its

server is idled, the server in queue Xw+1 should still be working and serve an extra customer.

If we define τS(w) := inf{t > Tk−1|(Xw + 1)(t) = 0} as the first time when the backlog process

Xw + 1 hits zero, then we know that τS(w)≥ 1. We can infer that in Case 1, it must be the

case τ= = τS, and Xw(τ=) = X̃w(τ=) = 0;

Case 2 Queue X̃w has one more customer balk than queue Xw during [Tk−1, τ=]. This could happen

because the balking rate for the longer queue X̃w is larger. Let Ãw(U) and Aw(U) denote

the cumulative number of arrived jobs for queue X̃w and Xw during time interval U ⊆ R,

respectively. Define τA(w) := inf{t|Aw(Tk−1, t)− Ãw(Tk−1, t) = 1}, the first time when X̃w had

one more balked customer than Xw. In Case 2, we have τ= = τA.

According to the above discussions, during interval [Tk−1, τ=], queue X̃w could have either zero

or one more extra balked customer compared to Xw, which corresponds to Case 1 and Case 2,

respectively. Once X̃w has one more balked customer than Xw, the two sample paths must coincide,

so X̃w cannot have more than one balked customers than Xw. Therefore,

E[
∫ τ=
s

(λn +G(w)λd)(b(X̃
w(t))− b(Xw(t)))dt|(i, s)])

= E[number of extra balkings in queue X̃w compared to that in queue Xw|(i, s)]
= Pr(Case 1|(i, s)) ∗ 0 + Pr(Case 2|(i, s)) ∗ 1
= Pr(τA(w)< τS(w)|(i, s))
=: qi(s,w).

(EC.24)

where the last equation holds by the fact that Case 2 happens if and only if τA(w)< τS(w). Plugging

the above equation into (EC.23) leads to the expression (EC.10) for E[ω(i, s,∆w)|(i, s)].
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We next prove that the function qi(s,w) defined above satisfies the properties specified in Propo-

sition EC.3. Since qi(s,w) could be represented as a conditional probability, it must range in (0,1).

Furthermore, the conditional probability of Pr(τA(w)< τS(w)) must increase in the initial queue

length i, because τS(w) has to be larger when the queue initially has more backlogs. To upper

bound ∂qi(s,w)

∂w
, we express qi(s,w) using an alternative expression as follows,

qi(s,w) = 1−Pr(τA(w)> τS(w))

= 1−Pr
(
Aw([Tk−1, τS(w)]) = Ãw([Tk−1, τS(w)])

)
,

(EC.25)

where the second equation follows that τA(w)> τS(w) if and only if the arrival processes of the two

queues, Aw and Ãw, are identical in [Tk−1, τS(w)]. Because λv(X
w + 1,w,λd)≤ λv(Xw,w,λd), the

two arriving process Ãw and Aw can be coupled in the way that Ãw(s, t)≤Aw(s, t) on any interval

[s, t], and the process Aw− Ãw is a compound Poisson process N δw which has arrival intensity

∆λb(X
w(t)) := λv(X

w+1,w,λd)−λv(Xw,w,λd) = (b(Xw(t)+1)−b(Xw))(λn+G(w)λd). (EC.26)

Therefore, Aw(Tk−1, τS(w)) − Ãw(Tk−1, τS(w)) is a Poisson random variable with mean∫ τS(w)

Tk−1
∆λb(X

w(t))dt. Note that ∆λb is led by the difference in balking rates, which differs from

∆λv, which is led by ∆w.

If we define τwj (s, t) :=
∫ t
s
I(Xw(x) = j)dx as the total time that Xw remains in state j within

the time window [s, t], then∫ τS(w)

Tk−1
∆λb(X

w(t))dt =
∫ τS(w)

Tk−1
∆λb(X

w(t))dt

=
∑

j

∫ τS(w)

Tk−1
∆λb(j)I(Xw(t) = j)dt

=
∑

j τ
w
j (Tk−1, τS(w))∆λb(j).

(EC.27)

Thus, equation (EC.25) implies that

qi(s,w) = 1−E[exp
(
−
∫ τS(w)

Tk−1
∆λb(X

w(t))(dt)
)

]

= 1−E[exp
(
−∑j τ

w
j (Tk−1, τS(w))∆λb(j)

)
]

= 1−E[exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
].

(EC.28)

Now suppose w has been increased by a sufficiently small amount δw > 0. We may express ∂qi(s,w)

∂w

as the following limit,

∂qi(s,w)

∂w
= limδw→0

1
δw

(qi(s,w)− qi(s,w− δw))

= limδw→0
1
δw

E[exp
(
−∑j τ

w−δw
j (Tk−1, τS(w− δw))(b(j+ 1)− b(j))(λn +G(w− δw)λd)

)
]

− 1
δw

E[exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
],

(EC.29)

where Xw−δw is a queue backlog process corresponding to parameter w− δw and with initial state

Xw−δw(Tk−1) =Xw(Tk−1), and τw−δwj (Tk−1, τS(w− δw)) denotes the total amount of time that a

process Xw−δw spends in state j.
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We next show that with probability one, for all j = 0,1, . . .,

τwj (Tk−1, τS(w))≤ τw−δwj (Tk−1, τS(w− δw)). (EC.30)

To prove the above inequality, we construct a sequence of intervals A :=∪Nn=1[an, bn) over the time

horizon [Tk−1, τS(w− δw)], that is, before Xw−δw hits zero. The specific construction of intervals

[an, bn] proceeds as follows.

Let S denote the arrival epochs of a non-homogeneous Poisson process N δw. Let

an = min{v ∈ V|v≥ bn−1}, (EC.31)

that is, the next time at which queue Xw−δw has an extra arrival compared to queue Xw after the

previous interval (When n= 1, we have a1 = v1 by simply letting b0 = Tk−1.

Suppose s= an − banc and j =Xw−δw(a−n )(:= limt↑anX
w−δw(t)). Since Xw−δw has increased to

j+ 1 at time an, by looking into the sample paths of Xw−δw, we can deduce that Xw−δw must visit

state (j, s) at least once before hitting zero. We then define bn as the first time at which Xw−δw

visits (j, s), that is,

bn = inf{t > an|Xw−δw(t) =Xw−δw(a−n ) and s= t−btc}. (EC.32)

According to the construction of A, there are no points in V that lie in intervals ∪Nn≥1[bn−1, an)∪
[bN , τS(w−δw)), which is obtained by removing all intervals from A from time horizon [Tk−1, τS(w+

δw)]. Therefore, δw causes no difference for the two sample paths during the time intervals

∪Nn≥0[bn−1, an)∪ [bN , τS(w− δw)). Moreover, we always have Xw−δw(bn) =Xw(an), and bn−bbnc=

an−banc by our construction of bn. Because the stochastic behavior of Xw and Xw−δw depends on

history only through state (Xw(bn), bn−bbnc), we can exactly couple the sample paths {Xw(t) : t∈
[Tk−1, τS(W )]} and {Xw−δw(t) : t∈∪Nn≥0[bn−1, an)∪ [bN , τS(w−δw))}. As a result, for all j = 0,1, . . .,

τwj (Tk−1, τS(w)) =
∫ τS(w)

Tk−1
I(Xw(t) = j)dt

=
∫ τS(w−δw)

Tk−1
I
(
Xw−δw(t) = j, t∈∪Nn≥0[bn−1, an)∪ [bN , τS(w− δw))

)
dt

≤
∫ τS(w−δw)

Tk−1
I (Xw−δw(t) = j)dt

= τw−δwj (Tk−1, τS(w− δw)),

(EC.33)

which proves inequality (EC.30). Furthermore,

1
δw

E[exp
(
−∑j τ

w−δw
j (Tk−1, τS(w− δw))(b(j+ 1)− b(j))(λn +G(w− δw)λd)

)
≤ 1

δw
E[exp

(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
.

(EC.34)
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Plugging inequality (EC.34) into the RHS of equation (EC.29) leads to

∂qi(s,w)

∂w

= limδw→0
1
δw

E[exp
(
−∑j τ

w−δw
j (Tk−1, τS(w− δw))(b(j+ 1)− b(j))(λn +G(w− δw)λd)

)
]

− 1
δw

E[exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
]

≤ limδw→0
1
δw

E[exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w− δw)λd)

)
]

− 1
δw

E[exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
]

= −G′(w) ∂
∂G(w)

E[exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
]

= −f(w)(w)E[ ∂
∂G(w)

exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
]

= −f(w)wE[−∑j τ
w
j (Tk−1, τS(w))(b(j+ 1)− b(j))λd

exp
(
−∑j≥0 τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
]

= f(w)wλd
λn+G(w)λd

E[
∑

j τ
w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

exp
(
−∑j τ

w
j (Tk−1, τS(w))(b(j+ 1)− b(j))(λn +G(w)λd)

)
]

=: f(w)wλd
λn+G(w)λd

E[z exp(−z)],
(EC.35)

where the third equality follows from validity of swapping the derivative and expectation operators

due to the bounded convergence theorem (the derivative is uniformly bounded), the last equation

follows by defining z :=
∑

j≥0 τ
w
j (Tk−1, τS(w))(b(j + 1)− b(j))(λn +G(w)λd). Because z exp(−z)≤

1− exp(−z) for all z ≥ 0, and 1− exp(−z) = qi(s,w) by equation (EC.28). We have

∂qi(s,w)

∂w
≤ f(w)w

λn +G(w)λd
(1− exp(−z)) =

f(w)wλd
λn +G(w)λd

qi(s,w). (EC.36)

�

EC.6.2. Proof of Proposition EC.4

Since Xw is positive recurrent as we proved in Proposition 1, the sample path of Xw has to visit

state 0 for infinitely many times. We use τ0 and τC0 , respectively, to denote the random sojourn

time when each time Xw visits state 0 and and all other states, respectively. By positive recurrence,

we have EτC0 <∞. Since the arrival rate of Xw at Xw = 0 is upper bounded by λd + λn, it takes

at least an exponentially distributed random period with mean 1
λd+λn

for Xw to exit 0. Thus, we

deduce that τ0

st

≥EXP(λd +λn) 5. When Xw−∆w(t)>Xw(t) = 0, then the balking rate of Xw−∆w(t)

is strictly larger than that of Xw(t) by at least b(1)− b(0). Thus, the virtual arrival rate of Xw−∆w

is less than that of Xw by at least (b(1)−b(0))(λn+G(w)λd) when the latter hits zero. By coupling

Xw−∆w and Xw, their difference ∆X(w,∆w, t) := Xw−∆w −Xw has a departure rate of at least

(b(1)− b(0))(λn +G(w)λd) after Xw visits zero.

5 Note that
st

≥ represents the usual stochastic order. In particular, X
st

≥Y if and only if Pr(X ≤ z)≤Pr(Y ≤ z) for all
z ∈R.
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Let τ0 denote the random sojourn time of Xw at state 0. Let τC0 denote the random period

from Xw leaves state 0 till the next time when Xw visits 0 again. Since τ0

st

≥EXP(λd + λn), each

time when Xw(t) hits 0, a departure happens to ∆X(w,∆w, t) before Xw leaves state 0 with

probability of at least (b(1)−b(0))(λn+G(w)λd)

(b(1)−b(0))(λn+G(w)λd)+λn+λd
. Because Xw visits 0 once after a random period

τC0 , the time period between two successive departures of ∆X(w,∆w, t) can be upper bounded by∑κ

i=1Zi, where Zi
d
=τC0 + τ0, and κ is a geometric distributed random variable with “success” rate

(b(1)−b(0))(λn+G(w)λd)

(b(1)−b(0))(λn+G(w)λd)+λn+λd
and “success” corresponds to a departure event of ∆X(w,∆w, t).

By analyzing the expected inter-arrival and inter-departure time of ∆X(w,∆w, t), we deduce that

∆X(w,∆w, t) can be dominated by a stochastic process ∆X(t), which is the length of an M/G/1

queue with arrival rate o(1) and random service time
∑κ

i=1Zi, whose expectation EκE(τC0 + τ0)

is finite and independent to ∆w. We know that at steady state Pr(∆X(t)> 0) = o(1), which also

implies that a proportion of 1− o(1) time points in T qualify as the endpoints of regular intervals.

�

EC.6.3. Proof of Proposition EC.5

We first state two facts: (1) Xw is a periodic stationary process with distribution π(s) at any

time t with t− btc = s; (2) as a result of (1), N∆w is a non-homogeneous Poisson process with

time-varying arrival intensity
∑

j πj(s)∆λv(j) at any time t with such that t−btc= s.

Using the Bayes’ rule, we can formulate the probability in equation (EC.11) as follows,

Pr([Tk−1, Tk]∈ Γi,ds) = Pr(Tk−1−bTk−1c ∈ ds,Xw(Tk−1) = i)
= Pr(Tk−1−bTk−1c ∈ ds)Pr(Xw(Tk−1) = i|Tk−1−bTk−1c ∈ ds)
= Pr(Tk−1−bTk−1c ∈ ds) πi(s)∆λv(i)∑

j πj(s)∆λv(j)
.

(EC.37)

The arrival epochs of a non-homogeneous, periodic Poisson process are not mutually independent,

so it is difficult to characterize the probability Pr(Tk−1 − bTk−1c ∈ ds) directly. We thus try to

calculate the conditional probability Pr(Tk−1 − bTk−1c ∈ ds|Tk−2 − bTk−2c= h) for each h ∈ [0,1).

Given Tk−2−bTk−2c= h, then by the properties of the non-homogeneous Poisson process, we have

Pr (Tk−1−bTk−1c ∈ ds |Tk−2−bTk−2c= h)
=
∑

j[Pr(Tk−1 < j+ s+ ds |Tk−1 ≥ j+ s)][Pr(Tk−1 ≥ j+ s |Tk−2−bTk−2c= h)]

=
∑

j[
∑

j πj(s)∆λv(j)ds][exp
(
−
∫ j+s
h

∆λv(t)dt
)

]

= [
∑

j πj(s)∆λv(j)ds]
∑

j≥0[exp
(
−
∫ j+s

0
∆λv(t)dt

)
] exp(

∫ h
0

∆λv(t)dt)

= [
∑

j πj(s)∆λv(j)ds]
exp(

∫ h
0 ∆λv(t)dt−

∫ s
0 ∆λv(t)dt)

1−exp(−∆λ∗v)

= [
∑

j πj(s)∆λv(j)ds]
1+o(1)

∆λ∗v+o(∆λ∗v)

=
[
∑
j πj(s)∆λv(j)ds](1+o(1))

∆λ∗v
,

(EC.38)

where the summation starts with j = 0 when s ≥ h, or with j = 1 otherwise. The fourth

equality follows from the fact that
∑

j≥0[exp
(
−
∫ j+s

0
∆λv(t)dt

)
] is a geometric series with ratio
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exp(−∆λ∗v)
(

:= exp(−
∫ 1

0
∆λv(t)dt)

)
, and the fifth equality follows from the Taylor expansion of

exp(−∆λ∗v) at zero and the fact that |
∫ h

0
∆λv(t)dt−

∫ s
0

∆λv(t)dt|< |
∫ 1

0
∆λv(t)dt|= o(1).

By the property of non-homogeneous Poisson process, the probability of Tk−1 − bTk−1c ∈ ds
depends on the history only through the value of h. Equation (EC.38) further states that the choice

of h only makes a difference o(1) to that probability. We thus conclude that

Pr (Tk−1−bTk−1c ∈ ds) = Eh[Pr (Tk−1−bTk−1c ∈ ds|Tk−2−bTk−2c= h)]

=
∑
j πj(s)∆λv(j)ds(1+o(1))

∆λ∗v
,

(EC.39)

where the second equation follows from equation (EC.38). Plugging equation (EC.39) into equation

(EC.37) leads to the conclusion of the proposition. �.

EC.7. Proof of Lemma 5

Proof. Because of balking and no-show, every new arrival only has probability (1−Eb(X∗))(1−
η) to be actually served and contribute to an effective departure. Each of those served patient

has probability G(w) =
∫ w

0
pf(p)dp and p − G(w) =

∫ 1

w
pf(p)dp to request an RFU or an effec-

tive PFU, respectively. By the RTA assumption, the backlog follows the stationary distribu-

tion upon each arrival of each PFU, so the average balking rate for each PFU is Eb(X∗) :=∑∫ 1

0
πi(s)b(i)ds. Therefore, each served patient results in a second effective slot with probability

(1− η) (G(w)(1−Eb(X∗)) + p−G(w)). If we total up all the expected number of returning cus-

tomers led by every new visit, we derive an expression for the effective departures λd as a sum of

geometric series,

λd =
∞∑
k=0

(1− η)(1−Eb(X∗))λn ((1− η)(G(w)(1−Eb(X∗)) + p−G(w)))
k
. (EC.40)

By ignoring the no-show rate, we can derive an upper bound for λd as

λd ≤
∑∞

k=0(1−Eb(X∗))λn (G(w)(1−Eb(X∗)) + p−G(w))
k

≤ (1−Eb(X∗))λn
1−(G(w)(1−Eb(X∗))+p−G(w))

.
(EC.41)

By Eb(X∗)≥ 0, we derive a lower bound for λn as

λn ≥
1− p+G(w)

1−Eb(X∗)
λd−G(w)λd ≥ (1− p)λd. (EC.42)

Plugging the above inequality into inequality (35), we know that it suffices to show the following

inequality

1≥ 2λdw
2f(w)

(1 + γ)(1− p+G(w))λd
=

2w2f(w)

(1 + γ)(1− p+G(w))
. (EC.43)

We next prove the above inequality when p satisfies either condition in Theorem 2. If p∼Beta(α,β)

with β > 1, then f(p) must decreases in p due to β > 1. Thus, f(p)≥ f(w) for p∈ [0,w]. Thus,∫ w

0

pf(p)dp≥
∫ w

0

pf(w)dp=
1

2
w2f(w). (EC.44)
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In addition, since p≤ 1/4,

2w2f(w) + (1 + γ)(p−G(w)) = 4(1
2
w2f(w)) + (1 + γ)

∫ 1

w
f(p)pdp

≤ 4
∫ w

0
pf(p)dp+ (1 + γ)

∫ 1

w
f(p)pdp

≤ 4
∫ 1

0
p(fp)dp+ γ(p−G(w))

= 4p+ γ(p−G(w))
≤ 1 + γ(p−G(w))
≤ 1 + γ.

(EC.45)

As a result, 2w2f(w)< (1 +γ)(1−p+G(w)), which proves inequality (EC.43) and thus inequality

(EC.41).

Alternatively, if p has a uniform distribution over [a, b], then f(w) = 1/(b− a) for all w ∈ [a, b].

Thus,
2w2f(w) + (1 + γ)(p−G(w)) = 4w2

2(b−a)
+ (1 + γ) b

2−w2

2(b−a)

≤ (1 + γ) 3w2+b2

2(b−a)

≤ (1 + γ) 4b2

2(b−a)

≤ 1 + γ.

(EC.46)

where the second inequality follows from w≤ b. �

EC.8. Computation of the Effective Throughput Rate

The RTA-based analytical framework introduced in Sections 5 and 6 allows us to explicitly compute

the stationary distribution of the queue lengths π∗(w) and the mean-preserving effective through-

put rate λd(w) under a given w in both an open-access system or a traditional appointment-booking

system with state-dependent balking. Computing the values of λd(w) allows us to evaluate the

PFU policy being used as well as identify the optimal threshold w∗.

The main idea of computing λd(w) is to iteratively solve the fixed-point equations (7) (for open-

access system) and (11) (for traditional booking system). Because the state space for traditional

booking system can be infinitely large, we truncate the state space by enforcing the queue length to

stop increasing when it hits a large number M . Then we can compute the stationary distribution

by solving πT = πTP . This algorithm, referred to as the RTA algorithm, is provided below. We

only provide a version for the traditional appointment system, but one can easily adapt this version

to the open-access system.

Initialize: Set the number of iteration m← 0. Assign λ
(m)
d with any number in (0,1).

Step 1: In the m-the iteration, solve the probability transition matrix P := (pij) for the

embedded discrete-time Markov chain {X(k)|k = 1,2 . . .}. The stationary distribution of this

discrete embedded Markov chain gives us π(0), the stationary distribution for the backlog

size after the completion of each slot. The probability transition matrix P can be calculated

as follows,

P0j =

{
q0,0(1) + q0,1(1) if j = 0
q0,j+1(1) if j ≥ 1,

Pij =

{
0 if j < i− 1, i > 0
qi,j+1(1) if j ≥ i− 1, i > 0.

(EC.47)
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In the above equation, {qi,j(s)|j = 0,1, . . .} is the transition probability for a pure-birth process

that stayed at initial state i at time 0 and had moved to state j at time s ∈ [0,1]. Since the

pure-birth process has a state-dependent birth rate λv(i,w,λ
m−1
d ) given by (8). The transition

probability can be computed recursively using the following equation; see (Ross 2014).

qi,j(s) :=
0 if j < i

exp(−λv(i,w,λ(m−1)
d )s) if j = i

λv(j− 1,w,λ
(m−1)
d ) exp(−λv(j,w,λ(m−1)

d )s)
∫ s

0
exp(λv(j,w,λ

(m−1)
d )t)qi,j−1(t)dt if j > i.

(EC.48)

Step 2: Truncate the transition matrix P and Q to only have state 0,1,2, . . . , n for some large

integer M (e.g.,M = 100). Normalize each row to have sum of one. Calculate the stationary

distribution for the embedded Markov process, as

(π(m)(0))T ← lim
N→∞

(
1

M
eM

(0))TPN , (EC.49)

where eM is an M -dimensional all-one vector.

Step 3: Calculate π(m)(s) at other s∈ (0,1) using

(π(m)(s))T ← (π(m)(0))TQ(s), (EC.50)

where Q(s) := (qij(s)) for s∈ [0,1). We then have update

(π∗i )
(m)←

∫ 1

0

π
(m)
i (s)ds for i= 0,1, . . . , n. (EC.51)

Step 4: With (π∗)(m), calculate the average balking rate as Eb(X∗)(m) =
∑

i(π
∗
i )

(m)b(i). Update

λd as

λ
(m+1)
d ←= (1− η)E(π∗)(m)

(
(1− b(X∗))(λn +G(w)λ

(m)
d ) + (p−G(w))λ

(m)
d

)
. (EC.52)

Whenever |λ(m+1)
d −λ(m)

d |< ε for some tolerance ε, terminate the algorithm; otherwise, update

m←m+ 1 and go back to Step 1.

The approximation mainly stems from Step 2 and 3, where we have to truncate the infinite-

dimensional matrix P to a M -dimensional matrix and use the distribution the N -th transition to

approximate π(0). If we ignore the approximation involved in these two steps, then the algorithm

is guaranteed to converge by the following Proposition.

Proposition EC.6. If the RTA algorithm can calculate the (π∗)(m) accurately for a given λ
(m)
d in

each iteration, then the algorithm generates a sequence of λ
(m)
d that converges to λd(w), the unique

solution to Equation (9).
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Proof. Given any w, consider the function V (λd) that we have defined in the proof of Propo-

sition 1. According to Lemma 4, the derivative
∂E(π∗)(λd)b(X

∗)

∂λd
exists. So we may calculate the

derivative of V (λd) as

V ′(λd) = −(1− η)
∂E(π∗)(x)b(X

∗)

∂λd
(λn +G(w)λd) + (1− η) ((1− b(X∗))G(w) + (p−G(w)))

= −(1− η)
∑

i
∂λv(i,w,λd)

∂λd

[∫ 1

0
πi(s)qi(s,w)ds

]
+ (1− η) ((1− b(X∗))G(w) + (p−G(w)))

= −(1− η)
∑

i ((1− b(i))G(w) + 1−F (w))
[∫ 1

0
πi(s)qi(s,w)ds

]
+(1− η) ((1− b(X∗))G(w) + (p−G(w))) .

(EC.53)

Since
∑

i ((1− b(i))G(w) + 1−F (w))
[∫ 1

0
πi(s)qi(s,w)ds

]
< 1, and (1− b(X∗))G(w) + (p−G(w))<

1, we deduce that

−1<V ′(λd)< 1. (EC.54)

Therefore, V (λd) is a contracting mapping. As we proved in Proposition 1, the equation V (λd) = λd

always has a unique fixed point λd ∈ [0,1). By contracting mapping theorem, λ
(m)
d , which is derived

by applying the operator V (·) on λ
(0)
d for m times, must converge to that fixed point. �

EC.9. Proof of Proposition 2

Proof. The positive recurrence and irreducibility of XW (·) follow from the finite buffer capacity

of Queue W. To prove positive recurrence of XA(·), we note that XA(·) is stochastically larger

when r is larger. So it suffices to prove positive recurrence of {XA(t)} when r= 1. In that case, XA

is exactly the queue-length process in a traditional appointment system (without the open-access

queue) except that each slot has a length of 1/R instead of 1. The positive recurrence of XA thus

follows from Proposition 1. XA(·) is clearly irreducible because all states communicate with the

state 0. The existence of a (periodic) steady state distribution thus follows from positive recurrence,

and the uniqueness follows from irreducibility. �

EC.10. Proof of Theorem 3

Proof. To proceed with the proof, we consider the function V r defined in (37) as a function

of both λd and w, and express it as V r(λd,w,π
A,∗(λd,w), πW,∗(λd,w)). Then by taking the full

derivative with respect to w at both sides of Equation (37), we get

0 ≡ dV r

dw

= [
∑

i
∂V r

∂π
A,∗
i

∂π
A,∗
i
∂w

+ ∂V r

∂π
W,∗
K

∂π
W,∗
K
∂w

+ ∂V r

∂w
] + [

∑
i

∂V

∂π
A,∗
i

∂π
A,∗
i

∂λd
+ ∂V r

∂π
W,∗
K

∂π
W,∗
K

∂λW
+ ∂V

∂λd
]∂λd
∂w

=: Ξr1(λd,w) + Ξr2(λd,w)λ′d(w).

(EC.55)

where Ξr1(λd,w) and Ξr2(λd,w) are the partial derivatives of V r with respect to w and λd (upon

keeping the other variable constant when taking each derivative), respectively. We have shown

in the proof of Lemma 6 that the function V r is strictly decreasing in λd for all fixed values of
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w ∈ [0,1]. Therefore, we have Ξr2(λd,w) < 0 for all w,λd,R ∈ [0,1], λ′d(w) = −Ξr1(λd,w)/Ξr2(λd,w)

must share the same sign with Ξr1(λd,w), i.e., either both are positive or both are negative. So it

suffices to analyze the sign of function Ξr1(λd,w). Similar to Equation (19), we express Ξr1(λd,w)

as follows

Ξr1(λd,w) =
∑

i
∂V r

∂π
A,∗
i

∂π
A,∗
i
∂w

+ ∂V r

∂π
W,∗
K

∂π
W,∗
K
∂w

+ ∂V r

∂w

= −r∑i(λn +G(w)λd)b(i)
∂π
A,∗
i
∂w
− rwf(w)λd

∑
i π

A,∗
i b(i)

−(1− r)∂π
W,∗
K
∂w

(λn +G(w)λd)− (1− r)πW,∗K f(w)wλd.

(EC.56)

Next we determine the sign of the right-hand-side (RHS) of equation (EC.56) by discussing the

two extreme cases, namely R→ 0 and R→ 1.

When R→ 0, Queue A becomes extremely crowded. As a result, the change to the arrival rate

equals the change to the total balking rate because all extra arrivals have to balk with probability

one. That implies, ∂(
∑

i r(λn +G(w)λd)b(i)π
A,∗
i )/∂λA =

∑
i r(λn +G(w)λd)b(i)(∂π

A,∗
i /∂λA)→ 1,

and thus ∑
i r(λn +G(w)λd)b(i)

∂π
A,∗
i
∂w

=
∑

i r(λn +G(w)λd)b(i)
∂π
A,∗
i

∂λA

∂λA(w,λd)

∂w
→ ∂λA(w,λd)

∂w

= −rwf(w)λd
∑

i π
A,∗
i b(i)− (1− r)wf(w)λd.

As a result, the RHS of Equation (EC.56) can be expressed as

rwf(w)λd
∑

i π
A,∗
i b(i) + (1− r)wf(w)λd− rwf(w)λd

∑
i π

A,∗
i b(i)

−(1− r)∂π
W,∗
K
∂w

(λn +G(w)λd)− (1− r)πW,∗K f(w)wλd

= (1− r)wf(w)λd− (1− r)∂π
W,∗
K
∂w

(λn +G(w)λd)− (1− r)πW,∗K f(w)wλd.

(EC.57)

We apply the above logic to Queue W. Since not all patients in Queue W will balk, we have

(λn +G(w)λd)(∂π
W,∗
K /∂λW )≤ 1. So

(1− r)(λn +G(w)λd)
∂πW,∗K

∂w
= (1− r)(λn +G(w)λd)

∂πW,∗K

∂λW

∂λW
∂w
≤ ∂λW

∂w
= (1− r)πW,∗K f(w)wλd.

(EC.58)

We then can bound (EC.57) as

(EC.57)≥ (1− r)f(w)wλd− 2(1− r)πW,∗K f(w)wλd. (EC.59)

We want to show the above quantity is positive, or equivalently, πW,∗K < 1/2. To show that, notice

that the utilization of Queue W is given by (λn +λdG(w))(1−πW,∗K )/(1−R), which implies

πW,∗K ≤ (1−πW,∗K )(1− r)(λn +λdG(w))

1−R → (1−πW,∗K )(1− r)(λn +λdG(w)), (EC.60)

Given (1− r)λn/(1− p)≤ 1, we have (1− r)(λn +λdG(w))≤ (1− r)λn/(1− p)≤ 1. This inequality

and (EC.60) imply that πW,∗K ≤ 1− πW,∗K . So πW,∗K ≤ 1/2 and (EC.59) is positive for all w. Recall
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that this quantity shares the same sign with λ′d(w). So λd(w) is strictly increasing over [0,1] and

thus wC = 1.

When R→ 1, still we look into the right-hand-side of Equation (EC.56). We want to derive an

alternative expression for the first term −r∑i(λn +G(w)λd)b(i)
∂π
A,∗
i
∂w

using the handy expression

(20) in Lemma 4. However, to adapt to the setting in Lemma 4, we need to scale the time horizon

in Queue A by R so that its equivalent service time is 1 slot to keep consistency with the setting of

Lemma 4. Then the virtual arrival rate in Queue A is actually λA/R. Therefore, the term ∂λv(w,λd)

∂w

in Equation (20) should be expressed as

1

R

∂λA(w,λd)

∂w
=−rwf(w)λd

R

∑
i

πA,∗i b(i)− (1− r)f(w)wλd
R

, (EC.61)

and the term λn +G(w)λd in Equation (20) should be replaced by (λn +G(w)λd)/R.

We thus derive the following alternative expression for the (EC.56)

(EC.56) = (rwf(w)λd
∑

i π
A,∗
i b(i) + (1− r)wf(w)λd)(

∫ 1

0
πA,∗i (s)q(i, s)ds)− rwf(w)λd

∑
i π

A,∗
i b(i)

−(1− r)∂π
W,∗
K
∂w

(λn +G(w)λd)−πW,∗K (1− r)f(w)wλd
≤ (1− r)wf(w)λd(

∫ 1

0
πA,∗i (s)q(i, s)ds)−πW,∗K (1− r)f(w)wλd

→ (1− r)wf(w)λd(
∫ 1

0
πA,∗i (s)q(i, s)ds)− (1− r)f(w)wλd < 0,

(EC.62)

where the first inequality follows from q(i, s) ≤ 1 and
∂π
W,∗
K
∂w

> 0. The convergence follows from

πW,∗K → 1 when R→ 1.�


