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Problem Definition: We study how clinical teams adaptively respond to real-time deviations from the

planned operating room (OR) schedules and the associated consequences of these responses. Specifically,

we investigate whether clinical personnel adjust their service speed when they are ahead of or behind the

original schedule and whether this affects patient readmissions and reoperations.

Methodology: We empirically explore these questions using a unique surgery data set that includes actual

and scheduled surgery time stamps. We construct a dynamic panel model and utilize the Arellano-Bond

approach to identify adaptive behavior. The adaptive service behavior renders an instrumental variable (IV)

for us to address endogeneity issues in estimating the impact of surgical speed on surgical quality.

Results: We identify a new type of adaptive server behavior within schedules, which complements the

existing scheduling and behavioral queueing literature. We also contribute to the literature on surgical speed

and quality. We find that surgical and cleaning teams speed up when they fall behind schedule and slow down

when they get ahead of schedule, with the slowdown exhibiting a stronger effect. Quantitatively, surgical

teams expedite the next surgery by an average of 5.6% when facing one standard deviation (SD) delay in

the planned start for that surgery, whereas they take on average 10.5% longer when they are one SD ahead

of schedule. In the turnover times, cleaning teams accelerate by 10.3% (slow down by 22.1%) on average

when they are one SD ahead of (behind) schedule. We then leverage the deviation from the scheduled start

as an IV. We present a causal study that a faster-than-scheduled procedure duration erodes surgical quality

by increasing 30-day readmission and reoperation probabilities.

Managerial implications: Our research unveils the responsive patterns of surgical and cleaning teams

when confronted with deviations from schedules in ORs. We further find that faster-than-scheduled speedup

in surgeries is detrimental to surgical quality. Understanding this behavioral phenomenon can help hospital

managers predict end-of-shift (EOS) times better. Through a counterfactual analysis, we quantify and obtain

a convex relationship between readmissions/reoperations and EOS time differences. This can assist managers

in scheduling surgeries to achieve desired efficiency-quality trade-offs.
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1. Introduction

Although service providers strive to complete scheduled activities on time, deviations are inevitable,

and the actual progress may run behind or ahead of schedule. For example, 40% - 70% of construc-

tion projects have undergone delays in different countries (Soliman and Alrasheed 2021), while

up to 28% of projects have been completed earlier than the due dates (Wolfe 2020). In the air-

line industry, approximately 20% of flights are delayed (Eltoukhy et al. 2017, Dand et al. 2019).

Delays in medical appointments have been widely reported (Ahnood et al. 2018, Qi 2017), and the

situation was recently exacerbated by the COVID-19 pandemic (McSheffrey 2022).

Service providers’ responses to schedule deviations may vary, and we categorize them into three

types using terminologies borrowed from biology (Cinquin et al. 2002). The first type is negative

(balancing) feedback, which describes service providers who attempt to reverse schedule deviations

by speeding up when facing delays and slowing down when ahead of schedule. For example, in

project and airline management, where schedule disruptions arise frequently, responses include

expediting activities to catch up when behind schedule (Li et al. 2000, Montet 2014, Bubalo and

Gaggero 2015). The second type of feedback mechanism is positive feedback, which describes service

providers who react to deviations by further amplifying them. One example is Brooks’ Law in

software project management, where delayed progress of software development leads to further

delays (Chernoguz 2011). The third possibility is that there does not appear an apparent response;

i.e., service providers adhere to their original tempo in each task, regardless if they are running

behind or ahead of schedule.

The three response types have different implications for total service duration and system

throughput. We refer to this immediate effect as the first-order impact. Moreover, service duration

changes may affect the quality of service delivered. We refer to this as the second-order impact.

For instance, pilots accelerate more to save time when flights are delayed at the cost of increased

fuel burn and carbon emissions (Marla et al. 2017). Construction projects can also be rushed to

catch up with the project deadlines, but often at the cost of poorer project quality, such as rework

(Gao and Low 2014) or reduced safety of the workers (Cheah 2007, Nepal et al. 2006).

In this paper, we explore service providers’ adaptive behavior and their first and second order

impact in a critical healthcare setting–the operating room (OR). Delays are pervasive in ORs,

with approximately 70% of surgical procedures experiencing them (Qi 2017). OR delays lead to

longer patient wait times and possible cancellations, which greatly inconvenience patients and their

caregivers. On the other hand, surgeries that finish earlier than scheduled may result in idle surgery

teams, wasting costly healthcare resources (Childers and Maggard-Gibbons 2018).
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Figure 1 OR Shift Structure

The most significant difference between ORs and other healthcare service sites is that there

is almost no chance for walk-in patients because most operations are pre-arranged appointments

made several months earlier. Emergent cases can be added to shifts at the last minute, but that

only happens for about 6.8% of all OR shifts from our data. As a result, the service providers in

ORs, which include the surgical teams and the cleaning teams (with some overlap in their staff),

are readily aware of schedule deviations by comparing the actual and planned surgery start times.

Knowing how the surgical and cleaning teams respond to schedule deviations can help OR man-

agers better predict procedure duration, improve patient experience, and estimate the potential

risk associated with the responses (Lapierre et al. 1999). Researchers have attempted to under-

stand surgical teams’ response mechanisms by surveying or interviewing surgeons. Nevertheless,

no consensus has been reached – there are results in support of positive feedback (Moulton et al.

2010), negative feedback (Orri et al. 2015), and no feedback (Dexter et al. 2006).

Instead of relying on subjective survey results, we take an econometric approach to investigate

adaptive behavior and its effects. Using a unique surgical data set including both the actual and

planned enter and exit OR times, we were able to calculate the actual and planned procedure

duration (from enter to exit) and the turnover duration (from exit to next case’s enter) as shown in

Figure 1. We develop empirical methods to investigate how surgical and cleaning teams respond to

schedule deviations. The responses by surgical and cleaning teams can be quantified by changes in

the procedure or turnover duration (i.e., cleaning and preparation), respectively, as a result of the

difference between actual and planned start and end times. To the best of our knowledge, this is

the first study to use surgical data and econometric methods to investigate the response behavior

of surgical and cleaning teams to real-time schedule updates in the OR. We find that both surgical

and cleaning teams speed up when falling behind and slow down when getting ahead of schedule,

with the slowdown exhibiting a stronger effect.

While keeping schedules on time is often desirable, attempts to do so might come with a cost, such

as compromised service quality. A rich literature finds a positive correlation between the duration
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Figure 2 Clinical Personnel Responses to Real-time Schedule Deviations in OR Shifts and Subsequent Impact

on Quality

of surgical procedures and post-surgical complication rates (Cheng et al. 2018). However, most

studies only demonstrate a correlative instead of a causal relationship between these measures.

Furthermore, researchers acknowledge that the findings of such correlation are limited due to the

inability to adjust for potential confounders (Jackson et al. 2011). This leaves the identification

of a causal effect an open question. For example, complications during surgeries tend to both

increase the surgical duration as well as increase post-surgical complication risks. In addition,

certain surgical procedures, such as distraction osteogenesis (Kempton et al. 2014), are confounders

as they correlate with longer procedure duration and higher complication rates. Using data on 30-

day post-surgical readmissions and reoperations, we address the endogeneity issue by designing an

instrumental variable (IV) that helps identify the causal impact of procedure duration on surgical

quality. The validity of our IV builds on the surgical teams’ adaptive behavior that we identify.

After correcting for the bias with the IV, we find that faster surgical procedures lead to higher

readmission and reoperation probabilities. Figure 2 summarizes the different responsive behavior

of surgical and cleaning teams in ORs and the subsequent influence on surgical quality.

To investigate these two questions, we leverage a comprehensive administrative data set that

includes 7,868 surgery cases from April, 2018, to October, 2019, in a primary children’s hospital in

Canada. The data records each surgery case’s actual and scheduled start and end times. Surgeons

and the booking office of the hospital take charge of the scheduling process of each case at most

times (Johnston et al. 2019), and the surgical teams are informed of the planned start and end

times of all cases at least one day earlier. By comparing the actual and planned time schedules

for each surgical case, we obtain (1) relative procedure duration (RPD), which is the difference

between the actual procedure duration and the planned one, (2) deviation from the scheduled
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start (DSS), which is the difference between the actual start time of the surgery and the planned

one, (3) relative turnover duration (RTD) and (4) deviation from the scheduled end (DSE) of the

procedure. Overall 62% of the operations experience delayed start compared with schedules, which

corresponds to positive DSS values. Based on these quantities, we estimate the impact of DSS on

subsequent surgical duration (i.e., RPD) and the impact of DSE on subsequent turnover duration

(i.e., RTD).

We adopt several empirical strategies in this study. First, to identify how surgical and cleaning

teams respond to real-time deviations from the original schedule, the standard ordinary least

squares (OLS) method does not work. Because the DSS for the focal surgery is correlated with

the RPD of the previous surgeries in the same shift, the OLS estimator is biased (Nickell 1981). A

similar rationale applies to DSE and RTD. To address this issue, we formulate an auto-regression

in which a linear transformation addresses the above correlation. The general moment method

(GMM) estimator of dynamic panel models is applied in which the high-order lagged regressors

serve as instruments to derive an unbiased estimator (Arellano and Bond 1991).

The GMM estimator shows that surgical and cleaning teams speed up when they fall behind

and slow down when they are ahead of schedule. Specifically, when a surgery case has one standard

deviation (SD) delayed start than planned (23.03 minutes), the surgical team would expedite the

focal surgery by 5.6% on average relative to the median procedure duration. For one SD delayed

start (15.88 minutes), the focal surgery will be prolonged by 10.5%. At the turnover stage, the

cleaning teams speed up by 10.3% when facing a SD (26.87 minutes) delayed exit and slow down by

22.1% when facing a SD (18.89 minutes) early exit. The responses of cleaning teams in the turnover

stage are more intense than surgical teams and the slowdown effect is stronger. Second, to address

the potential endogeneity in estimating the impact of surgical duration on quality, we utilize DSS

as an IV. According to the IV-probit model, an increment of procedure duration results in lower

30-day readmission (reoperation) probabilities. We did not use IV when estimating the impact

of the preceding RTD on the quality of the subsequent surgery because there is less endogeneity

concern in the estimation. The estimation results show that the preceding RTD has no significant

impact on quality.

To gain a comprehensive understanding of the influence of surgery speedup and slowdown on

OR shift end times and surgical quality, we conduct a counterfactual analysis. We unveil a convex

relation between these two quantities, which depicts the efficiency-quality trade-off frontier in the

current OR. We conclude that reducing the gap between actual and planned shift end times can

be achieved at the cost of a higher average 30-day readmission and reoperation probabilities or

vice-versa.
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To develop a comprehensive understanding of the impact of surgery speedup and slowdown on

OR end-of-shift (EOS) times and surgical quality, we conduct a counterfactual analysis. We reveal

a convex relationship between these two factors, illustrating the efficiency-quality trade-off frontier

within the current OR. We conclude that narrowing the gap between the actual and planned

EOS can be accomplished, but at the expense of increased 30-day readmission and reoperation

probabilities, or vice versa.

1.1. Contribution

Our study contributes to healthcare management and service operations literature in the following

aspects.

First, we identify healthcare providers’ responsive behavior to real-time schedule deviations in

the OR setting, which complements the vast literature on adaptive server behavior in operations

management. We find that the balancing feedback behavior exists for both surgical and cleaning

teams. Based on discussions with our clinical co-authors, reasons for this may include wanting to

avoid potential add-on cases or working overtime. This finding can help surgeons and OR managers,

especially those working in a socialized healthcare system like Canada, better predict surgery

completion times and improve shift planning. Our findings encourage policymakers to reevaluate

and develop incentive schemes for surgical teams within a socialized healthcare system, where they

currently receive a nearly fixed salary.

Second, our study provides new insights regarding the causal relationship between surgical dura-

tion and quality, which is known to be difficult due to various confounders that bring endogeneity to

the estimation process. We find that after addressing endogeneity, faster-than-scheduled surgeries

lead to increased post-surgical complication rates, which is contrary to the correlative findings in

the medical literature that longer surgical duration is associated with poorer quality outcomes. We

propose an IV to address this challenge, which has a high level of generality and the potential to

be applied to other service settings to study the quality-speed relation.

Finally, we propose an auto-regressive model to address the serial correlation of procedure dura-

tion within the same shift. We utilize the GMM estimator from dynamic panel models with the

high-order lagged regressors as instruments to derive an unbiased estimator. This allows us to

apply these statistical methods to explore the behavioral characteristics of service providers. These

methods may find other applications in queueing models, where serial correlations are common

when customers are served in sequence.

The rest of the paper is organized as follows. Section 2 reviews the literature related to our work.

Section 3 discusses the formation of hypotheses. Section 4 describes the healthcare context and
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structure of the data set, and Section 5 formulates the model and the GMM estimation method.

Section 6 presents the estimation results and heterogeneity analysis. Section 7 discusses the impact

on surgical quality and the IV-probit estimation results. Section 8 summarizes the counterfactual

analysis. Finally, Section 9 concludes the findings and provides managerial insights.

2. Literature Background

2.1. Healthcare Provider Productivity

Our research contributes to the expanding body of empirical literature that explores the relation-

ship between operational factors and healthcare providers’ productivity. KC and Terwiesch (2009)

find that hospital workers accelerate the service rate as the load increases initially, while they

decrease the service rate as the load continues to increase or remains high after a certain period.

They also provide evidence that such a high load of overwork curtails the quality of care. Chan et al.

(2017) propose a queueing model to study how delay experienced by a patient impacts service times

in intensive care units. Berry Jaeker and Tucker (2017) explore the effect of hospital occupancy

level on patient length-of-stay (LOS). They identify a “saturation effect” for hospital employees,

as they cannot speed up to overcome the workload when the occupancy level is high. Johnston

et al. (2019) conduct an exploratory study of the surgeons’ decision process of scheduling surgery

cases and identify different priority structures of decision making. Deo and Jain (2019) study how

patient length-of-stay (LOS) in a clinic varies with hour-of-day, and they find the LOS tends to

be larger early in the day while reduces later. Their findings diverge from ours because our study

focuses on how service duration is affected by deviations from the original schedule, as opposed to

examining the time of day. Shen et al. (2021) also find a negative impact of surgeon workload on

both the efficiency and quality of cardiac surgeries and propose a mixed integer program to incor-

porate these factors in surgery scheduling. Other papers discuss how behavioral factors influence

the productivity and performance of service providers Kim et al. (2015), Kc (2019), Wang and

Pourghannad (2020), Ibanez and Toffel (2020). Researchers also investigate how scheduled work-

load impacts turnover times between surgeries (Wang et al. 2013) whereas they find no significant

relationship.

Besides the influence of workload and other healthcare sites’ environmental factors, doctors’

experience and team structure have also been investigated. Kc and Staats (2012) explore how sur-

geons’ experience in focal and related tasks influence their performance. They find that a surgeon’s

focal experience has a greater effect on surgeon performance. Avgerinos and Gokpinar (2017) study

the influence of surgery team’s familiarity on team productivity. They find that a high dispersion

of pairwise team familiarity (measured by the standard deviation of the number of past collab-

orations) lowers productivity in cardiac surgeries. Ramdas et al. (2018) study surgeons’ learning
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and forgetting with new surgical device versions and the resulting impact on surgery duration and

quality. They identify significant productivity and quality costs associated with the first use of

new devices. Ibanez et al. (2018) explore how radiological doctors deviate from the prescribed task

sequence at discretion when they read images, which erodes productivity.

Our research adds to this stream of research by examining how real-time deviations from sched-

ules influence both the efficiency and quality of surgeries. We analyze the effects of real-time

discrepancies between actual occurrences and planned schedules, which sets our study apart from

other research in the field. By dissecting the dynamics of shifts, we offer a novel perspective for

understanding operating room behavior.

2.2. Surgical Speed and Quality

Our research also relates to the general topic of healthcare efficiency-quality trade-offs. In operations

management, Song and Veeraraghavan (2018) review papers on healthcare delivery quality and

summarize the most commonly used service quality metrics in healthcare settings. They show that

a critical combination of quality measures is structure, process, and outcome. Roth et al. (2019)

study the relationship among efficiency, quality, and patient experience in hospitals.

In the medical literature, a vast body of research is associated with this topic. A correlative

study by Daley et al. (2015) utilizing National Surgical Quality Improvement Project (NSQIP)

data shows a correlation between surgical duration and complications. Longer surgery time than

the statewide established standard is associated with higher risk. Wan et al. (2020) explore post-

surgical complications of plastic surgery and find that increased operative time is a common risk

factor for plastic surgeries. Christakis et al. (2019) find that operation duration is correlated with

complications for posterior retroperitoneoscopic adrenalectomy procedures. A survey paper based

on a literature review and meta-analysis by Cheng et al. (2018) propose that prolonged surgery

duration leads to an increased risk of complications.

While the aforementioned medical examples indicate that longer operation durations are corre-

lated with poorer patient outcomes, the literature also presents other findings on this topic. In a

retrospective analysis of abdominal and colorectal surgeries, Liverani et al. (1994) find that longer

surgery duration does not lead to a significant increase in complications. Schliemann et al. (2009)

find no correlation between the surgery duration and the incidence of complications in an orthope-

dic procedure. Kempton et al. (2014) review 30 papers on hand surgery and explore the duration

of treatment and complication rates. They find that the duration does not have a significant odds

ratio for post-surgical complications. McDermott et al. (2015) systematically review the preopera-

tive and intraoperative factors associated with post-surgical complication risks and also influence

procedure duration.



9

Most of the studies in this thread focus on a correlative relationship instead of a causal connec-

tion. We contribute to them by proposing an IV to tackle unobservable confounders when carrying

out a causal analysis between surgical duration and quality. Our approach enables us to address

this question with a causal perspective.

3. Hypothesis Development

Schedules are designed to enhance productivity and punctuality. However, discrepancies between

actual and planned start/end times are bound to arise once schedules are announced. In ORs, the

clinical teams review the schedules a day in advance and remain cognizant of their progress in

relation to the planned timeline throughout the day. In our analysis, we draw upon firsthand insights

from surgeons and corroborating evidence from the literature to formulate plausible hypotheses

regarding their responses to deviations between actual and planned start times.

The firsthand experience comes from the interviews with our surgeon collaborator and the sup-

porting staff. We verify the following practices in the hospital. 1) There is a culture that strives to

avoid canceling surgeries when running late, as patients have typically waited for a year or longer.

Consequently, the surgical and cleaning teams have to work overtime, instead of canceling the case

at the end of shift when they cannot finish on time. This practice supports the conjecture that

both teams speed up when faced with delays to circumvent working overtime. 2) On the flip side,

besides the scheduled elective cases, emergent add-on cases are likely to be assigned to shifts that

are finishing or have finished earlier than scheduled by the manager. However, such extra operative

cases do not result in increased financial compensation under the socialized health system. From

an incentive perspective, this supports both team’s slowdown behavior, meaning they decelerate

when ahead of schedule to avoid extra add-on cases.

We also find corroborating evidence from the literature that supports the surgical teams’ respon-

sive behavior as described above. According to interviews conducted with 23 surgeons, Orri et al.

(2015) show that surgeons feel obliged to demonstrate good time management of ORs when faced

with time constraints such as the scheduled shift. They also find a psychological reason that sur-

geons want to build a good reputation for “good sense of time and schedules.” This finding reveals

another motive that explains the delay-speedup behavior. Conversely, if they are ahead of schedule,

they feel less pressured and naturally slow down to stay close to the planned schedule. This phe-

nomenon is referred to as “situationally responsive slowing-down moment” (Moulton et al. 2010),

which complements the incentive reason behind the slowing down behavior of surgical teams. Com-

bining these findings, we propose the following hypothesis on surgical teams’ responsive behavior.
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Hypothesis 1A. Surgical teams speed up when they fall behind schedule, and they slow down

when they are ahead of schedule in the surgery stage.

For cleaning teams, we also learn that they typically receive indications from surgical teams

when falling behind or ahead of schedule at the end of a procedure. The cleaning teams then act

accordingly during the turnover stage to minimize deviations from schedules, demonstrating both

speedup (when delayed) and slowdown (when getting ahead). Additionally, cleaning teams share

concerns about not canceling surgeries and avoiding extra add-on cases, similar to surgical teams.

Overall, we propose the following hypothesis on cleaning teams’ responsive behavior.

Hypothesis 1B. Cleaning teams speed up when falling behind and slow down when being ahead

in the turnover stage.

In line with Hypotheses 1A and 1B, both surgical and cleaning teams exhibit a balancing feedback

response in their service speed when encountering deviations from the pre-established schedule.

Addressing our second research question, we consider the consequences of altering surgery dura-

tions. Substantial evidence in medical research suggests that extended operative durations correlate

with increased post-surgical complication risks. Cheng et al. (2018) review 66 related studies and

conclude that the likelihood of complications rises significantly with prolonged operative durations.

Specifically, they find a 14% increase in the likelihood of complications for every additional 30 min-

utes of operating time. However, the underlying mechanism for this finding remains uncertain since

various factors in prolonged surgeries can lead to post-surgical complications. Common examples

include increasing microbial exposure and associated infections, tissue retraction, and bleeding. In

light of this literature, we propose the following hypothesis.

Hypothesis 2A. All else equal, a longer procedure time is associated with an increased post-

surgical risk.

However, the analyses in the existing literature on this topic have a crucial flaw: they are primarily

correlative instead of causal. As mentioned in Cheng et al. (2018), correlative analyses suffer from

the inability to adjust for potential confounders, which may lead to biased results. For example, a

specific procedure called distraction osteogenesis is associated with both longer surgical duration

and higher complication rates, making it an endogenous confounder between procedure duration

and complications (Kempton et al. 2014). The anesthesia step of mechanical ventilation is another

potential confounder that influences certain post-surgical complications while adding to procedure

duration (Güldner et al. 2015). We deduce that there are multiple sources of confounders in the

relationship between surgical speed and quality, and they cannot be ignored. We also conclude that

these confounders tend to increase both surgical duration and complication risk levels.
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Apart from the influence of confounders, we observe that performing procedures faster may

increase the likelihood of making mistakes in surgery procedures (Arora et al. 2009, 2010), which

may further lead to rising post-surgical complication risks. Young et al. (2014) study the impact of

operating time on patient outcomes in knee surgeries and find that shortening procedures is asso-

ciated with an increased risk of post-surgical revisions. The reason is that surgeons aim to reduce

operative time by improving efficiency, potentially leading to compromises in surgical technique.

Consequently, we propose the following opposite hypothesis.

Hypothesis 2B. All else equal, a shorter procedure time leads to an increased post-surgical risk

when endogeneity is addressed.

4. Clinical Setting and Data

Our study is carried out at a prominent children’s hospital in Canada. The hospital serves approxi-

mately 9,700 patients annually and employs 119 surgeons across ten different clinical departments.

The hospital has 13 available operating rooms, with nine being utilized simultaneously. The primary

working hours of the hospital are on weekdays, although some emergency cases may be performed

during weekends.

4.1. Surgery Stages and Shift Scheduling

Before delving into the details of the data set, we first introduce the composition of the surgical and

cleaning teams, the surgery process, and the scheduling of an OR shift. The surgical team consists

of medical staff in different areas, with the mix depending on the procedure type. The team often

includes a surgeon, an anesthesiologist, a physician assistant, and a few nurses. The surgeon leads

the team while the other supporting professionals assist the surgeon before, during, and after the

surgery. The cleaning team, comprising cleaning staff, nurses, and technicians, is responsible for

the turnover stage between two consecutive cases. They clean the OR thoroughly after the previous

patient exits and prepare the room for the next surgery.

Figure 1 depicts the breakdown of a typical surgical procedure and the patient pathway. Upon

arrival on the surgery day (the epoch of entering the department in the diagram), nurses attend

to the patient, assessing their condition for surgery by measuring vital signs and performing other

preparations. The patient is then taken to the designated OR. The procedure duration refers to the

total time a patient spends in the OR. Once the procedure is completed and the patient exits, the

cleaning team starts working. This period (from the previous exit to the next patient’s entrance)

constitutes the turnover connecting two consecutive surgeries.

The shift’s start time, marked by the commencement of the first surgery, is typically scheduled

for either 7:45 am or 8:20 am. Occasionally, shifts may begin later due to additional training or
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administrative tasks. Prior to the shift’s start, the surgical team receives a comprehensive briefing

on the day’s surgical schedule, even though the schedule is usually sent to the team several days in

advance. The shift is usually scheduled to end between 3:15 pm - 3:45 pm. Patients with operations

scheduled for that day will be notified a few days earlier and typically arrive about two to three

hours before their scheduled surgery start times.

Scheduling surgeries in a hospital is a complex and lengthy process managed by a centralized

booking office. There are nine ORs for regular shifts and two additional ORs for emergent add-

on cases. Usually, each OR is assigned to a sole surgical team from one department throughout

the day (shift). Each shift typically includes four surgeries. The booking office then contacts the

patient and the surgeon to determine which surgeries will be performed on that date , ensuring the

total shift length close to eight hours. The booking office then drafts an OR slate for each surgery

Figure 3 An Example of an OR Slate

day in an online system. A surgery slate is a spreadsheet containing essential information for each

surgery case listed in each row. This information includes planned start and end times, planned

procedure duration, and a brief procedure description. It also contains other identifications such

as patient name, a medical record number (MRN in Figure 3), bed number, and the surgeon in

charge. Figure 3 presents an example of an OR slate with three surgeries scheduled for January

12, 2022.

We learn from our surgeon collaborators that surgeries are scheduled jointly by the booking office

and the surgeons. The booking office first forecasts the duration of each surgical case’s procedure

based on the average of all procedures of the same type in the previous calendar year. Surgeons

then make adjustments to these forecasts, taking into account the individual patient’s clinical

conditions. The booking office also sets the estimated turnover duration to either 20, 25, or 30

minutes, depending on the procedure type. A schedule is then created by sequencing the surgeries

and placing them back-to-back, ensuring the total duration, including procedure time and turnover

duration, fits roughly into an 8-hour shift.
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The completed day-shift schedule is distributed to the surgical and cleaning teams at least one

day before the surgery day so that they are well-informed about each surgery’s planned start and

end time. The finalized schedules are then recorded in the system and appear in the dataset.

Occasionally, some emergency cases are added to the shift on the surgery day without notifying

the surgical team in advance. These emergent add-on cases are not recorded on the slate since they

have no advanced schedule. However, they are still recorded in the surgical database. About 7.6%

of the shifts contain add-on cases. We discuss how to handle shifts with add-on cases in Section

4.2.

4.2. Data

The surgery dataset we use is extracted from the hospital’s system, documenting each case’s

progress in the OR and hospital from April 2018 to October 2019. The dataset includes both the

planned and actual start and end times of each surgery. It also contains patients’ demographic

information, such as case type, patient type, age, and surgical procedures.

By comparing the actual and planned time schedules for each surgical case, we obtain the

difference between the actual and planned procedure duration, which we refer to as the relative

procedure duration (RPD). A positive (negative) RPD indicates that the surgery is performed

slower (faster) than planned. A similar measure has been used in the literature to gauge a surgical

team’s speed (Pandit et al. 2009). We define the deviation from scheduled start (DSS) of surgery

as the difference between the actual start time and the planned one. Thus, a positive (negative)

DSS suggests a late (early) start of the focal case compared to the scheduled. We then obtain the

positive and negative parts of DSS, namely DSS+ and DSS−, to capture the extent of delayed and

early start, respectively. For the turnover stage, we define relative turnover duration (RTD) as the

difference between the actual and scheduled turnover duration, following our previous definitions.

A positive RTD indicates that the cleaning team is slower than the planned turnover duration

and vice versa. We then define the deviation from scheduled end (DSE) to measure the difference

between the actual and planned end time of the focal surgery. Note that as the turnover starts

immediately after a surgery’s end (see Figure 1), the end time of the focal surgery is the start time

of the turnover stage. Similar to DSS, we also compute the positive and negative parts of DSE

(DSE+ and DSE−) to measure the scale of delayed (early) end of a surgery.

We can also identify sequence shuffling and cancellations by comparing the scheduled sequence

with the actual one. Sequence shuffling indicates that the actual sequence differs from the scheduled,

which is usually caused by a patient’s failure to arrive on time. Some surgeries are canceled mid-shift

and thus will not have actual start and end times, but they can be identified from the slate.
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We apply the following exclusion criteria before proceeding with the empirical analysis. First,

we exclude all cases from the diagnostic department, as they are primarily medical examinations

instead of surgeries and do not fit the context of this study. Second, following our surgeon collabo-

rator’s suggestions, we focus on shifts with at least three surgeries, as they contain enough variation

in the shift composition. The remaining departments are listed in Table 1. Third, apart from elec-

tive surgeries, emergent add-on cases may occur during the shift. Sometimes, add-on cases will be

performed in different ORs, disrupting the original schedules. On urgent occasions, the surgeon may

leave the focal surgery (with the surgical team taking over) and attend to the inserted emergent

add-on case. To eliminate the interference of add-on cases, we exclude all emergent add-on cases

and the subsequent impacted cases, accounting for 3.6% of the total cases. Similarly, to eliminate

the interference of cancellations, we exclude surgeries following cancellations in shifts (4.7% of all).

To test the robustness of our findings, we conducted additional analyses in the Online Appendix

Section EC.2.2, excluding entire shifts containing at least one add-on case and entire shifts with

at least one cancellation. The results obtained from these robustness tests are consistent with our

estimates. Finally, to avoid potential extra training or interruptions of shifts, we exclude shifts that

do not start during the normal period (i.e., before 9 am) and surgeries occurring outside typical

shift times (before 7 am or after 7 pm), which account for 4.8%.

For the turnover stage, it is worth noting that when the next patient is not present or not ready

yet, the subsequent surgery must be postponed, leading to an artificially longer recorded turnover

duration (as turnover is the period from the prior end to the next start). To reduce this possibility,

we only include turnover samples in which the second surgery’s patient arrives at least 30 minutes

earlier than the recorded start time of the surgery (ensuring that the patient should be ready for

surgery as soon as the turnover finishes). Additionally, the turnover duration following the final

surgery in each shift is not included in our study.

The final sample consists of 7,868 surgery cases across various departments from April 2018

to October 2019. For the turnover stage, we obtain 6,210 final observations. The sample includes

1,928 shifts, with the number of surgeries ranging from three to eight for each shift. There are 111

different procedure codes across all departments. The sample features 69 surgeons with an average

of 18 years of experience, and 75% of them have more than nine years of experience. Overall,

65.3% of the surgeries in the sample experience delayed starts compared to schedules. Table 1

summarizes the variables. Most surgeries take approximately 45 to 99 minutes, as shown by the

25% and 75% quartiles and the average procedure duration is 78.53 minutes. As measures of the

relative speed of surgical teams, the average RPD and RTD in the samples are -1.048 minutes

and 1.432 minutes, respectively, which are much smaller than the average realized procedure and
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Table 1 Summary Statistics

Panel A: Continuous Variables
Variables Mean Median Std IQR 25% Q. 75% Q.

Surgery part:
Real procedure duration⋆ 78.53 67 50.47 54 45 99
Relative procedure duration (RPD)⋆ -1.048 -3 25.62 24 -14 10
Deviation from scheduled start (DSS)⋆ 7.746 7 32.02 29 -9 20
Delayed start (DSS+)⋆ 15.55 7 23.03 20 0 20
Early start (DSS−)⋆ 7.803 0 15.88 9 0 9
Age 7.561 6.571 5.197 8.798 3.014 11.81
Elective surgery indicator 0.999 0.037
Sequence shuffling indicator 0.037 0.188
N 7,868

Turnover part:
Real turnover duration⋆ 27.33 25 11.49 10 21 31
Relative turnover duration (RTD)⋆ 1.432 -1 11.49 10 -5 5
Deviation from scheduled exit (DSE)⋆ 7.779 6 38.26 42 -15 27
Delayed exit (DSE+)⋆ 18.29 6 26.87 27 0 27
Early exit (DSE−)⋆ 10.51 0 18.89 15 0 15
Different procedure in next case indicator 0.534 0.499
N 6,210

Post-surgical risk part:
30-day readmission 0.034 0.182
30-day reoperation 0.029 0.168

Panel B: Categorical Variables
Variables Categories

Patient type ADP SDC IN OUT
13.75% 84.06% 1.932% 0.254%

Patient severity I II a II b III IV V VI
0.267% 2.758% 7.855% 19.38% 44.65% 20.45% 4.639%

Department CVS DDS ENT GAST GENL NEUR OPTH ORTH PLAS UROL
0.203% 20.69% 10.17% 13.17% 11.27% 0.038% 12.44% 10.55% 6.215% 15.25%

Notes: Variables with ⋆ are measured in minutes. ADP: admitted patients, SDC: surgical daycare, IN: inpatient,

OUT: outpatient. For service departments, we have CVS for cardiovascular, NEU for neurology, DDS for dental, ENT

for otolaryngology, GAST for gastrointestinal, GENL for general, OPTH for ophthalmology, ORTH for orthopedics,

PLAS for plastic and UROL for urology.

turnover durations. This demonstrates that the scheduled procedure and turnover durations are

almost unbiased estimators of the actual durations. Sequence shuffling occurs in 3.7% of total

cases. We control for it by creating a dummy variable to label those cases. Since the turnover stage

connects two surgeries, we also include a dummy indicating whether the two surgeries are of the

same procedure type. Different procedure combinations account for 53.4% of the turnover sample.
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For patient demographics, the average age of patients is 7.6 years in the sample. Elective cases

constitute most of the sample, with only 0.1% of the sample representing emergent cases. As for

post-surgical risk measures, the average probability for 30-day readmission is 0.034, and 0.029 for

reoperation.

In Panel B of Table 1, we report the distribution of departments and patient types. Most cases

are surgical daycare (SDC) patients who rarely need to stay in the hospital overnight. Admitted

cases (ADP) account for 13.27% and require post-surgical observation. From the patient severity

distribution, we observe that most patients belong to the moderate categories: level III, IV, and

V, while severe cases (I, II a, and II b) account for about 10% of all cases. Regarding department

distribution, dental, urology, gastrointestinal, ophthalmology, general, and otolaryngology are the

major departments, each constituting more than 10% of all cases.

5. Empirical Methods for Clinical Teams’ Responsive Behaviour

The surgery data set consists of multiple shifts, each consisting of surgeries performed by the same

surgical team in the shift. We use i= 1, . . . ,N to index the shifts, with the total number of shifts

being N = 1,928. In each shift, the sequence of surgical cases is indexed by t= 1, . . . , Ti by their

actual start time, with Ti denoting the number of surgeries in shift i. Different shifts may have

different numbers of surgeries. As a result of our exclusion criteria, Ti ≥ 3, while the maximum

value of Ti is 8 in our sample. Since Ti varies across shifts, we obtain an unbalanced panel. By

slightly abusing notation, we use RPDi0 to denote the difference between the actual and planned

start time of the first case in shift i. Let Sit denote the deviation from the scheduled finish time

of case t in shift i including turnover stage, or equivalently, the deviation from the scheduled start

time (DSS) of case t+1, which has the following expression

Sit =RPDi0 +
t∑

k=1

(RPDik +RTDik) t= 1, . . . , Ti. (1)

As shown in the above expression, Sit is the cumulative deviation from the schedule, beginning with

the deviation (if any) of the start time of the first surgery yi0 and including all relative procedure

and turnover durations through the first t cases.

To estimate the impact of a positive DSS (delayed start) or a negative DSS (earlier start) on the

RPD, we formulate the following specification:

RPDit = γn · (Si,t−1)
− + γp · (Si,t−1)

+ +x⊤
itβ+ δt +αi +uit, t= 1, . . . , Ti (2)

where the negative and positive parts of Si,t−1 are included. The coefficients γn and γp represent

how surgical teams respond when getting ahead and falling behind, respectively. The unobserved
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fixed (case-independent) effect for shift i is represented by αi, and δt denotes the unobserved case-

specific effect that varies with t. β stands for the coefficient vector of the regressors xit, which

includes patient demographics and case type information. uit denotes the model’s error term.

Since Sit is a linear function of yi0, yi1, . . . , yi,t−1 as given in Equation (1), multiple lagged response

variables yik(k= 1, . . . , t−1) appear on the right-hand-side (RHS) of the regression equation for yit.

If we use the OLS method to estimate the coefficients, the errors in different regression equations

will be correlated, which violates the basic assumption of OLS (Nickell 1981). Thus, we reformu-

late the problem as an auto-regressive specification using a linear transformation. To that end,

Equation (1) renders the following relation between yit and Sit,

RPDit = Sit −Si,t−1 −RTDit, t= 1,2, . . . , Ti (3)

Plugging the above expression of yit into the left-hand-side of Equation (2) with a simple transfor-

mation, we have

Sit −RTDit = (γn − 1) · (Si,t−1)
− +(γp +1) · (Si,t−1)

+ +x⊤
itβ+ δt +αi +uit (4)

We thus obtain an auto-regressive model where the coefficients of interest, γn, and γp, are absorbed

into the coefficient of the positive and negative part of the auto-regressive term Si,t−1. Such an

auto-regressive formulation is often employed in dynamic panels, in which the regressors include

one or more lagged dependent variables, allowing for the modeling of dynamic behavior across time

series (Pesaran 2015).

For the relative turnover duration (RTD), with a slight abuse of notation, we have the following

similar specification:

RTDit = νn · (DSEi,t−1)
− + νp · (DSEi,t−1)

+ +x⊤
itβ1 +n⊤

itβ2 + δ̃t + α̃i + ũit, t= 1, . . . , Ti (5)

where DSE stands for deviation from the scheduled exit time, which is exactly the scheduled start

time of the turnover stage. Apart from the same regressors xit as in Equation (2), we also include

nit for RTD that comprises 1) indicator of whether case t and case t+1 belong to the same type and

2) the patient type of case i+1. This is because the turnover stage consists of both cleaning and

preparation steps for two consecutive operations. Like DSS, a positive DSE means that the focal

surgery finishes late (thus the subsequent turnover stage starts late) and vice versa. The coefficients

of interest are νn and νp for the negative and positive parts, respectively. The relationship between

DSE and RTD is DSEi,t =DSEi,t−1 +RTDi,t +RPDi,t+1. After similar transformation processes,

we obtain the following auto-regressive model for RTD:

DSEi,t−RPDi,t+1 = (νn−1) ·(DSEi,t−1)
−+(νp+1)·(DSEi,t−1)

++x⊤
itβ1+n⊤

itβ2+ δ̃t+α̃i+ũit, t= 1, . . . , Ti

(6)
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To obtain unbiased estimates of γn, γp in Equation (4) and νn, νp in Equation (6), we employ the

Arellano-Bond (A-B) generalized method of moments (GMM) for dynamic panel data (Arellano

and Bond 1991). Essentially, the A-B method utilizes higher-order lagged regressors as instrumental

variables (IVs) that induce a series of moment conditions for GMM estimation. It is important to

note that the directly obtained estimates are γ̂n − 1 and γ̂p + 1 for RPD (ν̂n − 1 and ν̂p + 1 for

RTD), while we report γ̂n, γ̂p, ν̂n, ν̂p after adding (subtracting) one. The details of the estimation

process can be found in the Online Appendix Section EC.1.

6. Estimation Results and Interpretations

6.1. Main Results

Table 2 displays the GMM estimation results. Note again that the directly obtained estimates are

γ̂n − 1 and γ̂p + 1 for RPD (ν̂n − 1 and ν̂p + 1 for RTD) and we report γ̂n, γ̂p, ν̂n, ν̂p after adding

(subtracting) one. We control for other regressors that vary with case sequence t in the same

shift, such as patient type, patient severity, procedure type, and the sequence fixed effect t itself,

which will not be eliminated after first-difference (FD) or forward-orthogonal deviation (FOD)

transformations in the GMM estimation process (see Section EC.1).

From Table 2 columns (1) and (2), we see that in the surgical stage, both FD and FOD GMM

estimates are significant for both early and delayed start where γ̂n by FOD-GMM is 0.444 (0.617

by FD-GMM) and γ̂p equals -0.164 (-0.219 by FD-GMM). To gain a general understanding of

these estimates, we consider a scenario where a surgical team faces an early start by one standard

deviation (SD) of the focal case (15.88 minutes). From FOD-GMM estimates, we know that the

surgical team would slow down the focal surgery by 0.444× 15.88 = 7.05 minutes (10.5% of the

median procedure duration) compared to the scheduled duration, ceteris paribus. Conversely, for

one SD delayed start of a case (23.03 minutes), the surgical team would expedite the focal surgery

by 0.164× 23.03 = 3.78 minutes (5.6% of the median procedure duration).

We observe the behavior of cleaning teams during the turnover stage from columns (3) and (4).

We find that both FD and FOD yield significant estimates for both early and delayed start, where

ν̂n by FOD is 0.292 (0.190 by FD) and ν̂p by FOD is -0.096 (-0.121 by FD). If there is a one SD

early exit of the preceding surgery (18.89 minutes), then the following turnover will be extended

by 5.52 minutes (22.1% of the median turnover duration) than planned. On the other hand, if the

exit is delayed by one SD (26.87 minutes), the turnover will be shortened by 2.58 minutes (10.3%).

These results illustrate how cleaning teams adaptively manage the turnover stage to minimize the

deviation from schedules in both directions. We also find that the scale of response in turnover is

greater compared to that of surgical teams in surgeries.
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Table 2 GMM Estimation Results

Surgery Turnover

Variables (1) FD (2) FOD (3) FD (4) FOD

Early Start 0.617*** 0.444*** 0.190*** 0.292***
(0.159) (0.126) (0.051) (0.047)

Delayed Start -0.219* -0.164* -0.121** -0.096*
(0.106) (0.081) (0.045) (0.045)

Elective case 13.78 -25.54 4.505 -20.74
(60.37) (58.13) (2.843) (19.96)

Sequence shuffling -1.557 5.274 -7.235*** -9.074***
(5.549) (5.274) (1.864) (2.284)

Age 0.280 0.277* 0.361* 0.025
(0.148) (0.138) (0.163) (0.172)

Different procedure 0.976 1.748**
(0.588) (0.543)

Next case type Included Included
Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included

Number of instruments 253 253 258 253
Number of observations 7,868 7,868 6,210 6,210

Notes: Both GMM models are estimated using the Arellano-Bond method. In column (1) and (2), we report γ̂n and

γ̂p for RPD. In column (3) and (4), we report ν̂n and ν̂p for RTD. Time fixed effect t stands for the sequence of cases

in shift i while the shift fixed effect is zeroed out in the FD (FOD) processes. Robust standard errors clustered by

shift i with the Windmeijer (2005) correction are shown in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001).

In summary, we find that surgical and cleaning teams exhibit both speedup and slowdown

behavior, supporting Hypothesis 1A and 1B, which reflects the presence of balancing feedback

behavior for both teams. We illustrate the estimates visually in Figure 4, where the slopes of

the four lines represent the coefficients in Table 2. Although the coefficients for the surgery stage

are larger than those for the turnover stage, the responses in terms of percentage scale are more

pronounced in the turnover stage. For both surgical and cleaning teams, the magnitude of slowing

down behavior is greater than speedup. Based on our discussions with surgeon collaborators, we

understand that it is more feasible for surgical teams to slow down rather than speed up, as the

latter poses potential safety concerns. Additionally, surgical teams have incentives to slow down

because when they are ahead of schedule, the OR administrator is more likely to assign extra

add-on cases to their shift with little to no extra financial compensation due to the fixed salary

scheme. During the turnover stage, cleaning teams face fewer concerns regarding clinical quality

and thus have more flexibility to accommodate responses in both directions.
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Figure 4 Surgical and Cleaning Teams’ Responsive Behavior

In Table EC.1, we also report the FE-OLS estimation results of Equation (2) and Equation (5).

We find that the estimates differ in scale from the GMM estimates due to Nickel bias (Nickell

1981), as mentioned in Section 5, although the signs of the estimates are consistent.

6.2. Heterogeneity Across Surgeon Seniority

In this section, we explore the responsive behavior across different surgeon seniority groups and we

focus on the RPD. As the leader of the surgical team during an operation, a surgeon’s experience is

crucial for guiding other team members. There is extensive literature on the relationship between

experience and performance, particularly in healthcare settings (Kc and Staats 2012, Staats et al.

2018, Ibanez et al. 2018). Senior surgeons, with more experience, are better acquainted with proce-

dures and are therefore aware of both the challenging and more manageable aspects of a procedure.

To investigate how surgical teams’ behavior varies by surgeon seniority, we perform a subsample

study for junior and senior surgeon groups. Based on discussions with our surgeon collaborators,

we choose 20 years after obtaining the Doctor of Medicine (M.D.) degree as the threshold for

surgeon seniority. In our setting, the junior (< 20) and senior (≥ 20) groups comprise 3,793 and

4,075 surgical cases, respectively.

Table 3 reveals that the senior surgeons’ group yields significant estimates for both early and

delayed starts. To understand the scale of such adaptive behavior, we again consider one SD delayed

(early) start as an example. On average, senior surgeons speed up by 0.319× 23.03 = 7.35 minutes

(10.97% of median procedure duration) or slow down by 0.505× 15.88 = 8.02 minutes (11.97% of

median procedure duration) in the focal case. Surgical teams led by senior surgeons tend to expedite

when facing delays and slow down when ahead of schedule at a similar pace, that is, the balancing
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Table 3 Heterogeneity of Responses in Surgery Stage between Surgeon Seniority Groups

Senior Junior

Variables (1) FD (2) FOD (3) FD (4) FOD

Early Start 0.679*** 0.505*** 0.368 0.404
(0.150) (0.141) (0.265) (0.210)

Delayed Start -0.359* -0.319** -0.313* -0.234
(0.155) (0.113) (0.154) (0.136)

Elective case 59.10* 42.09 15.79 -13.77
(23.89) ( 37.86) (65.03) (48.12)

Sequence shuffling -5.889 -4.485 0.166 -3.363
(7.337) (5.698) (10.28) (8.709)

Age -0.255 -0.129 0.324 0.410
(0.273) (0.189) (0.247) (0.224)

Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included

Number of instruments 244 244 227 227
Number of observations 3,793 3,793 4,075 4,075

Notes: Robust standard errors clustered by shift i with the Windmeijer (2005) correction are shown in parentheses.

(* p < 0.05, ** p < 0.01, *** p < 0.001).

feedback. In contrast, junior surgeons do not consistently exhibit speedup or slowdown behavior.

As our surgeon collaborators explain, one reason for such discrepancies between their responsive

patterns could be that, compared to junior surgeons, senior surgeons may have trainees in the OR.

Senior surgeons would be faster and more likely to allow trainees to participate in procedures for

better practice. When running late, the senior surgeon may take over from the trainee to steer the

schedule back on track. Junior surgeons, on the other hand, might perform the work themselves

without substantially involving the trainees.

7. Exploration on Surgical Quality

7.1. Empirical Methods on Quality

In this section, we investigate the impact of procedure duration speedup/slowdown on patients’

post-surgical risks (refer to Hypotheses 2A and 2B in Section 3). This analysis allows us to examine

the second-order effects of surgical teams’ responses to delayed and early starts. We consider two

indicators: post-surgical 30-day readmissions and 30-day reoperations. These indicators are widely

used to measure patient risk and clinical quality (Morris et al. 2007, Maali et al. 2018).

To ensure the accuracy of our analysis, we exclude all dental (DDS) and gastrointestinal (GAST)

surgeries based on our surgeon collaborator’s recommendations. These two service types typically
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do not involve readmissions or reoperations due to the nature of the procedures (0.61% and 1.17%).

After removing these two types of surgeries, we are left with 5,204 observations.

We first consider a probit model to analyze the relationship between the readmission/reoperation

binary variable and the RPD of a case:

r∗it = ρ ·RPDit + ζ ·RTDi,t−1 + s⊤itβ1 +F⊤
i β2 + ϵit (7)

P (rit = 1)= P (r∗it > 0) =Φ
(
ρ ·RPDit + ζ ·RTDi,t−1 + s⊤itβ1 +F⊤

i β2

)
(8)

P (rit = 0)= P (r∗it ≤ 0) = 1−Φ
(
ρ ·RPDit + ζ ·RTDi,t−1 + s⊤itβ1 +F⊤

i β2

)
(9)

where rit denotes a binary indicator for the post-surgical risk event for case t in shift i, which

could be either 30-day readmission or reoperation; r∗it stands for the associated latent variable; and

ρ is the coefficient of interest, (i.e., how the RPD of the surgery influences the probability of a

patient’s post-surgical readmission). We also control for the RTD of the preceding surgery (i.e.,

RTDi,t−1) in the model to explore whether the change in the turnover duration before the focal case

starts influences post-surgical risks and ζ stands for the associated coefficient. We include other

explanatory variables sit and fixed effects Fi such as day-of-week and surgeon. β1 and β2 denote

the coefficients for sit and Fi respectively. ϵit is the error term that follows a standard normal

distribution, and Φ(·) denotes the cumulative standard normal distribution function.

The above probit model, however, may yield biased estimates for ρ. Various factors influence a

patient’s post-surgical readmission/reoperation likelihood. Although we have controlled for patient

demographics, surgeon fixed effects, and time fixed effects, other unobservables could still be

included in the error term ϵit and correlate with the critical explanatory variable, RPD. For exam-

ple, the surgical team may encounter unexpected complications during surgery, which may take

longer to complete and result in a larger RPD. Meanwhile, unexpected complications during the

surgery are associated with a higher risk of developing post-surgical complications. Thus, even

when RPD and post-surgical complication rates are positively correlated, it does not imply causal-

ity since unobservables, such as complications during the procedure, can trigger both. In other

words, a direct estimate of ρ may have overlooked the existence of confounders and lead to an

upward bias.

We search for an appropriate IV to address the endogeneity in Equation (7) to obtain unbiased

estimates. Based on the previous section’s analyses of surgical teams’ adaptive behavior, we utilize

DSS as our IV here. First, DSS satisfies the relevance condition, as it leads to a change in the

RPD of the focal case. Second, regarding the exogeneity condition, DSS reflects the cumulative

deviations from the schedule based on earlier cases in the same shift (see Equation (1) in Section 5)



23

and should be uncorrelated with the post-surgical complication rate of the current surgery. We have

performed robustness tests to rule out other potential aspects by which the focal surgery might

be influenced by DSS, such as fatigue (see Appendix EC.2). Therefore, the exogeneity condition is

also satisfied, lending support that our IVs are valid for the estimation of ρ. Here, we adopt the

IV-probit model for identification. The structural equations are as follows:

RPDit = γ ·DSSit +x⊤
itω1 +F⊤

i ω2 + ξit

rit = 1
{
ρ ·RPDit + ζ ·RTDi,t−1 + s⊤itβ1 +F⊤

i β2 + ϵit > 0
}
,

(10)

where the first equation stands for the relation between endogenous RPD and instruments. xit rep-

resents exogenous variables. ω1 and ω2 represent the associated coefficients of the control variables.

ξit denotes the error term where ξit and ϵit follow multivariate normal distribution. We utilize the

conditional maximum likelihood (CMLE) method to obtain the estimates from the joint equations

mentioned above. The CMLE estimator is unbiased and offers two advantages compared to the

traditional two-step control function (CF) approach: (1) it is more efficient, and (2) it simplifies

the computation of partial effects (Wooldridge 2010). The estimated correlation between the two

error terms in Equation (10) is used to examine the existence of endogeneity.

We employ 30-day readmission/reoperation as proxy measures for surgical quality. We do not

have detailed data on the readmissions, so we cannot distinguish those related to the surgery,

which would otherwise provide greater accuracy. Despite the limitation of using readmissions and

reoperations as proxies for service quality, our analysis offers an IV-based approach to identify the

potential impact of service speed on service quality, which is challenging due to various potential

confounding factors (Johnston 1995).

7.2. Estimation Results

In Table 4, we present the estimation results from IV-probit and plain probit models based on 30-

day readmissions and reoperations, respectively. From columns (3) and (4), we find that for 30-day

readmission and reoperation, the RPD of focal surgery is positively significant as ρ̂nonIVrdms30 = 0.0043

and ρ̂nonIVreop30 = 0.0052. The RTD of the preceding surgery (connects the previous and focal surgery)

is not significant under the plain probit model.

The non-IV probit model seems to imply that speedup in surgeries (negative RPD) decreases

the patient’s 30-day readmission and reoperation probability. This suggests that longer procedure

duration is correlated with increased 30-day readmission and reoperation rates, which is consistent

with the correlative findings in the literature (Cheng et al. 2018). As we mentioned earlier, however,

the observed positive correlation does not necessarily imply causality. Instead, it is likely driven

by confounders that are positively correlated with both the RPD and the readmission/reoperation
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Table 4 Impact of Relative Procedure and Turnover Duration on Postsurgical Risks

Panel A: IV-Probit Panel B: NonIV-Probit

Variables (1) 30-Read (2) 30-Reop (3) 30-Read (4) 30-Reop

RPD of the focal surgery -0.0316*** -0.0332*** 0.0043** 0.0052**
(0.0066) (0.0051) (0.0014) (0.0018)

RTD of the preceding surgery 0.0007 0.0016 0.0020 0.0050
(0.0025) (0.0022) (0.0053) (0.0050)

Sequence shuffling Included Included Included Included
Age Included Included Included Included
Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included
Day-of-week fixed effect Included Included Included Included
Surgeon fixed effect Included Included Included Included

Correlation of errors 0.8842*** 0.9292***
N 5,204 5,204 5,204 5,204

Notes: Estimated by the maximum likelihood method. Dependent variables: 30-day readmission, 30-day reoperation

indicators. We report the correlation of the errors of the two equations in the IV-probit models in the final part.

Robust standard errors are shown in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001).

probability. This speculation is further supported by the second-to-last row in the table, where all

IV-probit models yield positively significant-from-zero correlations of the two errors (ξit and ϵit as

shown in Equation (10)).

The IV-probit model yields estimates ρ̂IVrdms30 =−0.0316 for readmissions and ρ̂IVreop30 =−0.0332

for reoperations. All of them are negatively significant. Comparing estimates from the IV-Probit

and plain probit models, it is clear that the estimates become negative when the upward bias is

eliminated. Thus, speedup (slowdown) in the surgery procedure leads to an increase (decrease) in

both 30-day readmission and reoperation probabilities, supporting Hypothesis 2B and rejecting

Hypothesis 2A. However, under the IV-probit model, the RTD of the preceding surgery remains

insignificant for either risk measure.

The coefficients in Table 4 do not directly quantify the impact on readmissions and reoperations

due to the nonlinear probit function. To better understand the scale of the RPD’s impact on

post-surgical risks, we compute how marginal changes in the RPD lead to different readmission

and reoperation probabilities. We perturb the RPD in each observation of the sample by plus or

minus one minute and compute the associated readmission and reoperation probabilities based on

the fitted structural model eq. (10), holding other variables constant. We then take the average of

all samples’ fitted values. We find that expediting the relative speed of surgeries by one minute

increases the average 30-day readmission probability by 3.973 ×10−3 (and increases the average



25

30-day reoperation probability by 3.994 ×10−3), while prolonging the RPD of surgeries by one

minute decreases the average readmission probability by 3.629 ×10−3 (and decreases the average

reoperation probability by 3.587 ×10−3).

8. Counterfactual Study

The results in the previous section reveal the trade-off between surgical speed and quality in oper-

ating rooms (ORs). We find that faster-than-scheduled operations lead to increased post-surgical

readmission/reoperation risks and vice versa. This section presents a counterfactual study to quan-

titatively measure the trade-offs between efficiency and quality, providing managerial insights to

surgeons and hospital managers. Specifically, the counterfactual study aims to demonstrate the

relationship between the disparity between the actual and planned end-of-shift times (EOS) and

post-surgical readmissions and reoperations. Surgical teams are likely concerned about minimizing

the difference between the actual and scheduled EOS, which refers to the finishing time of the

last surgery in a shift. If the shift ends later, it means that the surgical team has to work over-

time, whereas if the shift ends significantly earlier than scheduled, another add-on surgery may be

assigned to the team.

Using the actual timestamps of surgeries, we construct six counterfactual scenarios where each

operation is prolonged or shortened by 5, 10, and 15 minutes, respectively. We then obtain the aver-

age fitted probabilities of 30-day readmissions and 30-day reoperations based on the updated RPD

values through the structural model Equation (10). In addition to the readmission and reoperation

rates as quality metrics, we compute the counterfactual EOS time based on the counterfactual RPD

of cases in the same shift. We then obtain the average difference between each shift’s counterfactual

EOS and planned EOS.

The analysis is based on the quality exploration sample we adopt, where dental and gastrointesti-

nal surgeries are not included since these departments have scarce readmissions and reoperations.

To analyze the effects on the EOS, we select 1,584 unabridged shifts to conduct counterfactual

analysis (we exclude those cases after an urgent add-on case or a cancellation, as explained in

Section 4). The final case sample size is 4,429.

Figure 5 and Table 5 summarize the relationship between surgical quality and the differences

between the actual and planned EOS under six scenarios. The x-axis represents the change in EOS

compared to the current scenario, which serves as a baseline, depicted using a dashed vertical line.

The y-axis represents quality measures, the average fitted 30-day readmission/reoperation proba-

bilities. Overall, their relationship presents a convex shape. In the sample, the average difference

to the planned EOS is approximately 10 minutes (i.e., on average, a shift ends later than planned),
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Figure 5 Surgical Quality and End-of-Shift Time

with a 0.0327 average 30-day readmission probability and 0.0275 average reoperation probability.

If we extend each operation by 5 minutes, we obtain reduced average readmission and reoperation

probabilities equal to 0.0188 and 0.0144, and the difference to the planned EOS increases to 33.51

minutes. On the other hand, when each surgery is expedited by 5 minutes, we obtain a reduced

difference to the planned EOS (-10.2 minutes) and increased 30-day readmission/reoperation prob-

abilities (0.0571 and 0.0530). Overall, this relationship provides guidance for hospital managers to

achieve desired quality goals when creating OR schedules.

Table 5 Results of the Counterfactual Analysis

Scenario Readmission Reoperation Diff EOS

-15 min 0.1385 0.1455 -53.92
-10 min 0.0915 0.0911 -32.06
-5 min 0.0571 0.0530 -10.20
Original 0.0327 0.0275 10.03
+5 min 0.0188 0.0144 33.51
+10 min 0.0099 0.0068 55.37
+15 min 0.0049 0.0030 77.23

Observations 4,429 4,429 1,584

Notes: Readmission and reoperation columns present the fitted average rates based on changing RPD (plus or minus

5, 10, 15 minutes) for each case using the estimated Equation (10). The Diff EOS column present the averaged

difference to planned EOS time when RPD is changed.
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9. Conclusions and Future Research

Operating rooms exemplify service sites where deviations from prescribed schedules frequently

occur, often leading to physical and financial repercussions. Although abundant literature exists

on this topic, two questions remain open. First, while many researchers have studied surgical team

responses to schedule deviations, they primarily rely on surveys to explore response mechanisms

instead of using real-time and scheduled surgery data. Second, concerning the relationship between

surgical speed and quality, many researchers conduct correlative analyses, which may be biased due

to various confounders in surgical procedures. In this paper, we address both questions by inves-

tigating surgical teams’ immediate responses to early and late starts of surgeries, cleaning teams’

responses in the turnover stage, and exploring how such responses further influence post-surgical

complication risks. We apply econometric identification techniques to a unique and comprehensive

surgical dataset to achieve this goal.

To answer the first question, we employ a series of empirical strategies. The primary challenge

is that the ordinary least squares (OLS) estimator is biased since the general deviation from the

scheduled start (DSS) is correlated with the relative procedure duration (RPD) of prior cases. We

propose an auto-regressive model to address the serial correlation of procedure durations within

the same shift. We then utilize the dynamic panel model and the associated GMM estimators

to identify the parameters. We find that surgical and cleaning teams speed up when they fall

behind schedule and slow down when they get ahead of schedule, with the slowdown exhibiting

a stronger effect. That is, they exhibit the balancing feedback behavior. Quantitatively, surgical

teams expedite the next surgery by an average of 5.6% when facing a one standard deviation (SD)

delay in the planned start for that surgery, whereas they take on average 10.5% longer when they

are one SD ahead of schedule. In the turnover times, cleaning teams accelerate by 10.3% (slow down

by 22.1%) on average when they are one SD ahead of (behind) schedule. This insight is valuable

for OR managers, as understanding the responsive behavior of clinical teams can further improve

OR scheduling practices and potentially enhance patient satisfaction. Our findings are particularly

relevant to ORs in a socialized healthcare system. The identified phenomenon likely results from the

lack of incentives in the socialized healthcare system, which may motivate the redesign of incentives

for surgical teams within such a system. Additionally, we explore the heterogeneity of behavior

among different surgeon seniority groups for the surgery stage, finding that the speedup/slowdown

phenomenon occurs only in the senior group.

On the second question, we explore how the speedup/slowdown of an operation influences a

patient’s post-surgical risks, measured by 30-day post-surgical readmissions and reoperations. Esti-

mating the impact of service speed on service quality is challenging due to endogeneity issues. To
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address this, we propose an instrumental variable (IV) based on our observation that the early/late

start (DSS) of a case may impact surgical quality only through the procedure duration. After

correcting the upward bias, we find that speeding up procedures increases 30-day readmission

and reoperation probabilities, contrary to the correlative findings of existing literature. Through a

counterfactual analysis, we reveal a convex relationship between the readmission/reoperation rate

and the difference between real and planned end-of-shift (EOS) times. This curve relates to the

fundamental topic of efficiency-quality trade-offs in service operations. Surgical teams can adjust

their paces to reduce the difference in scheduled EOS time; however, this may lead to increases

in 30-day post-surgical readmission and reoperation risks, as captured in Figure 5. This finding

has important implications for healthcare providers, particularly surgeons and hospital managers.

Methodologically, we propose an IV to address endogeneity issues in estimation, which is shown

to work effectively. This method can be extended to analyses in other service sectors, such as

appointment scheduling and project management.

We conclude our paper by suggesting some directions for future research. Our paper focuses on

how clinical teams respond to schedule deviations and the subsequent impacts on post-surgical

risks. Future studies can consider prescriptive data-driven models that incorporate such behavior

to optimize daily surgical schedules. We also note that Canada’s socialized healthcare system differs

significantly from the diversified health insurance systems in the U.S. Therefore, another interesting

angle relates to the incentive scheme design of healthcare systems and how surgical teams behave

under different payment modes. For example, the OR manager may provide appropriate incentives

for clinical teams to work overtime. Researchers can also investigate similar mechanisms in project

management, transportation, and any service areas where time schedules for tasks are made in

advance.
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Online Appendix

EC.1. GMM Estimation

For dynamic panel data, the classic fixed-effect ordinary-least-square (FE-OLS) estimator yields

biased estimators, especially when the panel data has large cross-sectional units N and short time

periods T (in our case, N = 1,928 and T ∈ [3,8]). This bias is known as the Nickell bias (Nickell

1981). The bias arises because the lagged response variable is one of the explanatory variables.

Therefore after the demeaning process (a step of the FE estimator), there will be a correlation

between the autoregressive regressor and the error term. Thus, to achieve unbiased estimates of γn

and γp from Equation (4), we adopt the Arellano-Bond (A-B) method (Arellano and Bond 1991) of

dynamic panel models. The A-B approach utilizes higher-order lagged regressors as instrumental

variables (IV) that induce a series of moment conditions for GMM estimation. The IV selection

criterion depends on the properties of the explanatory variables. We now take the model of RPD as

an example to elaborate the GMM estimation process. For RTD, the estimation process is largely

the same. First, we transform the original model Equation (4) via first-difference (FD) or forward-

orthogonal deviation (FOD). We try both approaches to reach a robust estimate. FD is a simple

and direct method by taking the first order difference between two consecutive cases, which is also

applied to regular static panel models (Anderson and Hsiao 1981, Arellano and Bond 1991).

Arellano and Bover (1995) proposed FOD method for dynamic panel data and the estimator is

called the FOD-GMM estimator. The FOD transformation operator is as follows

∆̃tuit =

√
T − t+1

T − t

(
uit −

1

T − t+1

T−t∑
s=0

ui,t+s

)

Under the assumption that uit is serially uncorrelated, we obtain that Corr
(
∆̃tuit, ∆̃tui,t−1

)
= 0.

The advantage that the FOD-GMM estimator has compared with diff-GMM is the higher data

utilization rate for unbalanced panel data sets. Note that we set Si,0, the DSS of the first case in a

shift as the difference between the real start time and scheduled start time so that more data can

be utilized.

After transformation, we obtain the following two equations for them, respectively,

FD : ∆(Sit −RTDit) = (γn − 1)∆(Si,t−1)
− +(γp +1)∆(Si,t−1)

+ +∆x⊤
itβ+∆δt +∆uit

FOD : ∆̃t(Sit −RTDit) = (γn − 1)∆̃t(Si,t−1)
− +(γp +1)∆̃t(Si,t−1)

+ +∆̃tx
⊤
itβ+∆̃tδt∆̃t +uit,

(EC.1)

where ∆ and ∆̃t stand for the FD and FOD transformation operators, respectively. Both FD and

FOD transformations eliminate all time-invariant fixed effects such as αi in Equation (2). We
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control for other variables that vary with case index (time) t in the same shift, such as patient

type, case type, and case index, by including them in xit, which remain in the regression equations

after the FD or FOD transformation.

Second, we need to determine the appropriate lag order of all explanatory variables on the

RHS of Equation (EC.1), which leads to the moment conditions that are indispensable for GMM

estimation in the A-B method. Generally speaking, the right-hand-side regressors yi,t−1 and xit can

be categorized into four types further for which the moment conditions are different. (i). Lagged

dependent variable:

E [yi,t−s∆uit] = 0, s= 2,3, . . . , t;

(ii). Strictly exogenous regressors:

E [xi,t−s∆uit] = 0, t− s= 1, . . . , T ;

(iii). Predetermined regressors:

E [xi,t−s∆uit] = 0, s= 1,2, . . . , t;

(iv). Endogenous regressors:

E [xi,t−s∆uit] = 0, s= 2,3, . . . , t.

The criterion that determines the category of a regressor is condition independence where

strictly exogenous regressors satisfy E [uit | xi0,xi1, . . . ,xiT ] = 0, that is, all of them are con-

ditionally independent of the current error term at t. Predetermined regressors should satisfy

E [uit | xi0,xi1, . . . ,xit] = 0 and endogenous ones satisfy E [uit | xi0,xi1, . . . ,xi,t−1] = 0.

Here we consider higher lags of the auto-regressive term, namely (Si,t−2)
−, (Si,t−3)

− and

(Si,t−2)
+, (Si,t−3)

+ , as instruments for ∆(Si,t−1)
− and ∆(Si,t−1)

+ in Equation (EC.1). The associ-

ated moment conditions are formulated in Equation (EC.2). Regressors in xit include exogenous

variables of case t such as the patient age, surgery procedure, and case types, which are uncorre-

lated with uit. We select these explanatory variables and first-order lagged terms as instruments

and formulate their moment conditions. The moment conditions for the FD transformed model are

presented in Equation (EC.2) below:

E
[
(Si,t−s)

−∆uit

]
= 0,E

[
(Si,t−s)

+∆uit

]
= 0, s= 2,3;E [xi,t−s∆uit] = 0, s= 1,2 (EC.2)

In the FOD model, by subtracting forward means from the current levels, we can utilize the first-

order lagged terms as instruments, and the associated moment conditions are as follows:

E
[
(Si,t−s)

−∆̃tuit

]
= 0,E

[
(Si,t−s)

+∆̃tuit

]
= 0, s= 1,2;E

[
xi,t−s∆̃tuit

]
= 0, s= 0,1 (EC.3)
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In fact, we can adopt further lagged terms as instruments. Nevertheless, too many instruments

may lead to over-identification issues in estimation. Thus, for endogenous variables, we only use

their lags of the second and third order for the FD-GMM model, and we use lags of the first and

second order for the FOD-GMM model. While for exogenous variables, we always use themselves

and first-order lagged terms as instruments. We conduct a series of specification tests to validate

the choice of lagged terms (see Section EC.2).

We then conduct GMM estimation based on the above moment conditions. After stacking the

moment conditions, we obtain the vector-form moment conditions for GMM estimation:

E [mi(θ)] = 0, θ= (γ,β)

where θ is the vector of all estimands in Equation (EC.1), mi(·), i= 1,2, . . . ,N,N = 7,868 denotes

the left-hand-side of the moment conditions (EC.2) applied to a case i in the FD-GMM model

(or Equation (EC.3) in the FOD-GMM model). The GMM estimators are obtained through the

following two-step minimization:

θ̂= argmin
b

(
1

N

N∑
i=1

mi(b)

)⊤

W0

(
1

N

N∑
i=1

mi(b)

)

θ̂step2 = argmin
b

(
1

N

N∑
i=1

mi(b)

)⊤

W(θ̂)

(
1

N

N∑
i=1

mi(b)

)
,W(θ̂) =

(
1

N

N∑
i=1

mi(θ̂)mi(θ̂)
⊤

)−1

.

In the first step of the GMM, we utilize an initial (suboptimal) weighting matrix W0, and the

purpose is to obtain a GMM estimate of θ. We then obtain the consistent estimate of the inverse

of the asymptotic covariance matrix of m(θ̂), as shown in the second set of equations. We finally

update W0 by W(θ̂) and obtain the two-step GMM estimator. More details regarding GMM

computation can be found inArellano and Bond (1991), Arellano and Bover (1995), Windmeijer

(2005), Kripfganz et al. (2019).

EC.2. Robustness Checks

We present the normal FE-OLS estimation results of Equation (2) and Equation (5) in Table EC.1

as a reference.

EC.2.1. Dynamic Panel Model Specification Tests

Serial Correlation Test. Recall that we utilize higher-order lagged regressors as instruments in

Equation (EC.2) for GMM estimation of the dynamic panel model. Under such an IV configuration,

for these lagged explanatory variables to be valid instruments, the absence of higher-order serial
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Table EC.1 FE-OLS Estimation Results

Variables Surgery Turnover

Early start 0.430*** 0.283***
(0.035) (0.018)

Delayed start -0.533*** -0.059***
(0.023) (0.013)

Elective case 13.49 6.419*
(10.25) (2.948)

Sequence shuffling -2.353 -5.208**
(2.217) (1.589)

Age 0.348*** 0.060
(0.091) (0.046)

Different procedure 1.175**
(0.435)

Next case type Included
Patient type Included Included
Patient severity Included Included
Procedure type Included Included
Shift fixed effect Included Included
Sequence fixed effect Included Included

R2 0.496 0.531
N 7,787 6,120

Notes: The linear model Equation (2) and Equation (5) are estimated by OLS. Estimated by FE-OLS. Robust

standard errors clustered by shift are shown in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001).

correlation between error terms ∆uit and ∆ui,t−s, (s= 2,3) is indispensable. Here the formal null

hypothesis is

H0 : Corr (∆uit,∆ui,t−j) = 0, j = 2,3. (EC.4)

We thus adopt the Arellano-Bond specification test, also known as the AR(p) test, to examine

the above validity requirements, where p stands for the lagged order. To be specific, we perform

AR(1) to AR(3) tests for both Models (1) and (2) to identify the starting level of the lag structure

of the instruments. From the p values in the last part of Table EC.2 we find that the AR(1)

test is rejected, since applying FD transformation to Equation (2) naturally brings first order

serial correlation between ∆uit and ∆ui,t−1. We cannot reject the null hypotheses of AR(2) and

AR(3), which means there is no higher order serial correlation in Equation (EC.1). Therefore,

our null hypothesis Equation (EC.4) is supported and the IV configuration we choose is valid for

identification. For moment equations of the FOD-GMM model we also conduct similar tests and

the results also cannot reject the null hypothesis.
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Table EC.2 Specification Tests for Main Model

Surgery Turnover

Variables (1) FD (2) FOD (3) FD (4) FOD

Early Start 0.617*** 0.444*** 0.190*** 0.292***
(0.159) (0.126) (0.051) (0.047)

Delayed Start -0.219* -0.164* -0.121** -0.096*
(0.106) (0.081) (0.045) (0.045)

Elective case 13.78 -25.54 4.505 -20.74
(60.37) (58.13) (2.843) (19.96)

Sequence shuffling -1.557 5.274 -7.235*** -9.074***
(5.549) (5.274) (1.864) (2.284)

Age 0.280 0.277* 0.361* 0.025
(0.148) (0.138) (0.163) (0.172)

Different procedure 0.976 1.748**
(0.588) (0.543)

Next case type Included Included
Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included

Specification tests:
Arellano–Bond AR(1) p value 0.000 0.000 0.000 0.000
Arellano–Bond AR(2) p value 0.593 0.299 0.205 0.589
Arellano–Bond AR(3) p value 0.950 0.868 0.951 0.436

Hansen J-test χ2 129.2 124.6 135.2 108.6
Hansen J-test p value 0.287 0.392 0.163 0.649

Number of instruments 253 253 258 253
Number of observations 7,868 7,868 6,210 6,210

Notes: Both of the GMM models are estimated using the Arellano-Bond method. Sequence fixed effect is exactly the

time effect t in shift i. We control for other fixed effects that vary with case index in the same shift, such as patient

type, case type and case index. Robust standard errors clustered by shift i with the Windmeijer (2005) correction

are shown in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001).

We also conduct the Hansen J-test (Hansen 1982) of model over-identification, as the number of

instruments is relatively large. The null hypothesis is

H0 : Over-identifying restrictions are valid.

We see that both the FD-GMM and FOD-GMM models yield non-significant χ2 values. Thus they

pass the Hansen test and the IV configurations for identification are supported.

Apart from the main model of Table EC.2, we also conduct AR(p) serial correlation tests and

Hansen J-tests for the seniority exploration. As shown in the third part of Table EC.3, both

regressions pass the serial correlation tests and Hansen J-tests, which validate the estimation

results.
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Table EC.3 Estimates for Different Surgeon Seniority Group

Senior Junior

Variables (1) FD (2) FOD (3) FD (4) FOD

Early Start 0.679*** 0.505*** 0.368 0.404
(0.150) (0.141) (0.265) (0.210)

Delayed Start -0.359* -0.319** -0.313* -0.234
(0.155) (0.113) (0.154) (0.136)

Elective case 59.10* 42.09 15.79 -13.77
(23.89) ( 37.86) (65.03) (48.12)

Sequence shuffling -5.889 -4.485 0.166 -3.363
(7.337) (5.698) (10.28) (8.709)

Age -0.255 -0.129 0.324 0.410
(0.273) (0.189) (0.247) (0.224)

Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included

Specification tests:
Arellano–Bond AR(1) p value 0.000 0.000 0.000 0.000
Arellano–Bond AR(2) p value 0.355 0.078 0.279 0.496
Arellano–Bond AR(3) p value 0.978 0.353 0.477 0.990

Hansen J-test χ2 105.3 112.4 109.6 108.0
Hansen J-test p value 0.731 0.550 0.309 0.350

Number of instruments 244 244 227 227
Number of observations 3,793 3,793 4,075 4,075

Notes: Robust standard errors clustered by shift i with the Windmeijer (2005) correction are shown in parentheses.

We omit other regressors in xit. (* p < 0.05, ** p < 0.01, *** p < 0.001).

EC.2.2. Sample Inclusion Criterion

Remove all shifts with add-on cases. We remove the shifts that include add-on cases from our

sample, which yields 7,484 cases (5,827 for RTD) in all. The results are shown in Table EC.4. We

find that the estimates for both surgery stage (RPD) and turnover stage (RTD) are consistent with

Table 2 and significant. Both surgical and cleaning teams respond to both directions.

Remove all shifts affected by cancellations. We remove all shifts that are affected by cancellations,

which yields 7,777 cases in the refined sample (6,122 for RTD). The GMM estimation results are

shown in Table EC.5. We find that the estimates are still consistent. These results support our

findings of the adaptive behavior by surgical and cleaning teams.

EC.2.3. IV Specification Tests

The validity of using DSS as an IV relies on the underlying assumption that they will impact read-

mission/reoperation risk only through impacting the RPD. One may argue that DSS is correlated
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Table EC.4 Robustness with Add-on Cases Estimation Results

Surgery Turnover

Variables (1) FD (2) FOD (3) FD (4) FOD

Early Start 0.590*** 0.424** 0.250*** 0.306***
(0.166) (0.134) (0.057) (0.057)

Delayed Start -0.242* -0.167* -0.120* -0.088†
(0.110) (0.082) (0.048) (0.050)

Next case type Included Included
Elective case Included Included Included Included
Sequence shuffling Included Included Included Included
Age Included Included Included Included
Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included

Specification tests:
Arellano–Bond AR(1) p value 0.000 0.000 0.000 0.000
Arellano–Bond AR(2) p value 0.627 0.367 0.430 0.514
Arellano–Bond AR(3) p value 0.812 0.610 0.858 0.488

Hansen J-test χ2 129.3 121.0 123.5 119.9
Hansen J-test p value 0.286 0.482 0.394 0.435

Number of instruments 253 253 256 252
Number of observations 7,484 7,484 5,827 5,827

Notes: Both of the two GMM models are estimated using Arellano-Bond method. The time fixed effect is t in shift i.

Robust standard errors clustered by shift i with the Windmeijer (2005) correction are shown in parentheses (†p < 0.1,

* p < 0.05, ** p < 0.01, *** p < 0.001).

with the fatigue level of the surgical team, which further impacts the readmission/reoperation risk.

To address this concern, we control for the hour-of-shift (HOS) of each case, where HOS n stands

for the n-th hour after the focal shift starts. The HOS well captures the surgical team’s cumulative

working hours since the start of shift, and hence provides a proxy for the fatigue level. The regres-

sion results with HOS as an extra control are presented in Table EC.6. We find that the IV-Probit

estimates of the focal RPD still remain negatively significant for both 30-day readmissions and

reoperations. That is, a faster-than-scheduled surgery leads to increased post-surgical risks. We

also find that HOS indicators are mostly insignificant across the four models, which manifests that

post-surgical readmission and reoperations are not influenced by the fatigue level.

To further verify that DSS is not correlated with the unobserved errors (so they are valid), we

run a regression by controlling them and RPD in a plain probit model for 30-day readmission and

reoperation. The results, as summarized in Table EC.7, show that the estimates of DSS are not

significant. This means that DSS is only correlated with the RPD but not with other unobserved

variables. Thus, it is valid to serve as an IV.
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Table EC.5 Robustness with Cancellations Estimation Results

Surgery Turnover

Variables (1) FD (2) FOD (3) FD (4) FOD

Early Start 0.614*** 0.499*** 0.203*** 0.291***
(0.159) (0.131) (0.048) (0.045)

Delayed Start -0.212* -0.170* -0.098* -0.081†
(0.105) (0.084) (0.043) (0.043)

Next case type Included Included
Elective case Included Included Included Included
Sequence shuffling Included Included Included Included
Age Included Included Included Included
Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included

Specification tests:
Arellano–Bond AR(1) p value 0.000 0.000 0.000 0.000
Arellano–Bond AR(2) p value 0.630 0.551 0.194 0.581
Arellano–Bond AR(3) p value 0.977 0.608 0.806 0.519

Hansen J-test χ2 128.2 120.3 133.8 108.5
Hansen J-test p value 0.311 0.500 0.184 0.653

Number of instruments 253 253 258 253
Number of observations 7,777 7,777 6,122 6,122

Notes: Both of the GMM models are estimated using Arellano-Bond method. The time fixed effect is t in shift i.

Robust standard errors clustered by shift i with the Windmeijer (2005) correction are shown in parentheses (†p < 0.1,

* p < 0.05, ** p < 0.01, *** p < 0.001).
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Table EC.6 Effect of RPD on Readmissions and Reoperations with HOS

Panel A: IV-Probit Panel B: NonIV-Probit

Variables (1) 30-Read (2) 30-Reop (3) 30-Read (4) 30-Reop

RPD of the focal surgery -0.0316*** -0.0332*** 0.0043** 0.0052**
(0.0066) (0.0051) (0.0014) (0.0018)

RTD of the preceding surgery 0.0007 0.0016 0.0020 0.0050
(0.0025) (0.0022) (0.0053) (0.0050)

HOS: 2 -0.0917 -0.1480 -0.2150 -0.4366*
(0.0971) (0.1100) (0.2620) (0.2050)

HOS: 3 -0.0970 -0.1744 -0.1983 -0.4851*
(0.1070) (0.1118) (0.2826) (0.2226)

HOS: 4 -0.2333 -0.2371 -0.5403 -0.6356*
(0.1264) (0.1436) (0.3121) (0.3013)

HOS: 5 -0.1996 -0.1669 -0.3980 -0.3576
(0.1127) (0.1186) (0.2600) (0.2829)

HOS: 6 -0.1616 -0.2093 -0.2629 -0.4316
(0.1184) (0.1298) (0.3183) (0.3212)

HOS: 7 -0.2037* -0.2190 -0.3084 -0.3846
(0.1014) (0.1198) (0.2505) (0.2490)

Sequence shuffling Included Included Included Included
Age Included Included Included Included
Patient type Included Included Included Included
Patient severity Included Included Included Included
Procedure type Included Included Included Included
Time fixed effect Included Included Included Included
Day-of-week fixed effect Included Included Included Included
Surgeon fixed effect Included Included Included Included

Correlation of errors 0.8842*** 0.9292***
Number of observations 5,204 5,204 5,204 5,204

Notes: Estimated by the maximum likelihood method. Dependent variables: 30-day readmission, 30-day reoperation

indicators. We report the correlation of the errors of the two equations in the IV-probit models in the final part.

Robust standard errors are shown in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Table EC.7 Effect of RPD on Readmissions and Reoperations with DSS

30-day Readmission 30-day Reoperation

RPD of the focal surgery 0.0044*** 0.0053***
(0.0013) (0.0015)

DSS 0.0018 0.0023
(0.0011) (0.0013)

RTD of the preceding surgery 0.0015 0.0042
(0.0043) (0.0046)

Sequence shuffling Included Included
Age Included Included
Patient type Included Included
Patient severity Included Included
Procedure type Included Included
Time fixed effect Included Included
Day-of-week fixed effect Included Included
Surgeon fixed effect Included Included

Number of observations 5,204 5,204

Notes: Estimated by the maximum likelihood method. Dependent variables: 30-day readmission and reoperation

indicators. Robust standard errors are shown in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001).
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