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We consider a parallel-queue system in which each queue is served by a dedicated service provider. The arrival
process is driven by a discrete choice model, that is, customers observe the queue length for each service
provider and choose one to join upon arrival. We assume that a customer’s utility is the difference between
the service reward and the waiting cost, both of which are heterogeneous. Empirical analysis of the vehicle
queues at the U.S.-Canada border-crossing port of entry supports our model setting. We show that with
such a choice model, the arrival rate function satisfies certain properties, which allow us to characterizes the
fluid and diffusion limit of the queue-length process. In particular, we show that even without the well-used
Lipschitz-continuity assumption, the fluid limit process is unique and is attracted to a unique equilibrium.
The diffusion limit process is a reflected multi-dimensional Ornstein-Uhlenbeck process centered at that
equilibrium. We prove that the stationary distribution of the diffusion limit is a truncated multivariate
Gaussian and interchange of limits holds.
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1. Introduction

The discrete choice model has been widely explored in the literature to model consumer behavior.
As a typical scenario studied in the literature, a consumer chooses from an assortment of products
with different features and prices to maximize her utility. A customer’s net utility of choosing a
product is the difference between the reward and cost of obtaining the product. In this paper,
we consider an analogue of this discrete-choice model for a service system subject to congestion.
Suppose a stochastic service system consists of multiple service providers (SPs) with different
features and speeds. Despite the differences, a customer can be served by any one of these SPs,
and the service utility depends on the characteristics of both the customer and the SP. We assume
that all customers have complete information about the service utility and the expected waiting
time for each SP, which allows each customer to calculate the expected net utility of joining each
queue. Alternatively, a customer may choose not to join any queue and receives zero utility. If we
apply the classical ’discrete choice model’ to this service system, then a customer will choose the
SP that maximizes her expected utility. Figure 1 provides a graphical illustration of such a system.
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Figure 1 The parallel queue system studied in this paper

We assume that the coefficients in a customer’s utility function, which include the service utility
and the disutility per unit waiting time, are randomly drawn from the customer population. When
real-time waiting time estimates are available to customers, under mild regulation assumptions on
the parameter distribution, we can show that the mean arrival rate for each queue is an absolutely
continuous function of the waiting time estimates at each different SPs. Furthermore, when the
customer’s choice is formally modelled, the arrival rate function satisfies the following waiting-
aversion property: as a queue becomes longer, some customers will be discouraged to join that
queue and will instead join other queues or balk. Consequently, the mean arrival rate of a queue
decreases with its own length; but is non-decreasing with the lengths of other queues. A formal
mathematical description of these properties will be provided in Section 3. For notational brevity,
we refer to such properties of the arrival rate function as choice-driven. The main objective of this
paper is to provide asymptotic characterization of parallel-queues with choice-driven arrivals, or
briefly, PQCDA.
Our study is motivated by several practical instances that fit the PQCDA model that are both

widely observed and are areas of research in the OR literature. One example is the waitlist for
kidney transplantation for patients with end-stage renal disease. Kidneys from deceased donors are
allocated to patients who have registered on the transplant list according to a given policy. One
allocation policy proposed and tested by Su and Zenios (2006) partitions kidneys into M types
by their quality. Arriving patients choose a certain type of kidney and wait in the corresponding
queue. Thus, the waitlist virtually consists of M parallel queues, each corresponding to a unique
type of service (organs). The stylized models analyzed by Su and Zenios (2006) and Ata et al.
(2019) are a simplified version of the PQCDA, by assuming that the patient uses the steady-state
queue-lengths to calculate the corresponding waiting times; whereas in reality patients use the
real-time queue-lengths. The PQCDA models the latter situation.
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The second example is related to an impetus in some health care systems in North America where
real time emergency room wait times in specific geographic areas are available online. For example,
the web-site edwaittimes.ca, shows real time wait times for major hospitals with emergency
rooms in the Metro Vancouver area. Patients with preferences on locations and wait times can use
this information to choose the hospital they seek care from.
The third example is the international border crossing facilities located between the U.S. and

Canada. In the Pacific northwest, there are four border crossing facilities. Almost realtime wait time
at each one of these facilities is available. Travellers have preferences for location and the amenities
available at each facility and make their choice based on the wait time and the characteristics of
each facility. Using a novel data from the Canada-US border crossing in the Pacific Northwest, we
validate the key assumptions about the travellers’ arrival process.
There is rich literature on queueing systems with customer choice. A number of assumptions

about the number of queues (usually a single queue) or congestion information (usually non-real-
time) or consumer types (usually single class and homogeneous) or server types (usually homoge-
neous) have to be made in the literature. However, many of these assumptions may not apply to
stochastic service systems in practice. The PQCDA model does not impose any of these restrictive
assumptions. Thus, not surprisingly, an exact analysis of PQCDA is challenging. For this rea-
son, we study the queue-length process of PQCDA using fluid and diffusion approximations. Even
under such approximations, however, few results are known for parallel queues with general state-
dependent arrival rates, e.g., the existence of a system equilibrium, and stationary distribution of
the queue length process, etc. See Section 2 for a more detailed literature review. However, we
show that these results hold when the arrival rates satisfy the choice-driven properties.
We develop the following approximations for PQCDA. First, under the fluid approximation, we

show that the fluid limit process converges to a unique equilibrium which can be characterized as
the solution to a nonlinear complementarity problem (NCP). Second, using the diffusion approx-
imation, we show that under the heavy traffic regime, the scaled queue-length process converges
to a reflected multi-dimensional Ornstein-Uhlenbeck (RMOU) process, which possesses a unique
stationary distribution with closed-form density function (truncated multivariate Gaussian) under
certain conditions. We also prove that interchange of limit holds, that is, the stationary distribution
of the scaled queue-length process converges to the stationary distribution of the RMOU.
By establishing the above results, we make several important contributions to the related research

domain.
1. We propose a fairly general model, i.e., the PQCDA, which captures an important type of

customer queue-joining behavior. This type of behavior has been identified in our empirical
analysis of the Canada-U.S. border-crossing traffic data, and we believe that it has many other
applications.

2. We approximate the transient and stationary behaviors of the queue-length process in PQCDA
via fluid and diffusion approximation. In particular, we prove that the fluid limit process con-
verges to a unique equilibrium state, and that the diffusion limit process is an RMOU, whose
covariance matrix depends on the degree of substitutability between different SPs as well as the
customers’ delay sensitivity. These characterizations provide system managers with qualitative
insights to the long-term behavior of PQCDA.

3. We propose an algorithm to compute the equilibrium state of the fluid limit process, and derive
the closed-form stationary distribution for the diffusion limit process. These results allow system
manager to calculate service-level related measures, which are useful for both performance
evaluation as well as capacity planning for the service system. These results also facilitate the
evaluation of other performance measures such as the value of real time information, individual
customer’s benefits, and the social welfare for large systems, for which the asymptotic analysis
provides reasonably close approximations.
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4. The choice-driven property allows us to establish the following technical results in lieu of the
Lipschitz continuity assumption: uniqueness of the fluid limit process, convergence of the original
stochastic process to the fluid limit and diffusion limit, and interchange of limits. We show
that these results may not hold in parallel queues with general, non-Lipschitz arrival rates; but
they hold when the arrival rates are non-Lipschitz but have the choice-driven properties. We
thus provide a new proof technique for the above results that does not rely on the Lipschitz
assumption as the classical methods (e.g., (Mandelbaum et al., 1998a,b)) do. The technical
results may be of independent interest to the applied probability society.
The rest of the paper is organized as follows. Section 2 presents a literature review. Section

3 provides a formal definition of the PQCDA model. Section 4 presents an empirical study of
the border-crossing traffic data. Section 5 introduces some notations and preliminary results that
facilitate the subsequent asymptotic analysis. In Section 6 and Section 7, we derive the fluid and
diffusion approximations for the queue-lengths process in PQCDA, respectively. Section 8 extends
the results to the case with customer reneging. Finally, Section 9 concludes with a summary of the
paper and a discussion of future research.

2. Literature Review

The first stream of papers focus on modeling and analyzing the effect of arriving customers’ queue-
joining behavior in various queueing systems. These models are classified in Figure 2. As shown in
Figure 2, first, there are two general classes of works in this area classified according to “information
level” (IL) with O for observable and U for unobservable queues. Each class is categorized into
six types of models according to “number of queues” (NQ) with M for multiple queues and S for
single queue, “customer class” (CC) with H for homogeneous and T for heterogeneous customers,
and “server type” (ST) with I for identical and D for different servers. Thus, each type of model
can be denoted by the notation with four letters separated by backslash (to distinguish from the
forward slash used for Kendall notation). For example, our model can be denoted as O\M\T\D
meaning a system with observable multiple queues, heterogeneous customers, and different servers.
Customers are different in delay sensitivity and service value, but have the same service rate at the
same server, while servers are different in service value and service rate. Note that for each node
in Figure 2, the left branch is the special case of the right branch. In reviewing the literature, it
will be clear that the model we treat here is a more general version of the observable queue setting
with customer choice, the one which has been less studied in the literature. In the literature review
on the models in the above classification, we mainly focus on those papers that are directly related
to our model. A more exhaustive reference can be found in a monograph by Hassin et al. (2006).
Some of the early models of the O\S\H\I type are by Naor (1969) and Leeman (1964) who

investigated homogeneous customers’ decisions on whether to join a queue for service. When the
queue is observable, they showed that in equilibrium, a pure threshold strategy (i.e., joining the
queue when the queue length is below a threshold) maximizes consumer surplus. However, this
equilibrium solution is sub-optimal with respect to the social welfare. The socially optimal solu-
tion is reached by introducing an admission cost (toll) in addition to the waiting cost as shown
in Stidham Jr (1978). Hassin (1986) found that in a last-come-first-serve queue with customer
abandonment, the differences between Pareto optimal and social optimal equilibria due to possi-
ble customers’ negative externality does not arise. Larsen (1998) generalized Noar’s model to the
one with heterogeneous customers who differ in service value. In contrast, Edelson and Hilder-
brand (1975) and Frutos and Gallego (1999) studied the heterogeneous customer model where two
classes of customers differ in their marginal waiting cost. The above models belong to O\S\T\I
type. When there are multiple parallel observable queues, homogeneous customers, and identical
servers (i.e., the O\M\H\I type model), the system generally does not have an equilibrium as
indicated in Hassin et al. (2006), except for some special models (e.g. Hassin (2009)). For this
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reason, the O\M\H\I type models are studied under a weaker notion of equilibrium such as the
“ǫ-equilibrium”. An example of O\M\H\D type model was considered in Li and Lee (1994). They
considered a setting with two queues with heterogeneous servers and homogeneous customers where
balking is not allowed but jockeying is permitted. The most general case is the O\M\T\D type
model, which is the far right branch in observable queue class in Figure 1. The PQCDA studied in
this paper falls into this category as we assume customers have different sensitivity with delay and
heterogeneous preferences among SPs. Related studies in this category focus on the case where
customers receive delayed information about waiting time estimates; see Pender et al. (2020) and
Dong et al. (2019). There are several fundamental differences between our work and these two
papers. Two important ones are: (1) our paper considers a more general customer choice model
which requires different analytical methods and (2) the steady-state characterizations derived for
our model may not hold when information is delayed.
The first study on the simplest unobservable queue case or U\S\H\I type was done by Edelson

and Hilderbrand (1975) and Chen and Frank (2004). Two extensions followed the basic unobserv-
able queue model. Littlechild (1974) considered an M/M/1 queue with customers of heterogeneous
service values which falls under the U\S\T\I type. Later, Mendelson (1985) extended the model
to a more general GI/G/s setting. Luski (1976) generalized the model in Edelson and Hilderbrand
(1975) to a two-queue system which belongs to the U\M\H\I type and studied the equilibrium
pricing strategies. Recently, Hua et al. (2014) studied two-tier service systems with either identical
or multi-class customers which are examples of U\M\T\I type or U\M\T\D type but they focused
on the two queue case only. Thus most models in the unobservable queue class have been studied
in the literature and are relatively well understood. Other queueing models involving strategic
behavior of customers or servers include Adiri and Yechiali (1974); Maglaras et al. (2016); Afèche
and Ata (2013); Ward and Armony (2013); Ibrahim et al. (2016); Dong et al. (2015); Gupta and
Zhang (2014).
The second stream of related research is the one on fluid and diffusion approximations for

service systems with multiple queues. In the models in this stream, the system state is usually
represented by a vector, with each component representing the length of a queue. There is a rich
literature that models this type of systems as multi-dimensional diffusion processes. The closest
model to the PQCDA is the state-dependent queueing network studied in Haddad and Mazumdar
(2012); Lee and Puhalskii (2015); Leite and Fragoso (2008); Mandelbaum et al. (1998a,b); Yamada
(1995), with some important differences. Compared to a general state-dependent queueing network
model, the choice-driven property allows us to derive several characterizations for the fluid and
diffusion limit processes (e.g., the fluid limit process converges to a unique equilibrium point,
the diffusion limit process is an RMOU process, whose steady-state distribution admits a closed-
form characterization). Those characteristics are otherwise not valid in a general state-dependent
queueing network. Furthermore, we show that the choice-driven property can substitute for the
Lipschitz property in the proofs of the above results in Mandelbaum et al. (1998b). Other papers
on state-dependent queues investigated the case when the service speed depends on the workload
in the buffer, e.g., (Abouee-Mehrizi and Baron, 2016; Delasay et al., 2016; Dong et al., 2015).
There are several queueing models in which the fluid and diffusion limits exhibit similar ergodic

properties. A well-known example is a queueing network with constant arrival rates and constant
or state-dependent routing matrix; see Harrison and Reiman (1981) and Reiman (1984). In these
models, the fluid limit process has a unique equilibrium 0, owing to the negative drifts and the
non-negative constraint enforced by the reflecting barrier. Consequently, the diffusion limit process
in those models is a multi-dimensional Brownian motion with a reflection barrier at 0. These
characterizations differ from the PQCDA, in which the equilibrium state of the fluid process results
from the choice-driven property, and the diffusion limit is thus an RMOU rather than a reflected
Brownian motion. Another related model is an overloaded queueing network where customers in
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O\S\H\I O\S\T\I

O\M\H\I O\M\H\D

O\M\T\I O\M\T\D

U\S\H\I U\S\T\I

U\M\H\I
U\M\H\D

U\M\T\I

U\M\T\D

Two Classes: Observable and Unobservable Qs

For each node of a given class,

right branch is the special

case of left branch.

Figure 2 Classification of Queueing Models with Customer Choice.

each queue renege after an exponentially distributed time. For such a model, Reed and Ward

(2004) showed that the fluid limit has a non-zero equilibrium and the diffusion limit process is a

non-reflected multi-dimensional O-U process. Other similar models include a service system with

differentiated service levels in Maglaras and Zeevi (2004), or with heterogeneous customer types

in Harrison and Zeevi (2004). In all these models, the drift is a linear function of the system state;

whereas our model allows the drift function to be nonlinear and possibly non-smooth. Therefore,

to adapt the existing methods to our model, we need to show that the original process can be

approximated by a diffusion process with a linear drift when it is close to the equilibrium.

3. The PQCDA Model

3.1. Discrete Choice Model

We consider a system with J parallel heterogeneous service providers, indexed by j = 1,2, . . . , J .

We assume that the customers’ queue-joining behavior follows the classical discrete choice model

(e.g. Train (1986)). We show that the resulting arrival rates satisfy the choice-driven properties

that will be defined later in this section. Formally, for a customer of type ξ, the information

available to that customer includes the service utility at the jth SP, uξ,j, the customer’s waiting

cost per unit time, cξ, and the system state. The system state can be described by a J -dimensional

vector of waiting time estimates for the customer to join each queue right before time t, that is,

τ (t−) := (τj(t−))j=1,...,J , where τ (t−) denotes the left-limit of τ (·) at time t. We assume that there

are uncountably many different customer types ξ. Note that both the service utility uξ,j and the

waiting cost cξ vary by customer type ξ, and can be regarded as random variables that follow a
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fixed probability distribution. Given waiting time estimates τ (t−), a customer indexed by ξ can
compute her expected utility Uξ,j of joining the j-th queue at time t as follows,

Uξ,j =

{
uξ,j − cξτj(t−), if j 6= 0 (joining)
0 if j = 0 (balking)

(1)

With the utility function defined in (1), the choice problem for a customer indexed by ξ can be
formulated as

argmax
0≤j≤J

{0,Uξ,1,Uξ,2, . . . ,Uξ,J}, (2)

where the utility of balking is assumed to be zero without loss of generality. For example, suppose
an arrived customer sees two queues with waiting time estimates τ1(t) = 1 and τ2(t) = 2. If the
parameters of a customer are uξ,1 = 0, uξ,2 = 3, and cξ = 1, then his utility of joining queue 1 and 2
are Uξ,1 =−1 and Uξ,2 = 1, respectively, in which case he will join queue 2. If we change the value
of cξ from 1 to 2, then his utility will be Uξ,1 =−2 and Uξ,2 =−1, in which case he will choose to
balk and receives a utility Uξ,0 = 0.
Since the parameters uξ := (uξ,j)j=1,...,J and cξ have a fixed joint distribution, we can compute

the probability for a randomly drawn arrived customer to choose a queue j = 0,1, . . . , J , where
queue 0 corresponds to balking by slightly abuse of notation. The choice probabilities have the
following expressions,

p0(τ (t−)) = Pr(0>uξ,k − cξτk(t−) , k= 1, . . . , J)
pj(τ (t−)) = Pr(uξ,j − cξτj(t−)> 0 and uξ,j − cξτj(t−)>uξ,k − cξτk(t−), k= 1, . . . , J, k 6= j).

(3)
As will be discussed later, we assume that (uξ, cξ) has a continuous distribution and thus a tie
happens with zero probability.
Next, we introduce a few assumptions on the distribution of (uξ, cξ). These assumptions are

minimal and are able to accommodate a wide range of applications. Under these assumptions, we
prove certain desirable properties of the arrival rate function which in turn facilitate the asymptotic
characterization of the PQCDA. Later, we will show that our choice model subsumes several well
known models such as the conditional logit model and the mixed logit model. For the sake of
brevity, we will omit the subscript ξ and denote the random parameters as uj and c when there is
no ambiguity.

Assumption 1 (Waiting Aversion) c > 0 a.e.

Remark 1 A main feature of the choice model studied in this paper is that customers have real
time queue-length information and are waiting averse. As a consequence, when one queue becomes
longer, we expect a larger proportion of customers to join the other queues or to balk. We refer to
such behavior as choice-driven property and a formal definition will follow later.

Define
KJ := {u∈R

J
+ | ui = uj for some i 6= j}, for all J ≥ 2. (4)

Assumption 2 (Continuous Effect) (u, c) has an absolute continuous cumulative distribution
function (cdf) and its joint probability density function (pdf) f(u, c) is positive and finite almost
everywhere on the domain R

J ⊗R+ except when u∈KJ or c=0, f(u, c) can be infinitely large.

Remark 2 Intuitively, the above assumption requires the parameters (u, c) to spread contin-
uously over its domain. As a result, any change of queue length will affect the choices of a small
but positive proportion of customers. Therefore, any queue-length change always has a non-zero
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but continuous impact on the mean arrival rate for each queue. Our subsequent analysis of the
PQCDA is built on this property. Without continuity of the cdf, we will have significantly different
queue-joining behavior and system dynamics. For example, if all customers have the same param-
eter (u, c), then customers will join a queue if and only if its length is below a fixed threshold (e.g.,
Hassin et al. (2006)). If all customers have the same service value, i.e., u1 = uj for all j, then
we have a join-the-shortest-queue (JSQ) model. The asymptotic analysis for JSQ takes a different
approach from that for the PQCDA; see (Eschenfeldt and Gamarnik, 2018; Cao et al., 2019).

Remark 3 Although we have to assume that (u, c) has a continuous distribution without any
point mass, we do not want to overlook the existence of two special types of customers. The first
type of customers are insensitive with waiting and have c = 0; the second type of customers are
indifferent between several different SPs, corresponding to the case of u∈KJ . To approximate the
potential existence of point mass at those points, we allow the pdf function f(·) to take infinitely
large values when c= 0 or when u ∈KJ . As a result, the cdf function will be continuous but may
not have a finite derivative at those points.

The above general formulation subsumes several well known choice models. If we assume that

uξ,j = vξ,j + ǫξ,j. (5)

where ǫξ,j has an i.i.d. standard type-1 extreme value distribution. Then we get a mixed logit model
(Train, 2009) and the choice probability is given by

p0(τ ) = Eξ[
1

1+
∑J

k=1
exp(vξ,k−cξτk)

],

pj(τ ) = Eξ[
exp(vξ,j−cξτj)

1+
∑J

k=1
exp(vξ,k−cξτk)

], for j = 1, . . . , J.
(6)

If we further assume that the coefficients are homogeneous among the population, that is, vξ,j ≡ vj
and cξ ≡ c > 0 for all ξ, then we have the conditional logit model McFadden et al. (1973). The
choice probability is given by

p0(τ ) =
1

1+
∑J

k=1
exp(vk−cτk)

,

pj(τ ) =
exp(vj−cτj)

1+
∑J

k=1
exp(vk−cτk)

, for j =1, . . . , J.
(7)

Similarly, we will get a probit model by assuming ǫ to follow an i.i.d. standard normal distribution.

3.2. Arrival Process

We next characterize the arrival process under the discrete choice model. Formally, we assume
that the service times at server j are i.i.d. random variables with a finite mean 1/µj. We use the
vector notation µ := {µj}j=1,...,J . Customers arrive at the system according to a time-homogeneous
Poisson process with a constant rate 1. When a customer arrives at the system, he decides whether
to join any one of the J queues or balk. After a customer joins a queue, abandonments and switching
between queues are not allowed (Though an extension of the model with exponential customer
reneging time is doable and discussed in Section 8). The service discipline is First-Come-First-
Served (FCFS) at each queue. A customer leaves the system permanently after service completion.
We describe the system state at time t using a queue-length vector X(t) := (Xj(t))j=1,...,J , where

Xj(t) denotes the number of customers in queue j including the one currently in service. In most
practical applications of PQCDA, the remaining service time of the customer at the head of line
cannot be observed by either the customer or the system manager. Therefore, we assume that
the customers or the system manager will simply use the average service time of a new job to
estimate that remaining service time. This approximation is typically accurate because the queue
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length in many realistic applications of the PQCDA are usually much larger than one. Using this
approximation, the waiting time estimator τj(ξ) has the following expression:

τj(t) =
Xj(t)

µj

. (8)

In the rest of the paper, we refer to τj(t) as the waiting time estimate or the delay estimate.
Recall that we use pj(τ ) (j = 0,1, . . . , J) to denote the probability for a randomly arriving

customer to choose queue j, which is assumed to be independent of the arrival sequence. Since the
aggregate arrival rate is one, the mean arrival rate for queue j is exactly pj(τ ). We thus refer to
pj(·) as the arrival rate function. We assume that pj(·) satisfies the following stability condition,

∃ K > 0, such that pj(τ )<µj for all τ ∈R
J
+ wit τj ≥K. (9)

The above condition guarantees that whenever a queue is sufficiently long, the state-dependent
arrival rate is strictly capped by the service capacity, so the queue length will be bounded. Equation
(9) can be considered as the “state-dependent” version of the well-known stability condition “λ<µ”
in a single queue.
Let Λ(τ ) := (pj(τ ))j=1,...,J denote the vector of the state-dependent arrival rates. Let R(τ ) :=

(∂pi(τ)
∂τ j

)i,j=1,...,J denote the Jacobian matrix of Λ(τ ) when it exists. We next provide a formal

definition of the choice-driven property.

Definition 1 The function Λ(τ ) := (pj(τ ))j=1,...,J is said to satisfy the choice-driven (CD)
property if it is absolutely continuous in τ , and its Jacobean matrix R(τ ) is continuous everywhere1

and satisfies the following properties for almost every τ := (τj):
1. (CD-a) Non-Negative Off-Diagonals:

pj(τ ) is non-decreasing in τk for j = 1, . . . , J and k 6= j. (10)

Or equivalently, its Jacobean R(τ ) has non-negative off-diagonal entries.
2. (CD-b) Negative Diagonals:

pj(τ ) is strictly decreasing in τj for j =1, . . . , J. (11)

Or equivalently, its Jacobean R(τ ) has negative diagonal entries.
3. (CD-c) Strict Row and Column Diagonal Dominance:

pj(τ + te)<pj(τ ) for j = 1, . . . , J, t > 0, (12)

where e denotes an all-one vector. Or equivalently, R has negative row sums.

J∑

k=1

pk(τ + tej)<
J∑

k=1

pk(τ ) for j =1, . . . , J, t > 0, (13)

where ej denotes a vector with its jth entry equal to one and all other entries equal to zero. Or
equivalently, R(τ ) has negative column sums.

Remark 4 The (CD) property implies that the Jacobean matrix R(·) is non-symmetric negative
definite a.e. For a negative non-symmetric definite matrix, all of its eigenvalues have negative real
parts (see e.g. Plemmons and Berman (1979)).

1 We allow the partial derivative ∂pj(τ )/∂τi = +∞ (−∞) at some point τ . Then continuity at τ means
limn→∞ ∂pj(τ

n)/∂τi →+∞ (−∞) for any sequence τn
→ τ .
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Remark 5 Because R is not bounded, the arrival rate function Λ(τ ) is not Lipschitz continuous.
In fact, it is even not locally Lipschitz continuous because R may contain infinite entries when
τ ∈KJ. We provide an example in the end of Appendix A.

We next provide some intuition towards the above properties for the arrival rate function. Note
that τj(t) is proportional to the queue length. Thus, a larger τj(t) corresponds to a longer queue.
Property (CD-a) stands for weak gross substitutability (WGS) across different SPs – the arrival
rate tends to increase when other queues become longer. Property (CD-b) means that the arrival
rate of a queue decreases when it becomes longer. To interpret Property (CD-c), i.e., Conditions
(12) and (13), consider a scenario when the estimated waiting times in all queues have increased by
the same amount, then the difference in the expected waiting times across different queues will keep
the same. As a result, a customer’s preference order between any two queues will not be altered.
However, the increased queue lengths lead more customers to balk, so each queue ends up with
a smaller arrival rate. This gives strict row diagonal dominance. Also, when one queue becomes
longer, it may push some customers to other queues, but may also push some other customers
to balk. So the total arrival rate for all queues has to decrease. This gives the column diagonal
dominance.
The next proposition shows that the discrete choice model described in Section 3 leads to the

CD properties (i.e., (CD-a), (CD-b) and (CD-c)) of the arrival rate function. In fact, we can prove
an even stronger property of the arrival rate function – its Jacobean matrix must be symmetric.
However, symmetry is only needed to allow the stationary distribution of the diffusion limit process
to have a closed form. For the other asymptotic results presented in this paper, it suffices to
assume that the arrival rate function Λ(τ ) := (pj(τ ))j=1,...,J satisfies the CD property as well as
the stability condition (9).

Proposition 1 The arrival-rate function given by (3) satisfies Properties (CD-a), (CD-b), and
(CD-c) as well as the stability condition (9). Moreover, its Jacobean matrix is symmetric almost
everywhere.

The proof of Proposition 1 is provided in Section A.

4. Empirical Evidence

To validate the customer choice model presented in Section 3, we introduce a real life parallel-
queue system and investigate the customer choice behavior using real data. We consider automobile
queues at the two U.S.-Canada border-crossing ports of entries at the west coast, i.e., Peace Arch
and Pacific crossings. The two ports are located within 2 miles of each other and an automobile can
cross the border via either port by choosing the corresponding exit to leave the highway. Figure 3
visualizes the geographic locations of the two ports.
To cross the border, every vehicle needs to be screened by an officer at an inspection booth. This

process takes a few minutes and creates a bottleneck or a queue for the border-crossing traffic.
There are a maximum of eight booths at each port of entry and the number of open booths varies
across a day. Since these booths are located next to each other, a vehicle can choose one of the
open booths to cross the border. Thus, all vehicles at the same port of entry are in a pooled queue,
regardless which booth they actually go through. However, the vehicles at one port of entry cannot
switch to the other, so vehicles at the two ports of entry form two separated parallel queues.
The up-to-date waiting time estimates for crossing the two ports are disclosed to travellers on

the message boards on the highway (Interstate-5) near the exits to the two crossings. Travellers can
also learn about the latest waiting time estimates from in-vehicle radio, which is broadcasted every
10 minutes or less. Travellers can then cross the border through either Peace Arch or Pacific. Thus,
the vehicle queues at the two crossings can be modeled as two parallel queues with arrivals from the
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Figure 3 The Peace Arch and Pacific Border-Crossings

highway. We next analyze the historical border-crossing traffic data and show that the travellers
are aware of the waiting time estimates and are waiting-averse, which validates Assumption 1.
Our data is collected from the public website (WCOG, 2019). It records the number of arrivals

in five minute intervals at each port of entry, denoted by ape(t) and apa(t), and waiting-time
(delay) estimates at the beginning of every five-minute interval, denoted by τpe(t) and τpa(t). Here
t= 1,2, . . . denotes the index of each five-minute interval. Commercial trucks and vehicles with a
special dedicated fast lane such as NEXUS, go through separated lanes and are not included in
this tally. Anecdotal evidence suggests that some vehicles indeed balk upon observing a long queue
at the ports. However, the exact number of balked vehicles cannot be tracked because a vehicle
can balk anywhere on its way to the crossing.
Our empirical analysis is based on the northbound border-crossing traffic data in a one-year study

period from February 2018 to January 2019. To control the potential seasonal effect, we divide
the study period into four seasons: Feb-Apr, May-July, August-October, and November-January.
Months with similar intra-day arrival patterns are grouped into the same season. To control the
day-of-week effect, we only use traffic data on Tuesday, Wednesday, and Thursday, because the
arrival patterns in these days are very similar (Yu et al., 2016). Figure 4 plots the average total
arrival rates ape(t)+apa(t) for the two ports of entry on Tuesday/Wednesday/Thursday (T/W/T)
in each season. Since travellers may pay more attention to the waiting time estimates when there
is a substantial delay, we focus on traffics during the peak hours. To that end, we select a fixed
2.5-hours time window among days in the same season, during which the arrival rate reaches a
plateau. See Figure 4 for the selection of the peak hours.
After a traveller learns about the waiting-time estimates either from the message board on

highway or from the radio, it typically takes him less than five minutes till his vehicle joins the queue
at a port of entry and is counted as an arrival. Thus, when predicting the choice probability at the
beginning of the tth five-minute slot, we should use the waiting time estimates at the beginning of
the (t−∆)th slot. In our numerical experiments, as a robustness check we have tested ∆ = 0,1,2
to capture the possible time lags of 0, 5, and 10 minutes, respectively.
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(a)Nov. 2017 - Jan. 2018, 14:30-17:00 (b)Feb. 2018 - Apr. 2018, 14:30-17:00

(c)May. 2018 - Jul. 2018, 14:00-16:30 (d)Aug. 2018 - Nov. 2018, 14:40-17:10

Figure 4 Plots of average total arrival rates on T/W/T in each season, with the peak hours marked in blue.

We want to study the effect of waiting time on travellers’ queue-joining behavior. A simple model
– the conditional logit model – is sufficient to serve that purpose. More sophisticated methods,
such as a mixed logit model, might lead to better goodness-of-fitness, but the conclusions are likely
similar. By the IIA (independence of irrespective alternative) property of the conditional logit
model, the probability for a passenger to choose Peace Arch instead of Pacific, conditional on that
the passenger would not balk, can be calculated as follows,

ppe(t)

ppe(t)+ppa(t)
=

exp(vpe−cτpe(t−∆))

exp(vpe−cτpe(t−∆))+exp(vpa−cτpa(t−∆))

= 1
1+exp((vpa−vpe)−c(τpa(t−∆)−τpe(t−∆)))

.
(14)

where ppe(t) and ppa(t) denote the proportion of travellers who choose Peace Arch and Pacific
crossing at time t, respectively, vpe and vpa denote the expected service utility, excluding the waiting
cost, at Pacific and Peace Arch, respectively, and c denotes the waiting cost per minute. Although
we do not have data on the number of balking vehicles, we can derive the nonlinear least square
estimator for v̂pa − v̂pe and ĉ as

(v̂pa − v̂pe, ĉ) := argmin(
1

1+ exp((vpa − vpe)− c(τpa(t−∆)− τpe(t−∆)))
− ape(t)

ape(t)+ apa(t)
)2. (15)

The estimation values are summarized in Table 1. For all the four seasons and time lags ∆ =
0,1,2, the estimator of waiting cost ĉ is consistently positive at a 0.001 significance level. That
provides strong evidence that travellers have paid attention to the waiting time estimates and
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tried to avoid longer queues during the peak hours. This verifies that Assumption 1 holds for
this border crossing system. We also find that travellers’ preference, excluding waiting cost effect,
changes between Peace Arch and Pacific differ from season to season. From August till January,
the coefficient estimator v̂pa − v̂pe stays negative at a 0.001 significance level, suggesting that more
travellers prefer Peace Arch to Pacific during those months. However, from February till May,
Pacific becomes the preferred crossing. From June till August, the two ports are equally preferred.

Table 1 Estimation Results

Coefficients (Standard Error) Odds ratio
Time Lag 0 min 5 min 10 min 0 min 5 min 10 min

Nov-Jan
v̂pa − v̂pe

-0.130∗∗∗ -0.121 ∗∗∗ -0.119∗∗∗ 0.878 0.886 0.888
(0.010) (0.010) (0.011)

ĉ
0.004∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 1.004 1.006 1.006
(0.001) (0.001) (0.001)

Feb-Apr
v̂pa − v̂pe

0.027∗ 0.034 ∗∗ 0.035∗∗ 1.027 1.035 1.036
(0.010) (0.011) (0.011)

ĉ
0.014∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 1.014 1.016 1.017
(0.001) (0.001) (0.001)

May-Jul
v̂pa − v̂pe

-0.004 0.007 0.015 0.996 1.007 1.015
(0.010) (0.010) (0.011)

ĉ
0.009∗∗∗ 0.011∗∗∗ 0.013∗∗∗ 1.009 1.011 1.013
(0.0007) (0.0007) (0.0007)

Aug-Oct
v̂pa − v̂pe

-0.231∗∗∗ -0.218 ∗∗∗ -0.213∗∗∗ 0.793 0.804 0.808
(0.010) (0.010) (0.011)

ĉ
0.003∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 1.003 1.005 1.006
(0.001) (0.001) (0.001)

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We cannot fully validate Assumption 2, which is a regularity condition and states that the
parameters of travellers have a continuous and positive distribution everywhere. Our analysis of
border-crossing traffic data, however, supports that customers have heterogeneous service utility
at each port of entry, i.e., uξ,j differs for different ξ. Because if all customers have the same service
utility, which means that uξ,j ≡ vj and the random error ǫξ,j ≡ 0 for all ξ. Then the existing results
in the literature (e.g., (Hassin et al., 2006)) implies that the mean arrival rate to one queue is either
a positive constant or zero, depending on whether the difference in queue lengths is below or above
a threshold. Nevertheless, empirical data analysis shows that the arrival rate changes continuously
with the queue lengths. Thus, it is appropriate to assume that uξ,j follows a distribution within
the population.

5. Notations and Preliminaries

This section introduces some notations and preliminary results that will facilitate the subsequent
asymptotic analysis. All vectors are in boldface to differentiate from the scalars. For a sequence of
random vectors Xn, we use Xn →X a.s., Xn p→X, and Xn ⇒X to denote almost surely point-
wise convergence, convergence in probability, and convergence in distribution (weak convergence),
respectively. Let J := {1,2, . . . , J} denote the index set of the SPs. For a vector a∈R

J , we use ‖a‖
to denote the ∞-norm, so ‖a‖ :=maxj∈J |aj |. For two vectors a,b∈R

J , we use 〈a,b〉 :=∑J

i=1 aibi
to represent the inner product, and use a◦b := (ajbj)j∈J to represent the Hadamard product. For a
given nonnegative vector µ∈R

J
++, we define the µ-norm as ‖a‖µ := ‖a◦µ‖. Note that the µ-norm
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is topologically equivalent to the ∞-norm. Let Diag (a) denote a diagonal matrix with its diagonal
entries being a. We use B(t) to denote a J -dimensional standard Wiener process starting at 0.
Let D([0,+∞),RJ) denote the space of right-continuous functions with left limits (i.e., RCLL

functions) in R
J with time domain [0,+∞), endowed with the usual Skorokhod topology (Jacod

and Shiryaev (1987)). For any T > 0, we define the uniform norm ‖ · ‖T on space D([0,+∞),RJ)
as

‖y‖T = sup{‖y(t)‖, s ∈ [0, T ]}. (16)

We denote ‖y‖∞ := sup{‖y(s)‖, s∈ [0,+∞)} with a slight abuse of notations. We say that yn → y

uniformly on all compact sets (u.o.c.), if ‖yn − y‖T → 0 a.s. for all T > 0. When y is continuous,
convergence in the topology induced by the uniform norm is equivalent to convergence in the
Skorokhod topology Chen and Yao (2001). Therefore, to prove convergence with respect to the
Skorokhod topology, it suffices to prove convergence with respect to the uniform topology on
compact sets when the limit process is continuous.
We next introduce the notations of reflection mapping, which is similar to the oblique reflection

mapping defined in Chapter 7 of Chen and Yao (2001) (in our model the reflection has to be
normal to the surface). In this paper, we consider a rectangular domain Ω :=

∏

j∈J [aj , bj], with
−∞≤ a< b≤+∞. We let (ΦΩ,ΨΩ,ΥΩ) denote the reflection mapping with respect to domain Ω
such that (ΦΩ,ΨΩ,ΥΩ) : D([0,∞),RJ)→ D([0,∞),Ω⊗ R

2J
+ ). We let x := (xj)j∈J , l := (lj), and

u := (uj) denote the image of (ΦΩ,ΨΩ,ΥΩ), such that

lj(t) = sup0≤s≤t[aj(s)+uj(s)− zj(s)]
+

uj(t) = sup0≤s≤t[zj(s)+ lj(s)− bj(s)]
+

xj(t) = zj(t)+ lj(t)−uj(t).
(17)

It is well know that the lj and uj defined as above are the minimal non-decreasing processes which
enforce xj(t)∈ [aj , bj], and satisfy the following complementary-slackness condition:

x= z+ l−u

lj(0) = 0,
∫∞
0
(xj(t)− aj)

+dlj(t) = 0
uj(0) = 0,

∫∞
0
(bj −xj(t))

+duj(t) = 0.
(18)

Note that in the above definition, we allow aj = −∞ (bj = +∞), then the corresponding non-
decreasing process lj ≡ 0 (uj ≡ 0).
To derive the fluid and diffusion limit processes, we consider a sequence of PQCDAs indexed by

n= 1,2, . . .. In the nth PQCDA, customers (including those who balk) arrive according to a time-
homogeneous Poisson process with constant traffic intensity n. Upon arrival, a customer chooses
the jth SP with state-dependent probability pj(τ (t−)), which is a deterministic function of the
vector of waiting-time estimates τ (t−) right before time t. We assume that the choice probabilities
Λ(τ ) = (pj(τ (t−))) satisfy all the properties given in Section 3, and are invariant with respect to
the system index n. We assume that the service times for the j-th SP are i.i.d random variables
with mean 1/(nµn

j ) and coefficient of variation ωj, such that µn
j → µj and ωj does not depend on

n. we use Sn
j (t) to represent the cumulative number of service completions at the jth SP in the nth

PQCDA, provided that the service provider is busy in [0, t]. Sn
j (t), as a renewal process, can be

formulated as

Sn
j (t) := {k |

k∑

i=1

bj(k)≤ nµn
j t}, (19)

where (bj(k)) is a sequence of i.i.d. service time random variables with mean 1, and its distribution
does not depend on index n. Finally, we use Xn(t) and τn(t) to denote vectors of queue-lengths
and waiting-time estimates in the nth PQCDA at time t, respectively, and use W n

j (t) to denote the
cumulative busy time of the jth SP up to time t.
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6. Fluid Approximation

We first derive a compact expression for the arrival process of each queue. In the following lemma,
N(·) denotes a rate-one standard Poisson process. τ (t−) denotes the left limit of τ (·) at time t,
which exists because τ (t) =X(t)◦µ−1 is RCLL. Note that this representation does not imply that
the arrival process of each queue is an independent Poisson process, because the traffic intensity is
state-dependent. Similar notations have been used in existing literature (e.g., Mandelbaum et al.
(1998b); Weerasinghe (2014); Dong et al. (2015)) to represent state-dependent arrival or departure
processes.

Lemma 1 The total number of customers who have joined queue j during time interval [0, t] in

the nth PQCDA is given by N
(∫ t

0
npj(τ (s−))ds

)

, or equivalently, N
(∫ t

0
npj(τ (s))ds

)

.

Although the expression provided in Lemma 1 may be intuitive, rigorous derivation of the
expression relies on the Meyer’s theorem (see for example, Brown and Nair (1988)) and is not
straightforward. We attach the proof of Lemma 1 in Appendix B.
We next study the asymptotic behavior of the PQCDA via fluid approximation. We prove that

the scaled queue-length processes in a sequence of PQCDAs converge to a fluid limit process.
Moreover, we show that the fluid limit process converges to an equilibrium state which can be
characterized as a solution to a Nonlinear-Complementarity-Problem (NCP).
In the nth PQCDA, we define the scaled queue-length

xn(t) :=
1

n
X

n(t). (20)

We next show that the process xn converges to a fluid limit process. From hereon, without further
specification, we assume that the arrival rate function Λ(·) := (pj(·)) satisfies the CD property and
the stability condition (9). As a result, the Jacobean matrix of Λ(·) is negative definite almost
everywhere over RJ

+.

Theorem 1 (Convergence to Fluid Limit) Define Ω := [0,+∞)J and Γj(x) := pj(x ◦ µ−1) for
j =1, . . . , J . Suppose xn(0)→ x(0) a.s. when n→∞ with x(0)≥ 0. Then for all T > 0,

‖xn −x‖T → 0, a.s. (21)

where x is the unique solution to the following differential equation with reflection,

x(t) =Φ
Ω

(

x(0)+

∫ t

0

(Γ(x(s))−µ)ds

)

, (22)

where Φ
Ω is the reflecting mapping defined in Section 5.

Remark 6 In our paper, we assume the arrival process to be time-homogeneous in order to
derive steady-state characterization. The convergence to fluid limit process still holds for time-
inhomogeneous arrivals and our proof can be adapted to cover this case.

Before diving into the proof of Theorem 1, we want to comment on this result, specifically in
comparison to the classical results in the literature. Mandelbaum et al. (1998b), in their Theorem
4.6, have proved that the queue-length process in a general state-dependent queueing network
converges to the unique fluid limit process when the arrival and service rate functions are Lipschitz
continuous. However, our customer choice model may lead to non-Lipschitz pj(·) (See Remark 5).
Therefore, the proof technique of Mandelbaum et al. (1998b) cannot be adapted to a proof of
Theorem 1. In fact, if the drift coefficients Γ(·) = (pj(· ◦µ−1)) in the differential equation (22) are
non-Lipschitz, then generally speaking, the differential equation may not have a solution, or have
multiple solutions. See the following example.
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Example 6.1 Consider a one-dimensional non-stochastic differential equation,

x(t) =

∫ t

0

√

x(s)ds. (23)

The above equation has a non-Lipschitz drift
√

x(s), and has two solutions, x(t)≡ 0 and x(t) = 1
4
t2.

We can also provide an example of a differential equation with non-Lipschitz drift, to which a finite
solution does not exist for the entire horizon.

x(t) = 1+

∫ t

0

x2(s)ds. (24)

The above equation has a finite solution x(t) = 1
1−t

only over the time window [0,1).

Interestingly, we find that the choice-driven property can replace the Lipschitz condition in
proving Theorem 1. To that end, the next Lemma provides a new sufficient condition for the
pathwise uniqueness of a solution to the following stochastic differential equation with reflection
(SDER), which is a more general form of (22) by including a stochastic term2.

x(t) =x(0)+

∫ t

0

b(s,x(s))ds+

∫ t

0

σ(s,x(s))dB(s)+ ℓ(t), (25)

where ℓ is a non-decreasing process that keeps x≥ 0 (See Section (5) for a rigorous definition).

Lemma 2 Suppose b(s, ·) is absolute continuous with negative definite Jacobean matrix a.e., and
σ(s, ·) is Lipschitz continuous for all s, that is, ‖σ(s,x)−σ(s,y)‖ ≤K‖x−y‖ for some constant
K > 0. Then the solution to SDER (25), if exists, must be pathwise unique.

Proof. Suppose x and y are both solutions to SDER (25). Then by the first equation in the
proof of Theorem 4.1 in (Tanaka (1979), page 175), we have

‖x(t)−y(t)‖2
≤ ‖

∫ t

0
(σ(s,x(s))−σ(s,y(s)))dB(s)‖2+2

∫ t

0
〈x(s)−y(s),b(s,x(s))− b(s,y(s))〉ds+ the remainder.

(26)
where the remainder has zero expectation. We thus have

E‖x(t)−y(t)‖2
≤ E

∫ t

0
‖σ(s,x(s))−σ(s,y(s))‖2ds+2

∫ t

0
〈x(s)−y(s), b(s,x(s))− b(s,y(s))〉ds

≤ K2
E
∫ t

0
‖x(s)−y(s)‖2ds+2

∫ t

0
〈x(s)−y(s), b(s,x(s))− b(s,y(s))〉ds

(27)

where the inequality follows from Lipschitz continuity of σ(s, ·). By absolute continuity of b(s, ·),
we have

b(s,x(s))− b(s,y(s)) =

∫ 1

0

R(y(s)+ ξ(x(s)−y(s)))(x(s)−y(s))dξ, (28)

with the Jacobean matrix R(y(s)+ ξ(x(s)−y(s))) negative definite for almost all ξ ∈ [0,1]. Con-
sequently,

〈x(s)−y(s),b(s,x(s))− b(s,y(s))〉 = 〈x(s)−y(s),
∫ 1

0
R(y(s)+ ξ(x(s)−y(s)))(x(s)−y(s))dξ〉

=
∫ 1

0
〈x(s)−y(s), R(y(s)+ ξ(x(s)−y(s)))(x(s)−y(s))〉dξ

≤ 0
(29)

2 For the purpose of proving Theorem 1, we only need a weaker version of Lemma 2 that deals with a non-stochastic
differential equation with reflection. We presented Lemma 2 as a general result on SDER, because of its independent
interest.
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which, together with Equation (27), leads to

E‖x(t)−y(t)‖2 ≤K2

∫ t

0

E‖x(s)−y(s)‖2ds. (30)

Then by the Gronwall’s inequality (e.g., Ethier and Kurtz (2009), page 498), we have ‖x(t)−y(t)‖=
0.

Tanaka (1979) and Dupuis and Ishii (1993) proved that there exists a pathwise unique solution
to (25) if both b(s, ·) and σ(s, ·) are Lipschitz continuous. Swart (2002) and Yamada and Watanabe
(1971) discussed pathwise uniqueness under some similar but more general conditions. While our
Lemma 2 states that the Lipschitz continuity of the drift coefficient b(s, ·) can be replaced by
absolute continuity with negative definite Jacobean a.e. Our result thus complements the existing
results on pathwise uniqueness of the solution to (25).
As a notable difference from the standard proof, the proof for Theorem 1 also leverages the CD

property instead of the Lipschitz property of the arrival rate function. To leverage the CD property,
the proof invokes the inequalities of SDERs in Tanaka (1979) rather than directly applying the
Gronwall’s inequality.
Proof of Theorem 1 By Lemma 1, the length of queue j is described by the following

equation,
xn
j (t) = xn

j (0)+
1
n
N(
∫ t

0
npj(τ

n(s))ds)− 1
n
Sn
j (W

n
j (t))

= xn
j (0)+

1
n
Zn

j (t)+
∫ t

0
(pj(x

n(s) ◦ (µn)−1)− pj(x
n(s) ◦µ−1))ds

+
∫ t

0
(pj(x

n(s) ◦µ−1)−µn
j )ds+ ℓnj (t)

(31)

where xn
j (t) was defined in (20), ℓnj (t) := µn

j (t−W n
j (t)) is the minimal non-decreasing process which

ensures xn
j (t)≥ 0, and

Zn
j (t) :=

(

N(
∫ t

0
npj(X

n(s) ◦ (nµn)−1)ds)−
∫ t

0
npj(X

n(s) ◦ (nµn)−1)ds
)

+
(
nµn

jW
n
j (t)−Sn

j (W
n
j (t))

) (32)

represents a mean-zero centered process. We also define Γ(x) :=Λ(x ◦µ−1) and

z̃
n(t) := 1

n
Zn(t)+

∫ t

0
(Λ(xn(s) ◦ (µn)−1)−Λ(xn(s) ◦ (µ)−1))ds. (33)

Then we can express x(t) and xn(t) as

xn(t) = xn(0)+
∫ t

0
Γ(xn(s))ds− tµn + z̃

n(t)+ ℓ
n(t),

x(t) = x(0)+
∫ t

0
Γ(x(s))ds− tµ+ ℓ(t).

(34)

where ℓ(·) := (ℓj(·))j=1,...,J and ℓ
n(·) denote the minimal non-decreasing processes that keep x(t)

and xn(t) staying non-negative.
We invoke the first inequality in Remark 2.2 of (Tanaka, 1979), in which we plug in the following

quantity ξ(t) :=x(t), ξ̃(t) :=xn(t), w(t) :=x(0)−tµ and w̃(t) :=xn(0)+ z̃
n(t)−tµn, a(t) =Γ(x(t))

and ã(t) = Γ(xn(t)). Since Γ(·) is absolutely continuous, a(·) and ã(·) are both right continuous
and have bounded variation, which satisfy the conditions specified in (Tanaka, 1979). The first
inequality in Remark 2.2 of (Tanaka, 1979) then leads to following inequality,

‖xn(t)−x(t)‖2
≤ ‖xn(0)−x(0)+ z̃

n(t)− t(µn −µ)‖2 +2
∫ t

0
〈xn(s)−x(s),Γ(xn(s))−Γ(x(s))〉ds

+
∫ t

0
〈z̃n(t)− z̃

n(s)− (µn −µ)(t− s), dã(s)− da(s)+ dℓ̃(s)− dℓ(s)〉ds
(35)
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Later, we will prove that ‖z̃n‖T → 0 for all T > 0. Since ‖xn(0)− x(0)‖ → 0 and ‖µn −µ‖ → 0,
the first and the third terms on the right-hand-side of Equation (35) both converge to zero. The
second term is non-positive because

〈xn(s)−x(s),Γ(xn(s))−Γ(x(s))〉
= 〈xn(s)−x(s),

∫ 1

0
R(xn(s)+ ξ(xn(s)−x(s)))((xn(s)−x(s)) ◦µ−1)〉

= 〈(xn(s)−x(s)) ◦µ−1/2,
∫ 1

0
R(xn(s)+ ξ(xn(s)−x(s)))((xn(s)−x(s)) ◦µ−1/2)〉

≤ 0,

(36)

where the last inequality follows from that the Jacobean matrix R(xn(s) + ξ(xn(s) − x(s))) is
negative semidefinite a.e. The inequality (35) thus implies that ‖xn(t)−x(t)‖2 → 0.
It remains to show that ‖z̃n‖T → 0 for all fixed T > 0. By the functional strong law of large

number (e.g., Theorem 5.10 in Chen and Yao (2001)), and µn →µ, we have

1
n
‖N(n

∫ t

0
pj(

Xn
j (s)

nµn
j
)ds)−

∫ t

0
npj(

Xn
j (s)

nµn
j
)ds‖T → 0

1
n
‖nµn

jW
n
j (t)−Sn

j (W
n
j (t))‖T → 0.

(37)

We thus conclude that

‖ 1
n
Zn‖T → 0. (38)

Also, since Λ(·) is continuous and bounded (by one), by bounded convergence, we have

‖
∫ t

0

(Λ(xn(s)◦(µn)−1)−Λ(xn(s)◦(µ)−1))ds‖T ≤
∫ T

0

‖Λ(xn(s)◦(µn)−1)−Λ(xn(s)◦(µ)−1))‖ds→ 0

(39)
Equations (38) and (39) imply that ‖z̃n‖T → 0.

We call x the fluid limit process of the PQCDA. Because there is a one-to-one correspondence
between X(t) and τ (t) via equation (8), we can alternatively represent the fluid limit process using
{τ (t) : t≥ 0}. We next define the equilibrium (stationary) state of this fluid limit process.

Definition 2 x∗ := (x∗
j) ∈ R

J
+ is an equilibrium queue-length vector if given x(0) = x∗, the dif-

ferential equation (22) has the solution x(t)≡ x∗. The associated τ ∗ := (τ∗
j ) = (x∗

j/µj) is referred
to as an equilibrium waiting-time vector.

Intuitively, a fluid limit process is at an equilibrium state if and only if the net flow rate (i.e.,
difference between the arrival and departure rates) equals to zero for each queue. This logic leads
to the following characterization of an equilibrium state.

Proposition 2 τ ∗ is an equilibrium waiting-time vector of an PQCDA if and only if τ ∗ is the
solution to the following nonlinear complementarity problem (NCP):

NCP

µj − pj(τ ) ≥ 0, for j = 1, . . . , J.
τj ≥ 0 for j = 1, . . . , J.

∑J

j=1 τj(µj − pj(τ )) = 0.
(40)

The proof of Proposition 2 is attached in Appendix C.

Theorem 2 (Existence and Uniqueness of Equilibrium) There exists a unique equilibrium
waiting-time vector τ ∗ for the fluid limit process in each PQCDA.
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It suffices to prove that the NCP (40) always has a unique solution. To that end, we prove that
−Λ(·) satisfies the so-called P-property (Moré and Rheinboldt, 1973), which implies uniqueness.
We then construct a solution to the NCP via a tatonnement process, i.e., by adjusting the value of
τj according to the demand-supply gap µj − pj(τ ). A complete proof is provided in Appendix D.

Remark 7 Since our proof for the existence of an NCP solution is constructive, the tatonnement
algorithm introduced in the proof can be used to calculate the equilibrium queue-length vector (or
equilibrium waiting-time vector).

The choice-driven property is not only sufficient for the existence and uniqueness of the equilib-
rium state, but also necessary in the sense that without it, these results cannot hold for certain
parameters. Please see the following examples as an illustration of this point.

Example 6.2 This example shows that when (CD-a) is violated, the fluid limit process
may have multiple equilibria. Consider an example with µ = (0.4,0.4)T , arrival rate func-
tion Λ(τ ) = (0.4 − 0.1 exp(−(τ1 − 1)2),0.4 − 0.1 exp(−(τ2 − 1)2)T , and its Jacobean R(τ ) =(
0.2(τ1 − 1) exp(−(τ1− 1)2) 0

0 0.2(τ2− 1) exp(−(τ2− 1)2)

)

. The jth diagonal elements are positive

when τj < 1, so (CD-a) is violated. For queue j = 1,2, the maximum arrival rate is attained when
τj = 1, at which time the arrival rate and service rate is balanced. Thus, τj = 1 is an equilibrium
queue length for each queue. In addition to that, τj = 0 is also an equilibrium queue length. Thus,
this PQCDA consists four equilibrium states, (1,1)T , (0,1)T , (1,0)T , (0,0)T .

Example 6.3 This example shows that an equilibrium state may not exist when (CD-b) is vio-

lated. Consider an example with µ= (1,0.01,0.01)T , R≡





−0.2 −0.1 −0.1
−0.1 −0.1 0.15
−0.1 0.15 −0.1



, and Λ(τ ) = (Rτ )+.

This example satisfies the stability condition (9), because the arrival rate for each queue converges
to zero when its length approaches to infinity, as long as the lengths of the other queues are fixed.
The Jacobean also contains negative diagonals and has negative row and column sums, so (CD-a)
and (CD-c) are both satisfied. However, the Jacobean matrix contains negative off-diagonal entries
and therefore violates assumption (CD-b). One can check that if the fluid limit process starts from
(0,1,1)T , then we will have τ1(t)≡ 0, and τ2(t)≡ τ3(t)→∞ when t→∞. Consequently, no equi-
librium exists.

Example 6.4 This example shows that when (CD-c) is violated, the fluid limit process may

also have multiple equilibria. Consider an PQCDA has R ≡
(
−1 1
1 −1

)

, µ = (0.5,0.5)T , Λ(τ ) =

((0.5,0.5)T +Rτ )+. Then any vector in the form of (z, z)T with z ≥ 0 can be an equilibrium state
of the fluid limit process.

The above examples show that when any one of (CD-a), (CD-b), (CD-c) fails, the fluid limit
process may not have a unique equilibrium state. Because all the subsequent asymptotic character-
izations for the PQCDA (e.g., convergence of the fluid limit process to the equilibrium, convergence
to the diffusion limit process, and the stationary distribution of the diffusion limit process) rely on
the fact that the fluid limit process has a unique equilibrium state, these characterizations would
not apply to general parallel-queue systems.
The next theorem shows that given the CD property, the fluid limit of the expected delays in

PQCDA must converge to the unique equilibrium state.
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Theorem 3 (Convergence to Equilibrium) Suppose {x(t)|t≥ 0} is a solution to the differential
equation (22) with x(0)≥ 0, and τ (t) =x(t) ◦µ−1. Then

τ (t)→ τ ∗, when t→∞. (41)

The main idea of the proof involves showing the maximal deviation from the equilibrium queue
length maxj τj(t)− τ∗

j decreases with time due to the CD properties. A complete proof is provided
in Appendix E.

7. Diffusion Approximation

In contrast to the fluid model, a diffusion process can capture the asymptotic behavior of the
queue-length process at a more granular level. We show that when the queue lengths are close
to the equilibrium, then its deviation from the equilibrium, under diffusion scaling, converges to
a diffusion limit which is known as a reflected multi-dimensional Ornstein-Uhlenbeck (RMOU)
process. We continue to examine the sequence of PQCDAs defined in Section 3. In the nth PQCDA,
we define the virtual equilibrium τ n,∗ as the solution to the following NCP

NCP

nµn
j −npj(τ

n,∗) ≥ 0, for j = 1, . . . , J.
τn,∗
j ≥ 0 for j = 1, . . . , J.

∑J

j=1 τ
n,∗
j (nµn

j −npj(τ
n,∗)) = 0.

(42)

The virtual equilibrium can be interpreted as a state at which the mean arrival rate and service rate
are balanced in each queue in the nth PQCDA. Since we have assumed that µn

j → µj, the continuity
of pj(τ ) implies that the limit of τ n,∗ must solve the NCP (40) for the fluid model. Since the solution

to (40) is unique according to Theorem 2, we deduce that τn,∗ → τ ∗. We use ρnj :=
pj(τ

n,∗)

µn
j

to

denote the traffic intensity at the equilibrium waiting-times. Correspondingly, we denote the traffic
intensity of queue j in the fluid model by ρj := limn→∞ ρnj . We consider four mutually exclusive
cases of the limiting behaviors of the sequences (τn

j ) and (ρnj ). Note that ρ
n
j is no greater than one in

all queues by the NCP condition. τn,∗
j > 0 implies that ρnj =1 by complementarity slackness. These

four cases are not exhaustive, but they cover the scenarios which have been most often considered
in the literature (e.g., Ward and Glynn (2003)).

Largely Under-demand Queues J −− := {j|ρnj → ρj < 1}

Balanced or Slightly Under-demand Queues J − := {j| τ
n,∗
j = 0, ρnj ≤ 1 for all n, ρnj → 1,√
n(µn

j − pj(τ
n,∗))→ θj ≥ 0

}

Slightly Over-demand Queues J + := {j| τ
n,∗
j > 0 for all n, τn,∗

j → τ∗
j = 0,√

n(µn
j τ

n,∗
j −µjτ

∗
j )→ ϑj ≥ 0

}

Largely Over-demand Queues J ++ := {j| τ
n,∗
j → τ∗

j > 0,√
n(µn

j τ
n,∗
j −µjτ

∗
j )→ ϑj

},

(43)

where ϑ := (ϑj) and θ := (θj) are both J -dimensional vectors and have the following expressions,

θj =

{
limn→∞

√
n(µn

j − pj(τ
n,∗)) if j ∈ J −

0 otherwise,
ϑj =

{
limn→∞

√
n(µn

j τ
n,∗
j −µjτ

∗
j ) if j ∈J + ∪J ++

0 otherwise.
(44)

We next investigate the diffusion approximation for the scaled queue-length process

Qn
j (t) :=

√
n(xn

j (t)−x∗
j), (45)
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where xn represents the queue-lengths under fluid scaling that has been defined in Equation (20),
and x∗

j = µjτ
∗
j gives the length of queue j at the virtual equilibrium. For largely under-demand

queues where ρj < 1, it is known that there is no diffusion for those queues, i.e., Qn
j ⇒ 0 (see e.g.

Choudhury et al. (1997)). Therefore we can assume that J −− = ∅ without loss of generality, as
those queues have constant length of zero under diffusion scaling. We can focus on characterizing
the asymptotic behavior of the scaled queue-length process for queues in J −, J +, and J ++, which
can co-exist in the same system. For j ∈ J − ∪J +, we have x∗

j = µjτ
∗
j = 0 and thus Qn

j (t)≥ 0; for
j ∈J ++, since x∗

j > 0, Qn
j (t) can be either positive or negative. Consequently, Qn and its diffusion

limit process Y must reside in the following domain:

Ω=⊗[0,+∞)J
−+J+ ⊗ (−∞,+∞)J

++

. (46)

For the diffusion limit process to exist, we need to assume that the arrival rate function to
have a finite Jacobean matrix R

∗ at the equilibrium τ ∗. This assumption, however, is without
loss of generality as the choice-driven property states that a finite Jacobean exists a.e. Under this
assumption, we derive the diffusion limit for the queue-lengths process in PQCDA as the solution
to the following SDER,

Y (t) =

∫ t

0

(
R∗Diag (µ−1)(Y (s)−ϑ)−θ

)
ds+ΣB(t)+L(t), (47)

where Σ is a J -by-J diagonal matrix with
√

(1+ω2
j )µj as its jth diagonal entry, B(t) is a J -

dimensional standard Brownian motion with covariance matrix I (identify matrix), and L(t) is a
J -dimensional minimal non-decreasing process which makes Yj(t)≥ 0 for all j ∈J − ∪J +.

Theorem 4 (Convergence to Diffusion Limit) Suppose Qn(0)⇒ Y (0) and E‖Y (0)‖<∞. We
then have,

Q
n ⇒Y . (48)

Before proving the above result, we make a few remarks. First, according to Theorem 4, the
diffusion process has a reflection barrier at 0 only for j ∈ J − ∪ J +, but has no reflection barrier
for j ∈J ++. Intuitively, for j ∈J −∪J +, we have Qn

j (t) =
√
nxn

j (t). Thus, Q
n
j (t) = 0 (so xn

j (t) = 0)
means that queue j is empty, at which time the server has to stop working and prevents Qn

j (t)
from decreasing further. Therefore, if j ∈J −∪J +, 0 is a reflecting barrier for Qn

j (t). For j ∈J ++,
since x∗

j = µjτ
∗
j > 0, an empty queue (xn

j (t) = 0) corresponds to Qn
j (t) =

√
n(0− x∗

j)→−∞ when
n→∞. That means, if j ∈ J ++, the reflection barrier for Qn

j (t) is at −∞, which is equivalent to
the case of no reflection barrier.
Second, we provide some interpretations of the two vectors θ and ϑ in Equation (44). For j ∈J −,

ϑj = 0, while −θj represents the negative drift that brings down Qn
j (t) towards zero, due to the

fact that the center of the RMOU is actually negative along the jth coordinate. For j ∈ J +∪J ++,
θj = 0, and ϑj can be considered as the center of the RMOU for queues along the jth coordinate.
Figure 2 depicts the behavior of Yj and illustrates the role of θ and ϑ in the cases when j is in
J −, J +, and J ++, respectively.
Finally, we want to elaborate on the relationship between our result and Theorem 7.2 in Man-

delbaum et al. (1998b). Mandelbaum et al. (1998b) developed a diffusion approximation for√
n(xn(t)−x(t)), which is the deviation of the scaled queue lengths from the fluid limit amplified

by
√
n. The same result, nevertheless, cannot be expected in our model. This is because the drift

coefficients R(τ (t)) in the SDER (47) may have infinite values when the fluid limit x(t) passes
through points at which a finite-valued Jacobean matrix does not exist. Should that happen, the
sequence of Qn may be not tight and the diffusion limit is not well defined. Thus, for our model,



Author: Article Short Title

22 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

the diffusion limit can only be developed in a neighborhood of the fixed equilibrium state x∗, at
which a finite Jacobean is assumed to exist.
To develop a diffusion approximation for

√
n(xn(t)−x∗), we assume that the fluid limit starts

with the steady state (i.e., x(0) = x∗, or more strongly, Qn(0) converges to a bounded random
variable). Then by the definition of equilibrium, we know the fluid limit is invariant as x(t)≡ x∗.
Therefore, we actually developed a diffusion approximation for the deviation of the scaled queue
length from its fluid limit. Moreover, in our model, the drift coefficient in the diffusion limit is the
net flow rate at the equilibrium, which allows an affine approximation using the Jacobean at the
equilibrium R∗. So we can derive the diffusion limit as an RMOU process, which has a stationary
distribution due to negative definiteness of R∗. Such a result, however, cannot be expected in a
general state-dependent queueing network, because the fluid limit there may not has an equilibrium,
and the drift function would not exhibit similar properties (i.e., can be approximated by an affine
function with negative definite coefficient matrix).
We also wish to emphasize that the framework introduced in Theorem 7.2 of Mandelbaum et al.

(1998b) cannot be adapted to derive our Theorem 4, even by assuming x(0) =x∗ in their proof. This
is because their proof framework heavily relies on the bounded derivative (or Lipschitz continuity)
condition for the state-dependent net flow rates. Without the Lipschitz condition, several of their
intermediate results cannot hold in general, including their Lemma 14.12 (compact containment),
Lemma 14.13 (C-tightness), and Lemma 14.14 (characterization of the limit process); while those
results are all needed for their proof of Theorem 7.2. In particular, their Lemma 14.12 states that for
all T > 0, {Qn(t)|t∈ [0, T ]}, as defined in (45), will be contained in a compact set with probability
approaching to one when n→∞. This conclusion, nevertheless, is not valid if the arrival rates (thus
the drift coefficients) are non-Lipschitz. To see this, recall the example we gave in the differential
equation (24), in which the drift coefficient is non-Lipschitz and its solution becomes infinitely
large for t∈ [1,+∞). Although that differential equation is non-stochastic, adding a stochastic term
will not change the boundedness of the solution. Therefore, non-Lipschitz arrival rates, if without
additional constraints, may lead to a queue-lengths process that violates the compact containment
condition.
To deal with the non-Lipschitz case, it suffices to prove a result analogous to Lemma 14.12

(compact containment) of Mandelbaum et al. (1998b) in Lemma 3, but for non-Lipschitz and
choice-driven arrival rates. With compact containment, we can find a compact neighborhood of the
equilibrium which contains the scaled stochastic processes at almost all the times for sufficiently
large n. Since the drift function is Lipschitz continuous in that neighborhood, the convergence to
the diffusion limit follows from Theorem 7.2 in Mandelbaum et al. (1998b).
Below we provide more details about the compact containment result. For a given κ > 0, we

define a compact rectangular

Ω(κ) := [0,+κ]J
−∪J+ ⊗ [−κ,+κ]J

++

. (49)

Define a bounded modification of Qn as

Qκ,n(t) = Φ
Ω(κ)(Qn) (50)

Intuitively, Qκ,n is the process created from Qn by imposing reflection barriers on the finite bound-
ary of Ω(κ). We prove that in the following lemma that for any T > 0, when κ→∞, with probability
approaching one, Qκ,n is contained in the bounded rectangular Ω(κ).

Lemma 3 (Compact Containment) For any T > 0, ǫ > 0, when κ→∞, we have

limsup
n→∞

Pr(‖Qn‖T >κ) = limsup
n→∞

Pr(‖Qκ,n −Qn‖T 6= 0)→ 0 (51)
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To provide some intuition behind the proof of Lemma 3, we note that without the Lipschitz
assumption, a small deviation of Qn might lead to a large drift that pushes Qn away from the
equilibrium, which causes compact containment to fail. However, the choice-driven property ensures
that any deviation of Qn can only result in a drift that pulls Qn back towards the equilibrium (even
though the drift can be quite large). Thus, the choice-driven property can replace the Lipschitz
condition and guarantee compact containment of Qn. A complete proof is provided in Appendix
F. With Lemma 3, we prove Theorem 4 as follows.
Proof of Theorem 4 Since ‖Qκ,n‖T ≤ κ, if we define the waiting-time vector associated

with Qκ,n as

τ κ,n(t) = (n1/2Qκ,n(t)+nτ ∗ ◦µ∗) ◦ (nµn)−1, (52)

then ‖τ κ,n − τ ∗‖T → 0. We can then select a neighborhood N of τ ∗, such that τκ,n ∈ N for all
sufficiently large n, and the arrival rate function Λ(·) is Lipschitz continuous in N . The latter
holds because Λ(·) has bounded Jacobean R∗ at τ ∗, and the Jacobean is continuous everywhere.
Therefore, the state-dependent arrival rate of the process Qκ,n is Lipschitz continuous over its
domain. Hence, we can invoke Theorem 7.2 in Mandelbaum et al. (1998b) and show that

{Qκ,n(t)|0≤ t≤ T}⇒ {Y κ(t)|0≤ t≤ T}. (53)

Finally, for all bounded, continuous real-valued function f with domain D([0, T ),RJ), when
κ→∞, we have

limsupn→∞ |Ef(Qn)−Ef(Y )|
≤ limsupn→∞ |Ef(Qn)−Ef(Qκ,n)|+ limsupn→∞ |Ef(Qκ,n)−Ef(Y κ,n)|+ |Ef(Y κ)−Ef(Y )|
≤ limsupn→∞ 2f Pr(‖Qn −Qκ,n‖T 6= 0)+0+ |Ef(Y κ)−Ef(Y )|
→ 0

(54)
where f represents an upper bound for |f |, limsupn→∞ |Ef(Qκ,n)− Ef(Y κ,n)| = 0 follows from
Equation (53), limsupn→∞ 2f Pr(‖Qn −Qκ,n‖T 6= 0)→ 0 follows from Lemma 3, and |Ef(Y κ)−
Ef(Y )| → 0 follows from bounded convergence and the continuous mapping theorem. Equation
(54) implies that Qn ⇒Y .

Perhaps the most useful characterization of a stochastic process is its stationary distribution.
The diffusion limit process Y is an RMOU and falls into the category of multi-dimensional reflected
diffusion processes, the stationary distribution of which has been studied in (Dieker and Gao, 2013;
Kang and Ramanan, 2014). Based on the results of Kang and Ramanan (2014), we can derive a
closed-form characterization of the stationary distribution of Y under additional assumptions that
the Jacobean is symmetric and all service providers have the same coefficient of variation.

Proposition 3 (Stationary Distribution of the Diffusion Limit) The RMOU process Y has a
unique stationary distribution. Furthermore, if the R∗ is symmetric, and ωj ≡ ω1 for all j ∈ J ,
then the stationary distribution of Y defined in Theorem 4 is a truncated multivariate Gaussian
distribution, and its density has a closed form

πY (z) =

{
π(z)∫

Ω
π(z)dz

if z ∈Ω,

0 otherwise.
(55)

where π(z) is the density function of a multivariate Gaussian distribution with mean ϑ +
Diag (µ)(R∗)−1θ and covariance matrix − 1

2
(1+ω2

1)Diag (µ)(R∗)−1Diag (µ).
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0 t

Yj(t)

−θj

(a)When queue j is slightly
under-demand, Yj tends to move
toward the virtual equilibrium
ϑj = 0 at a constant downward
drift rate θj . Meanwhile, 0 is a
reflection barrier for Yj .

0 t

Yj(t)

ϑj

(b)When queue j is slightly over-
demand (or balanced), Yj oscil-
lates around the virtual equilib-
rium ϑj and is subject to a reflec-
tion barrier at 0.

0 t

Yj(t)

ϑj

(c)When queue j is largely over-
demand, Yj oscillates around the
virtual equilibrium ϑj in an
unbounded domain.

Figure 5 Typical sample paths of Yj in the cases of j ∈J
−,J +,J ++.

Note that the symmetry of R∗ and the assumption ωj ≡ ω1 is indispensable for the current
methodology to work, i.e., using the result of Kang and Ramanan (2014). Otherwise we lose sym-
metry of Σ−2R∗Diag (µ−1) and cannot apply the result of Kang and Ramanan (2014). Proposition
3 follows from Example 3.10, Claim 1 of Kang and Ramanan (2014). A detailed proof is provided
in Appendix G.

Remark 8 The multivariate Gaussian steady-state distribution provides the system manager
with some practical insights. Since the covariance matrix of such a distribution is proportional
to the inverse of the Jacobean (R∗)−1, the spread of the distribution is decreasing in the scale of
R∗. Thus if one wishes to reduce the variability of the queue-length process of the PQCDA, one
may consider increasing the scale of R∗, which depends on customers’ delay sensitivity. Roughly,
if customers are more sensitive to the non-zero waiting times (so a larger cξ), then R∗ will have
a larger scale which leads to a lower spread of the multivariate Gaussian distribution. Thus the
diffusion limit process will be more concentrated at its center. Such a reduction in queue length
variability will load the multi-queue service system in a more balanced way which reduces the idle
times of all servers and increases the system throughput. Therefore, the system manager has an
incentive to exert effort to persuade customers to actively use the queue-length information. As a
result, the customer’s delay sensitivity can be increased so that the pooling effect of PQCDA can
be enhanced and the system efficiency can be improved.

Proposition 3 presented above states that the stationary distribution of the limiting process Y ,
denoted by π, is truncated multivariate Gaussian and has a closed-form density function. In the nth

PQCDA, if we let bnj (t), j = 1,2, . . . , J denote the remaining service time for the customer currently
being served by the jth service provider, and define bn(t) := (bnj (t)). Then Ξn(t) := (Qn(t),bn(t)) is
a Markov process and can be proved to have a stationary distribution. Let πn denote the projection
of the stationary distribution onto Qn. Then we can prove that πn weakly converges to π when n
approaches infinity. This result is also termed as interchange of limits and illustrated in Figure 6.
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The interchange of limits was proved when Ξ
n is the Markov process in a generalized Jackson

network by Gamarnik and Zeevi (2006). We adopt their machinery and show that the interchange
of limits holds for the PQCDA. The queueing network considered by Gamarnik and Zeevi (2006)
assume constant arrival and service rates, while the arrival rates in our model are state-dependent
and non-Lipschitz. Therefore, the adoption of their methods is not trivial and must exploit the
choice-driven property. Specifically, the choice-driven property is used to prove that a Lyapunov
function can be constructed so that its exponential has bounded expectation.
Formally, a function V : Ω → R+ is said to be a Lyapunov function with drift size parameter

−γ < 0 and drift time parameter t0 > 0 and exception parameter κ for a Markov process Ξ if

sup
Ξ(0)∈Ω: V (Ξ(0))>κ

{EΞ(0)V (Ξ(t0))−V (Ξ(0))}≤−γ. (56)

For each n, define

L1(u, t,n) := supΞn(0)∈ΩE[exp(u(V (Ξn(t))−V (Ξn(0))))|Ξn(0)]
L2(u, t,n) := supΞn(0)∈ΩE[(V (Ξn(t))−V (Ξn(0)))2 exp(u(V (Ξn(t))−V (Ξn(0)))+)|Ξn(0)]

(57)

for any u> 0, t≥ 0. We then have the following proposition.

Proposition 4 Let V (Ξn(t)) := ‖Qn(t)‖µ−1

. Then for sufficiently large n, V (·) is a Lyapunov
function with drift size parameter −1, drift time parameter t0, and exception parameter κ for some
κ, t0 > 0. In addition, there exists u0 such that

limsupn→∞L1(u0, t0, n) < ∞
limsupn→∞L2(u0, t0, n) < ∞ (58)

The above proposition is in analogue to Proposition 3 in Gamarnik and Zeevi (2006), but deals
with the PQCDA case in which the drift function is not Lipschitz. Note that we have used different
notations from those used in Gamarnik and Zeevi (2006): our Qn(t) corresponds to the notation
“ 1√

n
Q

n(nt)” in their paper. Because we have used a different scale, the bound we derived with
respect to the ‖ · ‖t0 norm is exactly the bound derived in their paper the interval [0, nt0]. A
complete proof for Proposition 4 is provided in Appendix H.

Qn(t) Qn(∞)

Y(t) Y(∞)

t → ∞

t → ∞

n
→

∞

n
→

∞

Figure 6 The interchange-of-limit result implies that the steady-State distribution of Y n, π, can be approximated
by πn, the projection of the steady-state distribution of Ξn onto the subspace of Qn.

Theorem 5 (Interchange of Limit) The sequence of stationary distributions, πn, weakly con-
verges to π.
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The main idea of the proof is to construct a Lyapunov function with the properties given in
Proposition 4. Those properties allow us to prove uniform tightness of the sequences (πn), which
then yields the existence of a limiting distribution π̂. The interchange of limits can then be proved
by arguing that any such π̂ must coincide with the unique stationary distribution of Y , π. A
complete proof is provided in Appendix I.

8. PQCDA with Reneging Customers

The previous results on PQCDA without reneging customers can be extended to the case when
customers may renege (or abandon) after an exponentially distributed time before getting served.
Note that in most past studies on the queues with customer choice, the reneging feature was not
considered due to the reason that a customer’s decision to join was made based on the expected ser-
vice utility. We incorporate reneging, as it is a feature in our motif dating examples. For example, in
health care settings, death or unexpected changes in medical conditions may lead to abandonment
of the service by patients. Since the analysis with reneging is similar to the one in earlier sections,
we only elaborate the results where the technical differences are significant.
We assume that customers renege after an exponentially distributed period with mean of 1/d.

When the system is Markovian (the inter-arrival times, reneging times, and service times are all
exponentially distributed), the following expression given in Zenios (1999) can be used to compute
the expected waiting time

τj =
1

d
log(1+

Xjd

µj

). (59)

We assume that all customers use (59) to compute their expected waiting time, and choose a
queue which maximizes their payoff Uξ,j as given in (1), which leads to state-dependent arrival rate
function Λ(τ ). Because our proof for Proposition 1 does not rely on the functional form of τj with
respect to Xj, the proof can be adapted to establishing the choice-driven property of the arrival
rate function in the presence of reneging customers.

Corollary 1 With the customer choice model defined in Section 3, even if customers renege
after an exponentially distributed time with mean 1/d before service, the arrival rate function still
satisfies the CD property, and its Jacobean is symmetric.

Remark 9 With reneging, the PQCDA is always stable. So the stability condition (9) is no longer
necessary.

We next prove that the fluid process in a PQCDA with customer reneging converges to the
equilibrium state, which is the unique solution to an NCP with a slightly different formulation
compared to the non-reneging case.

Theorem 6 The equilibrium state of the fluid limit process in PQCDA with reneging is the
unique solution to the following Nonlinear Complementary Problem (NCP).

NCP
Zj := µj exp(τjd)− pj(τ ) ≥ 0, for j =1, . . . , J.

τj ≥ 0, for j =1, . . . , J.
τjZj = 0, for j =1, . . . , J.

(60)

Moreover, if we use τ (t) to denote the waiting-time vector in a fluid model, then for any given
τ (0)≥ 0, τ (t)→ τ ∗.
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Proof. By defining p̂j := µj exp(τjd)− pj(τ ), the above NCP can be rewritten into a similar
form as in(40) by replacing the arrival function Λ(·) with Λ̂(·) := (p̂j(·))j=1,...,J . Note that the
Jacobian for Λ̂(τ ) has the form R̂= σ(τ )+R, where R is the Jacobian of p(τ ) and is a symmetric
negative definite matrix by Corollary 1, and σ(τ ) is a diagonal matrix with the jth entry σjj(τ ) =
µjd exp(τ jd)> 0. Because of the extra term σ(τ ), we are now able to prove that p̂j satisfies the
uniform P-property, i.e.,

Uniform P-Property: ∀τ 1,τ 2 ∈R
J
+, τ

1 6= τ 2,
J

min
j=1

(τ 1
j − τ 2

j )(p̂j(τ
1)− p̂j(τ

2))< c‖τ 1 − τ 2‖2, (61)

with c > dmaxj µj > 0. Thus, the classical theorem by Cottle (1966) implies the existence of a
unique solution to the NCP (60).
To prove τ (t) → τ ∗, we define ∆τ (t) = maxj(τj(t) − τ∗

j ), and ∆τ (t) = minj(τj(t) − τ∗
j ). We

want to prove that ∆τ ′(t)≤ κ(δ) for some constant κ(δ)> 0 whenever ∆τ (t)≥ δ. Without loss of
generality, assume that τj(t)− τ∗

j =∆τ ′(t), then τj(t)> 0 and (59) imply that

τ ′
j(t) =

pj(τ )−µj

Xj(t)d+µj

≤ pj −µj

pj(τ ∗)
, (62)

where the inequality follows from the NCP constraint Zj = µj(exp(τjd))− pj(τ
∗) = µj +X∗

j d−
pj(τ

∗)≥ 0.
The rest of the proof resembles the proof of Theorem 3, i.e., we prove facts (1) and (2) and

show that ∆τ ′(t)≤−κ(δ). We then use the similar argument to show that ∆τ ′(t)≥ κ(δ) whenever
∆τ (t)≤−δ and prove τ (t)→ τ ∗.

The proof of the convergence to the diffusion limit is a simple extension of Theorem 4 by including
an extra term −dI in the drift matrix as a result of reneging. We summarize the result below and
the notations follow from the definitions in the previous sections.
We next study the diffusion approximation for Qn(·) := (Qn

j (·)), where Qn
j (·) is the scaled queue-

length process in the nth PQCDA with its expression given in Equation (45). As before we partition
the index set of queues into four subsets J −−, J −, J +, and J ++ according to (43) and assume
J −− = ∅. We redefine θ and ϑ as follows,

θj =

{
limn→∞

√
n(µn

j − pj(τ
n,∗)) if j ∈J −

0 otherwise,
ϑj =

{
limn→∞

√
n(Xn,∗

j −X∗
j ) if j ∈ J + ∪J ++

0 otherwise,
(63)

where Xn,∗
j =

µn
j

d
(exp(dτn,∗

j )− 1) represents the queue length when the expected waiting time is
τn,∗
j . The scaled-queue length process Qn(·) and its diffusion limit Y (·) thus reside in the following
domain,

Ω= [0,+∞)J
−∪J+ ⊗ (−∞,+∞)J

++

. (64)

The next Corollary, which is analogous to Theorem 4, states that Qn converges to a J -dimensional
diffusion process Y which is the solution to the following stochastic-differential-equation,

Y (t) =

∫ t

0

(
(R∗Diag (((e+ τ ∗d) ◦µ)−1)− dI)(Y (s)−ϑ)−θ

)
ds+

∫ t

0

Σ
RdB(s)+L(t), (65)

where I is an J -by-J identity matrix, ΣR is a J -by-J diagonal matrix with
√

(ω2
j +exp(τ∗

j d))µj

as its jth diagonal entry, B(t) is a J -dimensional Brownian motion, and L(t) is a J -dimensional
minimal non-decreasing process which makes Yj(t)≥ 0 for all j ∈ J − ∪J +.

Corollary 2 Suppose Qn(0)⇒Y (0) and E‖Y (0)‖<∞. Then we have

Qn ⇒Y . (66)

The proof for Corollary 2 is provided in Appendix K.
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9. Conclusions and Future Research

Our paper is the first to apply heavy traffic approximations to the general PQCDA problem and
derive properties of its steady sate. As mentioned, we not only make theoretical contributions but
also address some of the managerial issues of interest that arise in practice. For example, our results
can directly help practitioners implement system evaluation metrics for controlling these types of
stochastic systems. Future work can evaluate the value of information by comparing the social
welfare achieved in PQCDA versus a parallel-queue system without waiting time announcements.
Another important question would be to evaluate the discrepancy between the social welfare opti-
mization to that of a customers self-interest maximization in a PQCDA. The results can also be
applied to evaluate the performance of PQCDAs under different staffing policies, which we were
unable to do for the border-crossing queues due to the lack of data on customer balking.
Our analytical framework can be extended to a PQCDA in which all customers renege after

an identically and exponentially distributed random period. However, if reneging is endogenous
(state-dependent), then the problem is known to be hard (Ata and Peng, 2018). Also, in some
situations, waiting customers may abandon the current queue and join a different queue. Usually,
when a customer abandons the current queue, she has to lose her priority in that queue and has
to wait at the end of the new queue. Such a switching behavior is equivalent to the event that a
customer reneges in one queue and a new customer joins another queue. Our conjecture is that this
will not change the behavior of the PQCDA and thus will not affect the asymptotic characterization
significantly. Relaxing some of the technical assumptions, such as Poisson arrival and exponential
reneging times, can be an interesting but challenging and is left for future research.
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Appendix A: Proof of Proposition 1

Proof. We first prove that the Jacobean of the arrival rate function exists and is continuous at
all τ /∈KJ .

For all j 6= i and i, j 6= 0, if the partial derivative
∂pj(τ)

∂τi
exists, then it must equal to the following

limit

lim
t→0

1

t
(pj(τ + tei)− pj(τ )). (67)

Note that τ + tei and τ differs only in the ith component. Thus, if a customer of type ξ chooses
to join queue j at τ + tei, but not to join queue j at τ , then he must have chosen queue i at
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τ . Because his utility of joining other queues is not changed. Those customers must have their
parameters (uξ, cξ) contained in the set S1 ∩S2(t), where

S1 :=

{

(u, c) | uj − cτj > max{0, uk − cτk, k 6= i, j}
ui − cτi > max{0, uk − cτk, k 6= i, j}

}

S2(t) :=
{
(u, c)| c(τi− τj)≤ ui −uj < c(τi− τj + t)

}
(68)

Intuitively, ξ ∈ S1 if queue i and queue j are the top two choices of customer ξ; ξ ∈ S2 if the
expected utility of queue i and queue j are so close that a small change of τi would alter his choice.
The probability for ξ ∈ S1 ∩S2(t) is thus exactly the difference pj(τ + tei)− pj(τ ).
If τi 6= τj, the limit (67) can be calculated as

lim
t→0

1

t
(pj(τ + tei)− pj(τ ))

= lim
t→0

1

t
Pr((u, c)∈ S(t))

= lim
t→0

1

t

∫

(u,c)∈S2(t)

I((u, c)∈ S1)f(u, c)dudc

= lim
t→0

∫

[
1

t

∫ ui−uj
τi−τj

ui−uj
τi−τj+t

fc|u(c)I((u, c)∈ S1)dc]f(u)du

=

∫

lim
t→0

[
1

t

∫ ui−uj
τi−τj

ui−uj
τi−τj+t

fc|u(c)I((u, c)∈ S1)dc]f(u)du (69)

=

∫

I((u,
ui −uj

τi− τj
)∈ S1)f(u,

ui −uj

τi − τj
)du. (70)

Equality (69) is due to dominated convergence. To see that, note that the term inside [·] has the
following limit

lim
t→0

[
1

t

∫ ui−uj
τi−τj

ui−uj
τi−τj+t

fc|u(c)I((u, c)∈ S1)dc] = fc|u(
ui−uj

τi − τj
) I((u,

ui −uj

τi − τj
)∈ S1). (71)

Thus, for sufficiently small t, the term inside [·] is upper bounded by 2fc|u(
ui−uj

τi−τj
)I((u,

ui−uj

τi−τj
) ∈ S1),

whose integral with respect to u is upper bounded by the marginal density 2fc(
ui−uj

τi−τj
).

Therefore, if τi 6= τj, the partial derivative
∂pj(τ)

∂τi
, as the limit of 1

t
(pj(τ + tei)− pj(τ )), exists

and has the following expression,

∂pj(τ )

∂τi
=

∫

I((u,
ui −uj

τi − τj
)∈ S1)f(u,

ui −uj

τi − τj
)du. (72)

Since the RHS of above equation is a continuous function of τi and τj when τi 6= τj, the partial

derivative
∂pj(τ)

∂τi
must be continuous at all τ /∈KJ (so τi 6= τj).

The above argument proves that if j 6= i, then
∂pj(τ )

∂τi
exists and is continuous for all τ /∈KJ . It

remains to prove the above property of
∂pj(τ)

∂τi
for the j = i case. Because

∑J

i=0 pj(τ )≡ 1, we know
that

∂pi(τ)

∂τi
= −∑j 6=i, j=0,1,...,J

∂pj(τ)

∂τi
(73)

Note that the summation at the RHS consists of
∂pj(τ)

∂τi
for all j 6= i (including j = 0). p0(τ )

represents the proportion of customers who choose to balk, or equivalently, to join a queue indexed
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by 0 with expected waiting time τ0 = 0 and service utility u0 = 0. Thus, using the previous argument
for the i 6= j case, we can show that ∂p0(τ)

∂τi
exists and is continuous for all τ /∈KJ . Because for all

j 6= i (including j = 0),
∂pj(τ)

∂τi
exists and is continuous at all τ /∈ KJ , Equation (73) implies that

∂pi(τ)

∂τi
exists and is continuous except at all τ /∈KJ .

So far, we have proved that the arrival rate function pj(τ ) has continuous derivatives everywhere
except at points in KJ . Next we show that even at points in KJ , pj(τ ) is continuous, though it
may not have finite derivatives. Thus, pj(τ ) is absolute continuous. Formally,

lim
t→0

pj(τ + tei)− pj(τ ) = lim
t→0

Pr((u, c)∈ S(t))

= lim
t→0

∫ ∫

[

∫ ct

0

fui|u−i,c(uj +x)I((u, c)∈ S1)dui]fu−i,c(u−i, c)dcdu−i (74)

= 0 (75)

where equality (74) follows from Equality (75) follows from that limt→0

∫ ct

0
fui|u−i,c(uj+x)I((u, c)∈

S1)dui = 0. We may repeatedly apply the above logic for each coordinate i 6= j and establish
continuity of pj(τ ) at points in KJ .
We next prove (CD-a)-(CD-c).
(CD-a): Suppose τ 2

k > τ 1
k , and τ 2

l = τ 1
l for j 6= k. For a customer indexed by ξ, if his choice is

queue j 6= k, then

uk − cτ 2
k <uk − cτ 1

k ≤ uj − cτ 1
j = uj − cτ 2

j , (76)

where the first inequality is due to τ 2
k > τ 1

k , the second inequality follows from the fact that the
customer’s optimal choice is queue j instead of queue k, and the last equality follows since τ 1

j = τ 2
j .

Therefore, if a customer’s initial choice is queue j, then his choice remains the same when the
waiting-time vector is changed from τ 1 to τ 2. We thus deduce that pj(τ ) is non-decreasing in τk.
(CD-b): Note that pj(τ ) must be non-increasing with τj as a result of (CD-a) and

∑J

k=0 pk = 1.
So it suffices to prove pj(τ ) is strictly decreasing when τ 1 has been replaced by τ 2, where τ 2

j > τ 1
j

but τ 2
k = τ 1

k for k 6= j. A customer ξ will choose to join queue j given expected waiting-times vector
τ 1, but not join queue j when the waiting-time vector is changed to τ 2, if and only if

(uξ, cξ)∈ {(u, c)|uj − cτ 1
j > max{0, uk − cτ 1

k , k 6= j}
uj − cτ 2

j < max{0, uk − cτ 2
k , k 6= j} } (77)

Because the parameter c has positive conditional pdf fc|u over R+, the above set must have a
positive probability mass. Therefore, a positive proportion of customers must switch to queues
other than j when the waiting time of queue j has been increased from τ 1

j to τ 2
j . Therefore, pj(τ )

is strictly decreasing in τj.
(CD-c): Given τ 2 := τ 1 + te, the linear form of Uξ,j implies that if Uξ,j ≥ Uξ,k for all k 6= j

(including k = 0) at τ 2, then the same inequalities must hold at τ 1. Therefore, we deduce that
pj(τ

1)≥ pj(τ
2) for all j 6= 0. To prove the strict inequality in (12), we notice that a customer of

type ξ joins some queue at τ , but balks at τ 2 if

(u, c)∈
{

(u, c) | 0<max{uk − cτ 1
k , k= 1, . . . , J}

0>max{uk − c(τ 2
k + t), k=1, . . . , J}

}

. (78)

Because the parameter c has positive conditional pdf fc|u over R+, the above set must have a
positive probability mass, so the strict inequality (12) is proved, which implies row strict diagonally
dominance of the Jacobean matrix. Inequality (13) and the column strict diagonally dominance
follow from symmetry of the Jacobean matrix, a result that will be proved in the end of this proof.
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We next prove the stability condition (9). A customer will joint queue j only if uj − cτ > 0.
Therefore, when τj →∞,

pj(τ )≤Pr(uj − cτ > 0) =

∫

[

∫ uj/τj

0

fc|u(c)dc]fu(u)du→ 0. (79)

where the convergence follows from uj/τj → 0 and our assumption that fc|u(·) is bounded. Equation
(79) leads to (9).
Finally, we prove that the Jacobeanmatrix is symmetric whenever it exists. Equation (69) implies

that
∂pj(τ )

∂τi
= limt→0

1
t
(pj(τ + tei)− pj(τ ))

= limt→0
1
t
Pr













(u, c)|
uj − cτj > max{0, uk − cτk, k 6= i, j}
ui − cτi > max{0, uk − cτk, k 6= i, j}
uj − cτj > ui − c(τi+ t)
uj − cτj < ui − cτi













(80)

Similarly,

∂pi(τ)

∂τj
= limt→0

1
t
(pi(τ )− pi(τ − tej))

= limt→0
1
t
Pr













(α, c,ǫ)|
uj − cτj > max{0, uk − cτk, k 6= i, j}
ui − cτi > max{0, uk − cτk, k 6= i, j}

uj − c(τj − t) > ui − cτi
uj − cτj < ui − cτi













(81)

Notice that the set at the RHS of Equation (80) and (81) are identical. The intuition is that it is
the same group of customers who will switch to queue j, when either τj has been decreased by t,
or τj has been increased by t. We thus have ∂pj(τ )/∂τi = ∂pi(τ )/∂τj and symmetry is proved.

The above proof also leads to an example that the arrival rate function Λ(·) does not have to be
(even locally) Lipschitz continuous. In particular, its partial derivative may be infinite at points
in KJ . Let u−i denote the vector obtained by removing the ith entry from u. Equation (74) then
implies that

lim inf
t→0

1

t
(pj(τ + tei)− pj(τ ))

= lim inf
t→0

∫ ∫

[
1

t

∫ uj+ct

uj

fui|u−i,c(ui)I((u, c)∈ S1)dui]fu−i,c(u−i, c)dcdu−i (82)

≥
∫∫

lim inf
t→0

[
1

t

∫ ct

0

fui|u−i,c(uj +x)I((u, c)∈ S1)dx]fu−i,c(u−i, c)dcdu−i (83)

=

∫∫

cfui|u−i,c(uj)I((u, c)∈ S1)fu−i,c(u−i, c)du−i dc

=

∫

c[

∫

fu|c(uj,u−i)I((u, c)∈ S1)du−i]fc(c)dc

where inequality (83) follows from the Fatou’s Lemma. Note that the integral inside [·] can be
infinitely large because

∫
fu|c(uj,u−i)du−i = fui|c(uj) can be infinitely large when ui = uj; while

we can always properly select the parameters such that the constraint I((u, c)∈ S1) is satisfied by

u−is in a positive-measured set. Consequently, the partial derivative
∂pj(τ )

∂τi
can be infinitely large

(i.e., not exist) at points in set KJ , and can be unbounded near those points. That means, the
arrival rate function Λ(·) does not have to be (even locally) Lipschitz continuous.
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Appendix B: Proof of Lemma 1

Given τ (t−)∈R
J
+, define the following partition over the domain of (u, c) (i.e., RJ+1

+ ):

π0(τ (t−)) := {(u, c)∈R
J+1
+ |0>uk − cτk(t−) for all k= 1, . . . , J},

πj(τ (t−)) := {(u, c)∈R
J+1
+ |uj − cτj(t−)>max{0, uk − cτk(t−), k 6= j}}. (84)

According to the above definition, a customer, by observing waiting-time estimates τ (t−), will
join queue j(= 0,1, . . . , J) if his parameter vector (u, c) ∈ πj(τ (t−)). Since a tie happens with
probability zero, the probability for a customer to join queue j is given by

pj(τ (t)) =

∫

(u,c)∈R
J+1
+

1((u, c)∈ πj(τ (t−)))f(u, c)dudc. (85)

Let Aj(t) denote the cumulative number of arrivals at queue j by time t. Let (uk, ck) denote the
parameters of the We have

Aj(t) =

∫ t

0

1{(uN(s), cN(s))∈ πj(τ (s−))}dN(s), (86)

where N(·) denotes a standard rate-one Poisson process. Thus, (uN(s), cN(s)) denote the parameters
of the customer who arrive at time s. Let Âj(t) :=

∫ t

0
pj(τ (s−))ds denote the mean of A(t). Let H

denote the σ-field of the common probabilistic space where all the random events are defined. We
then define a filtration for the arrival process as

F(t) := σ(N(s), 0≤ s≤ t)∨σ((uℓ∩N(t), cℓ∩N(t)), ℓ= 0,1, . . .)∨σ(N 0). (87)

where σ(·) denotes the sigma-field generated by the random variables inside (·), and N 0 consists
of all null sets in H. We define stochastic processes M1 := (M 1

j ) and M 2 := (M 2
j ) as follows,

M 1
j (t) := Aj(t)−

∫ t

0
pj(τ (s−))dN(s)

=
∫ t

0
(1{(uN(s), cN(s))∈ πj(τ (s−)}− pj(τ (s−)))dN(s),

M 2
j (t) :=

∫ t

0
pj(τ (s−))dN(s)− Âj(t).

(88)

We next show that M 1
j and M 2

j are both F(t)-martingales. For any t > t0 ≥ 0, the following identify
holds due to Equation (85),

E[M 1
j (t)|F(t0)]

= M 1
j (t0)+E

[∫ t

t0
[1{(uN(s), cN(s)) ∈ πj(τ (s−))}− pj(τ (s−))]dN(s) |F(t0)

]

= M 1
j (t0)+

∑∞
ℓ=1E

[(
1{(uN(t0)+ℓ, cN(t0)+ℓ)∈ πj(τ (tℓ−))}− pj(τ (tℓ−))

)
1{tℓ ≤ t} |F(t0)

]

= M 1
j (t0).

(89)

where tℓ :=N−1(N(t0)+ ℓ) denotes the arrival time of the (N(t0)+ ℓ)th customer. The last equality
follows that the random variables (uN(t0)+ℓ, cN(t0)+ℓ) (ℓ=1,2, . . .) are independent of F(t0), tℓ, and
τ (tℓ−). Thus, M 1 is an F(t)-martingale.
ForM2, sinceN(t) is a Poisson process,N(t)−t is an F(t)-martingale. Moreover, since pj(τ (t−))

is left-continuous, and thus is an F(t)-predictable process with respect to F(t). We then invoke the
integration theorem part (β) (T8 Page 27, Brémaud (1981)), in which Xs = pj(τ (s−)), λu ≡ 1, and
Ms =N(s)− s in the theorem. It then implies that M 2

j (t) :=
∫ t

0
pj(τ (s−))dN(s)−

∫ t

0
pj(τ (s−))ds

is an F(t)-martingale for each j = 1, . . . , J . Therefore, both M1 and M 2 are vector-valued F(t)-
martingale, and so is A− Â=M 1 +M 2.
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Since A − Â is an F (t)-martingale, it must be also an F (t)-local martingale. Furthermore,
Â(0) = 0. Thus, Â satisfies the definition as being a compensator of the counting process A(·),
i.e., the unique right-continuous and increasing process with Â(0) = 0 such that A− Â is a local
martingale (Lowther, 2011). Furthermore, Â is a continuous compensator of A because for each
j =1,2, . . . , J , Âj(t) =

∫ t

0
pj(τ (s−))ds has continuous paths (Brown and Nair, 1988). We also know

that with probability 1, A(·) does not have simultaneous jumps. We can then invoke Meyer’s
theorem (Brown and Nair, 1988) and deduce that Aj(Â

−1
j (t)), j = 1, . . . , J are independent rate-one

Poisson processes, i.e.,

Aj(Â
−1
j (·)) d

=Nj(·), (90)

where each Nj(·) (j = 1,2, . . . , J) is an independent rate-one standard Poisson process. Note that
the inverse function Â−1

j (·) is well defined since Âj(·) is strictly and continuously increasing. Con-

sequently, for 0 < t1 < . . .≤ tm, we define zk = Âj(tk) =
∫ tk
0

pj(τ (s−))ds for k = 1,2, . . . ,m. Then
for all Borel sets B1,B2, . . . ,Bm, we have

Pr(Aj(t1)∈B1,Aj(t2)∈B2, . . . ,Aj(tm)∈Bm)

= Pr(Aj(Â
−1
j (z1))∈B1,Aj(Â

−1
j (z2))∈B2, . . . ,Aj(Â

−1
j (zm))∈Bm)

= Pr(N1(z1) ∈B1,N2(z2)∈B2, . . . ,Nm(zm)∈Bm)

= Pr(N1(
∫ t1

0
pj(τ (s−))ds)∈B1,N2(

∫ t2

0
pj(τ (s−))ds)∈B2,

. . . ,Nm(
∫ tm

0
pj(τ (s−))ds)∈Bm)

(91)

where the second equality follows from (90) (finite dimensional distribution equivalence). The above
equality therefore proves the equivalence between Aj(·) and Nj(

∫ ·
0
pj(τ (s−))ds) with respect to

finite dimensional distribution. Finally, since the set of discontinuous points of τ (t) has a measure
of zero, we have Nj(

∫ ·
0
pj(τ (s−))ds)=Nj(

∫ ·
0
pj(τ (s))ds).

Appendix C: Proof of Proposition 2

Proof. If τ ∗ is an equilibrium, then the arrival and departure rates must be balanced with each
other in each queue. So the departure rate in each queue must be pj(τ

∗). For queues with excessive
service capacity, we must have µj − pj(τ

∗)> 0, and that queue must be empty so τ∗
j = 0; for other

queues, we have µj − pj(τ ) = 0. We thus proved the complementary slackness condition in (40).
The other inequality constraints can be proved straightforwardly.
Suppose τ ∗ is a solution to (40). For queues with τ∗

j > 0, by the complementary slackness
condition in (40), we have µj − pj(τ ) = 0, which implies that the service rate and arrival rate are
balanced for those queues; for queues with τ∗

j = 0, we know that the arrival rate has not exceeded
the service capacity due to the inequality constraint µj − pj(τ )≥ 0. Since those queues are empty,
the arrival and departure rates must be balanced. Thus, the drift coefficient in equation (22) must
equal to zero at τ ∗, which implies τ (t)≡ τ ∗ provided that τ (t) is a solution to (22) with τ (0) = τ ∗.

Appendix D: Proof of Theorem 2

Proof. We first use (CD-a) and (CD-c) to prove that −Λ(·) :=−(pj(·))j=1,...,J satisfies the so-
called P-property (Moré and Rheinboldt (1973)). Then by Theorem 2.3 of Moré (1974a) or the
comments after Theorem 1.6 of Megiddo and Kojima (1977), the P-property of −Λ(τ ) ensures
that the solution to the NCP (40) is unique, if exists.

P-Property: ∀τ 1,τ 2 ∈R
J
+, τ 1 6= τ 2,

J

min
j=1

(τ 1
j − τ 2

j )(pj(τ
1)− pj(τ

2))< 0. (92)

Without loss of generality, we assume that τ 1
j∗ − τ 2

j∗ =maxj(τ
1
j − τ 2

j )> 0 for some j∗, and define

∆τ := τ 1
j∗ − τ 2

j∗ . (93)
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Then to prove (92), it suffices to prove that pj∗(τ
1)< pj∗(τ

2). By the definition of ∆τ , we have
τ 1 ≤ τ 2 +∆τe, but τ 1

j∗ = τ 2
j∗ +∆τ . Therefore, (CD-a) implies that

pj∗(τ
1)≤ pj∗(τ

2 +∆τe). (94)

If we define a univariate function f(x) := pj∗(τ
2+xe) and apply the mean value theorem to f(·)3,

we get
f(∆τ)− f(0) =∆τf ′(ζ). (95)

for some ζ ∈ [0,∆τ ]. That implies

pj∗(τ
2 +∆τe)− pj∗(τ

2) = ∆τ
∑

iRj∗i(τ
2 + ζe)

= ∆τRj∗j∗(τ
2 + ζe)+∆τ

∑

i6=j∗ Rj∗i(τ
2 + ζe)

< 0

(96)

for some ζ ∈ [0,∆τ ], where Rji(τ
2 + ζe) represents the entry at the jth row and ith column of the

Jacobean matrix evaluated at τ 2 + ζe, and the last inequality follows from (CD-c). Inequalities
(94) and (96) together imply that pj∗(τ

1)< pj∗(τ
2), which leads to the P-property.

We next prove the existence of a solution to the NCP. The most well known sufficient conditions
for existence is that the Jacobian of −Λ(τ ) is positively bounded, i.e., every principle minor of the
Jacobian of −Λ(τ ) is bounded between [δ, δ−1] for all τ (Cottle (1966)), or that −Λ(τ ) is a uniform
P-function, i.e., min(τ 1

j − τ 2
j )(pj(τ

1)−pj(τ
2))≤−c‖τ 1−τ 2‖2 for some c > 0 (Karamardian (1969);

Moré (1974b)). Unfortunately, neither condition is satisfied by our −Λ(τ ), as its Jacobian can be
arbitrarily close to a singular matrix when ‖τ‖→∞.
The next step of the proof involves proposing a new set of sufficient conditions for the existence

of a solution to an NCP of the form of (40), i.e., (CD-a), (CD-b), and the stability condition (9).
Note that (CD-c) is only needed to prove the uniqueness of the solution, but not the existence.
We use a constructive approach to prove the existence of the equilibrium. We prove that the

equilibrium state can be achieved by iterative adjustment of the waiting times τ . This adjustment
process is referred to as a tatonnement process in the economics literature Arrow et al. (1959);
Walras (2013). We start with τ = 0. In each iteration, we check sequentially if µj − pj(τ ) < 0
for each j = 1,2, . . . , J . Suppose for some j, µj − pj(τ ) < 0, then we increase the value of τj and
keep the other components of τ unchanged until µj − pj(τ ) = 0. Such a τ always exists because
lim inf µj − pj(τ )> 0 by the stability condition (9), and µj − pj(τ ) increases continuously in τj by
(CD-b). We repeat the above procedure sequentially for j = 1,2, . . . , J until at some j, µk−pk(τ )≥ 0
for k > j. Note that after τj being increased, the value of µl − pl(τ ) can only decrease and turn
negative again for some ℓ < j due to (CD-a). Therefore, we have to run the above algorithm for
another iteration, that is, checking if µj −pj(τ )< 0 for some j and increase τj to make the equality
to hold.
According to the above discussion, either at the very beginning µj − pj(τ )> 0, or µj − pj(τ )≤ 0

throughout the entire algorithm. We use τN to denote the updated value of τ in the N th iteration.
If in some iteration N , µj − pj(τ

N) ≥ 0 for all j, then τN is a solution to the NCP because
µj − pj(τ )> 0 only if the value of τj has never been updated (so τj = 0); otherwise, we obtain a
sequence of waiting-time vectors {τN |N = 1,2, . . .}. We next show that τN → τ ∗ <∞ and τ ∗ is
the unique solution to the NCP (40).
Without loss of generality, we assume that the value of τj has been updated (so τj > 0)

at iteration N1,N2, . . . ,Nl, . . .. After each time τj was updated, the waiting-time vector τ =

3 The mean value theorem holds even if at some point x, the derivative f ′(x) may equal to +∞ or −∞, as long as
f ′(x) has no jumps.
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(τ
Nl
1 , . . . , τ

Nl
j , τ

Nl−1
j+1 , . . . , τ

Nl−1
J ) must solve the equation µj − pj(τ ) = 0. Therefore, the following

equation must hold for each l= 1,2, . . .,

µj − pj(τ
Nl
1 , . . . , τNl

j , τNl−1
j+1 , . . . , τNl−1

J ) = 0. (97)

Since the value of τN
j can only increase after each iteration, the monotone convergence theorem

implies that τj → τ∗
j . By the stability condition (9), τ∗

j must be a finite number, otherwise we have
µj − pj(τ

N)→ µj − 0 > 0, which contradicts the complementarity slackness condition. By letting
l→∞ and taking the limit on both sides of equation (97), we get µj − pj(τ

∗) = 0. By repeatedly
applying this argument for j = 1,2, . . . , J , we prove that (µ−Λ(τ ∗),τ ∗) is a solution to the NCP
(40).

Appendix E: Proof of Theorem 3

Proof. We define ∆τ (t) =maxj τj(t)− τ∗
j (t) and ∆τ (t) =minj τj(t)− τ∗

j (t). We first prove that
for any δ > 0, if ∆τ (t)> δ, then ∆τ ′(t)≤−h(δ), where h(δ) is a positive constant which depends
on the value of δ.
Suppose τj∗(t) − τ∗

j∗ = ∆τ (t) ≥ δ. Since τj∗(t) > 0, the complementarity slackness condition
implies that µj = pj(τ

∗). Thus,

τ ′
j∗(t) =

X ′
j∗(t)

µj∗
=

pj∗(τ (t))

µj∗
− 1=

pj∗(τ (t))

pj∗(τ ∗)
− 1. (98)

Note that τ ′
j∗(t) exists a.e., because Xj∗(t) can be expressed as integrals from 0 to t (See e.g.,

Equation (31)) and is therefore absolute continuous.
With the above equality, to show that τ ′

j∗(t)≤−h(δ), it suffices to show that

pj∗(τ (t))− pj∗(τ
∗)

pj∗(τ ∗)
≤−h(δ). (99)

We prove the above inequality using a similar argument as in the proof of P-property of Theorem
2. By substituting τ 1 = τ (t) and τ 2 = τ ∗ into inequality (94) and (96), we get

pj∗(τ (t))− pj∗(τ
∗) ≤ pj∗(τ

∗ +∆τ (t)e)− pj∗(τ
∗)

≤ pj∗(τ
∗ + δe)− pj∗(τ

∗)
= δRj∗j∗(τ

∗ + ζe)+ δ
∑

i6=j∗ Rj∗i(τ
∗ + ζe)

(100)

for some ζ ∈ [0, δ]. In Equation (100), the first inequality follows from inequality (94) (which uses
property (CD-a)), and the second inequality follows from ∆τ (t)≥ δ and property (CD-c). We then
define

h(δ) :=
−δ

pj(τ ∗)

(

max{z ∈ [0, δ] | Rj∗j∗(τ
∗ + ze)+

∑

i6=j∗

Rj∗i(τ
∗ + ze)}

)

. (101)

Using (CD-c), we deduce that Rj∗j∗(τ
∗ + ze)+

∑

i6=j∗ Rj∗i(τ
∗ + ze)< 0 for all z ∈ [0, δ]. Therefore,

h(δ) is a positive constant that is independent of τ (t). With h(δ) defined as in (101), inequality
(100) directly implies (99). Therefore, τ ′

j∗(t) =∆τ ′(t)≤−h(δ) whenever ∆τ (t)≥ δ. An analogous
argument can be used to prove that ∆τ ′(t)≥ h(δ) whenever ∆τ (t)≤−δ. Therefore, whenever the
maximum deviation of τ (t) from τ ∗ has to decrease at a rate of at least h(δ) whenever it is greater
than δ. This guarantees that the maximum deviation must drop below δ after a finite period. The
conclusion of Theorem 3 then follows by letting δ→ 0.
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Appendix F: Proof of Lemma 3

We define n1/2∆τ n(s) for a given Qn(s) as

n1/2∆τ n(s) = n1/2(n1/2Qn(s)+nτ ∗ ◦µ) ◦ (nµn)−1− τ n,∗

= Qn(s) ◦ (µn)−1 +(τ ∗ ◦µ− τ n,∗ ◦µn) ◦ (µn)−1 (102)

Note that the second term at the RHS of (102) converges to −ϑ ◦µ−1, so the second term must
be bounded for all n. Also, the sequence {µn} is bounded as it converges to µ. Thus, there exists
ǫ > 0, such that for sufficiently large n,

n1/2∆τ n
j (s)+

ϑj

µj

− ǫ≤ Qn
j (s)

µj

≤ n1/2∆τn
j (s)+

ϑj

µj

+ ǫ, (103)

which implies that n1/2∆τ n(s) is bounded if and only if Qn(s) is bounded. We let ∆τn(t) and
∆τ n(t) denote the maximal and minimal entries in the vector ∆τ n(t), respectively. To prove
Lemma 3, it suffices to prove that for any fixed T > 0, when κ→∞,

limsupnPr(sup{n1/2∆τ n(t) | t∈ [0, T ]}>κ) → 0
limsupnPr(inf{n1/2∆τ n(t) | t∈ [0, T ]}<−κ) → 0

(104)

To prove (104), we first derive an expression for Qn in analogue to the expression for Qκ,n in
(50) by ignoring the reflection barrier at ±κ,

Qn
j (t) = Qn

j (0)+
∫ t

0
Γn
j (τ

n,∗ +∆τ n(s))ds+n−1/2Zn
j (t)+n−1/2Ln

j (t), (105)

where ∆τ n(s) is defined as in (102) for a given Qn(s), Γn
j (τ ) := n1/2

(
pj(τ )−µn

j

)
represents the

deterministic drift that can be non-Lipschitz, and Zn
j (t) represents a mean-zero stochastic process

which was defined in Equation (32).
We next consider the scenario when n1/2∆τ n(s) = n1/2(τn

j∗(s)− τn,∗
j∗ )> δ in some interval [a1, b1]

and for some fixed j∗ ∈ {j =1, . . . , J}. That means, τ n has the largest positive deviation from the
equilibrium τ n,∗ along dimension j∗ over [a1, b1]. Then using the choice-driven property of Γn(τ )
(whose Jacobean is R(τ ) so it inherits the choice-driven property), we can prove that over [a1, b1],
the drift term would be upper bounded by a negative constant (See (110) below), and consequently
the deviation ∆τ n(s) would decrease by at least an amount proportional to b1 − a1 (See (113)).
Formally, we have

Γn
j∗(τ

n,∗ +∆τ n(s)) = n1/2
(
pj∗(τ

n,∗ +∆τ n(s))−µn
j∗

)

= n1/2 (pj∗(τ
n,∗ +∆τ n(s))− pj∗(τ

n,∗))+n1/2(pj∗(τ
n,∗)−µn

j∗).
(106)

We next provide an upper bound for the RHS of Equation (106). In inequality (99) (which builds
on the choice-driven property), by replacing τ (t) with τ n,∗+∆τ n(s), and by noting that ∆τn(s)≥
n−1/2δ, we get

pj∗(τ
n,∗ +∆τn(s))− pj∗(τ

n,∗)≤−n−1/2hn(δ). (107)

where hn(·) follows a similar functional form of h(·) as given in Equation (101), that is,

hn(δ) :=
−δ

pj(τn,∗)

(

max{z ∈ [0, n−1/2δ] | Rj∗j∗(τ
n,∗ + ze)+

∑

i6=j∗

Rj∗i(τ
n,∗ + ze)}

)

(> 0) (108)

Inequality (107) allows us to upper bound the RHS of (106) as

Γn
j∗(τ

n,∗ +∆τ n(s)) ≤ −hn(δ)+n1/2(pj∗(τ
n,∗)−µn

j∗)

→ δ
pj(τn,∗)

(

Rj∗j∗(τ
n,∗)+

∑

i6=j∗ Rj∗i(τ
n,∗)
)

− θj∗
(109)
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That means, for sufficiently large n,

Γn
j∗(τ

n,∗ +∆τ n(s))<
δ

pj(τn,∗)

(

Rj∗j∗(τ
n,∗)+

∑

i6=j∗

Rj∗i(τ
n,∗)

)

− θj∗ :=−∆n < 0 (110)

whereRj∗j∗(τ
n,∗)+

∑

i6=j∗ Rj∗i(τ
n,∗)< 0 by the choice-driven property. By looking into the sequence

{∆n}, we deduce that it converges to some positive constant, ∆> 0. Inequalities (105) and (110)
imply that

Qn
j∗(b1)−Qn

j∗(a1)≤−∆n(b1 − a1)+n−1/2(Zn
j∗(b1)−Zn

j∗(a1))+n−1/2(Lj∗(b1)−Lj∗(a1)) (111)

If j∗ ∈J −∪J +, then τn
j∗(s)− τn,∗

j∗ > 0 implies that Qn
j∗(s)> 0 over [a1, b1). Consequently, Lj∗(b1)−

Lj∗(a1) = 0. If j∗ ∈J ++, then there is no reflection barrier along dimension j∗, so Lj∗ ≡ 0. Thus in
either case, Li(b1)−Li(a1) = 0 and inequality (111) implies that

Qn
j∗(b1)−Qn

j∗(a1)≤−∆n(b1 − a1)+n−1/2(Zn
i (b1)−Zn

i (a1)). (112)

which leads to

n1/2(∆τn(b1)−∆τn(a1)) = n1/2(τn
j∗(b1)− τn

j∗(a1))
= 1

µn
j

(
Qn

j∗(b1)−Qn
j∗(a1)

)
.

≤ 1
µn
j

(
−∆n(b1 − a1)+n−1/2(Zn

j∗(b1)−Zn
j∗(a1))

)
(113)

That means, the largest deviation ∆τn keeps decreasing. For any interval [a, b]⊆ [0, T ] over which
n1/2∆τ(s)≥ δ, we can partition [a, b] in into countably many intervals ∪∞

i=1[ai, bi) such that ∆τ(s) =
τn
ji
(s)− τn,∗

ji
for the same index ji ∈ {1,2, . . . , J} and for all s ∈ [ai, bi). Using this notation, we

derive the following inequality

n1/2(∆τn(b)−∆τn(a)) =
∑∞

i=1 n
1/2(∆τn(bi)−∆τn(ai))

≤ ∑∞
i=1

1
µn
ji

(

−∆n(bi− ai)+n−1/2(Zn
ji
(bi)−Zn

ji
(ai))

)

≤ 1
minj µ

n
j

(
−∆n(b− a)+n−1/2‖Zn(b− a)‖

)
(114)

Now let δ = κ
2
. If ∆τn(·) has ever exceeded κ

2
over [0, t], then we let a= sup{s ∈ [0, t] : ∆τn(s)≤ κ

2
}

and b= t. The selection of a and b guarantees that ∆τn(a) = κ
2
and ∆τn(s)≥ κ

2
for all s ∈ [a, b].

Thus, Equation (114) implies that4

n1/2∆τn(t)− κ
2
= n1/2(∆τn(b)−∆τn(a))
≤ 1

minj µ
n
j

(
n−1/2‖Zn‖t

)
. (115)

If ∆τ(·) is always upper bounded by κ
2
over [0, t], then the above inequality holds trivially. We thus

have
n1/2 sup{∆τn(t) | t∈ [0, T ]} ≤ κ

2
+ 1

minj µ
n
j
n−1/2 sup{‖Zn(t)‖ | t∈ [0, T ]}

= κ
2
+ 1

minj µ
n
j
n−1/2‖Zn‖T . (116)

4 To derive (115), we have only used a weaker upper bound (114) for ∆τn(b) −∆τn(a) by ignoring the negative
drift −∆n(b− a). The original upper bound (114) including −∆n(b− a), however, is needed in the later proof for
Proposition 4.
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When κ→∞, we deduce that

limsupnPr(sup{n1/2∆τn(t) | t∈ [0, T ]}>κ)
≤ limsupnPr(sup{n1/2∆τn(t) | t∈ [0, T ]}>κ | n1/2∆τn(0)≤ κ

2
)Pr(n1/2∆τn(0)≤ κ

2
)

+ limsupnPr(n
1/2∆τn(0)> κ

2
)

→ limsupnPr(sup{n1/2∆τn(t) | t∈ [0, T ]}>κ | n1/2∆τn(0)≤ κ
2
) · 1+0

≤ limsupnPr(supt∈[0,T ]
1

minj µ
n
j
n−1/2‖Zn‖T > κ

2
)

≤ supn 2c1 exp(− c2
4
κ2)+ 2nc3 exp(− c4

2
κ
√
n)

(117)

for some positive constants ci (i= 1,2,3,4). In Equation (117), the convergence result follows from
limsupnPr(n

1/2∆τn(0)> κ
2
)→ 0 as Qn(0) (so n1/2∆τ n(0)) is assumed to have finite expectation;

the second inequality follows from (116), and the last inequality follows from the upper bound
(134) for the tail probability of n−1/2‖Zn‖T (See Lemma 4 in Appendix J). Note that the second
term of RHS in Equation (117) is dominated by exp(− c4

4
κ
√
n) when n is large, so the RHS has to

converge to zero when κ→∞, which leads to the first convergence equation in (104).
The second convergence in (104) can be proved using an analogous argument and is omitted

here.

Appendix G: Proof of Proposition 3

Proof. According to Example 3.10, Claim 1 of Kang and Ramanan (2014), if the diffusion

limit is a solution to an SDER with affine drift coefficient Cx, and if C∗ := [A−N
−1
Q]−1C (see

definitions in Kang and Ramanan (2014)) is symmetric, then p(x) = ex
TC∗x, after normalization,

gives the stationary distribution of the diffusion limit. We next check whether with the parameters
in our setting, C∗ is symmetric and p(x) is proportional to π(z) as defined in the proposition.
Because in our model the reflection direction is always normal, it has zero component tangential
to the boundary. Thus, we have Q = 0, because its rows are exactly the tangential components
of the reflection direction according to the comments after Theorem 3 in Kang and Ramanan
(2014). Consequently, by comparing the SDER in Kang and Ramanan (2014) to Equation (47),
we have A=Σ

2 = (1+ ω2
1)Diag (µ), x= z −ϑ− (Diag (µ)R∗)−1θ and C =R∗Diag (µ−1). Thus,

C
∗ := A

−1
C = (1 + ω2

1)
−1Diag (µ−1)R∗Diag (µ−1) is symmetric and negative definite as R

∗ is
symmetric and negative definite. We thus conclude that

p(x) = exp(xTC∗x)
= exp((z−ϑ− (Diag (µ)R∗)−1θ)T ((1+ω2

1)
−1Diag (µ−1)R∗Diag (µ−1))(z−ϑ− (Diag (µ)R∗)−1θ))

= exp(− 1
2
(z−ϑ− (Diag (µ)R∗)−1θ)T (− 1

2
(1+ω2

1)Diag (µ)(R∗)−1Diag (µ))−1

(z−ϑ− (Diag (µ)R∗)−1θ))
(118)

is proportional to the density of the stationary distribution of the diffusion limit, πY (z). By
looking into the above expression, we find that p(x) is proportional to the density of a multi-
variate Gaussian random variable with mean ϑ+ (Diag (µ)R∗)−1θ and covariance matrix − 1

2
(1+

ω2
1)Diag (µ)(R∗)−1Diag (µ), which is denoted by π(z). Therefore, πY (z) is proportional to π(z).

Normalizing π(z) thus leads to an exact expression for πY (z) in (55).

Appendix H: Proof of Proposition 4

Equation (103) implies that when n is sufficiently large, the difference between V (Ξn(t))(=
‖Qn‖µ−1

) and ‖n1/2∆τ n(t)‖ is almost a constant (i.e., within ±ǫ). So proving Equation (58) is
equivalent to proving the same bounded condition for ‖n1/2∆τ n(t)‖, that is, for some u0 > 0, t0 ≥ 0,

limsupn→∞ supΞn(0)∈Ω E[exp
(
u0(‖n1/2∆τ n(t0)‖−‖n1/2∆τ n(0)‖)+

)
| Ξn(0)]<∞

limsupn→∞ supΞn(0)∈Ω E[(‖n1/2∆τ n(t0)‖−‖n1/2∆τ n(0)‖)2
exp

(
u(‖n1/2∆τ n(t0)‖−‖n1/2∆τ n(0)‖)+

)
| Ξn(0)]<∞

(119)
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To prove (119), we first consider the case when ‖n1/2∆τ n(s)‖> κ
2
for all s∈ [0, T ]. By Equation

(114) (which builds on the choice-driven properties of the arrival rate) and by plugging into a=0
and b= t0, we have

n1/2‖∆τn(t)‖−n1/2‖∆τn(0)‖ ≤ 1
minj µ

n
j

(
−∆nt0 +n−1/2‖Zn(t0)‖

)

(120)

where ∆n was defined in (110), which converges to a positive constant ∆> 0. By choosing

t0 =
minj µ

n
j

∆

(

n1/2‖∆τn(0)‖− κ

2

)+

, (121)

for sufficiently large n, Equation (120) implies that

n1/2‖∆τn(t)‖≤ κ

2
+

1

minj µn
j

n−1/2‖Zn(t0)‖. (122)

In the other case when ‖n1/2∆τ n(s)‖ ≤ κ
2
for some s ∈ [0, T ], we can also deduce (122) using a

similar argument as we establish inequality (116) in the proof for Lemma 3.
In view of (122), we deduce that there exists u0 > 0 such that

limsupn→∞ supΞn(0)∈Ω E[exp(u0(‖n1/2∆τ n(t0)‖−‖n1/2∆τ n(0)‖)+) | Ξn(0)]
≤ limsupn→∞ supΞn(0)∈Ω E[exp(u0‖n1/2∆τn(t0)‖) | Ξn(0)]
≤ limsupn→∞ supΞn(0)∈Ω E[exp(u0(

κ
2
+ 1

minj µ
n
j
n−1/2‖Zn(t0)‖))|Ξn(0)]

< +∞,

(123)

where the last inequality follows from (129) in Lemma (4) (See Appendix J). Similarly, there exists
u0 > 0, such that

limsupn→∞ supΞn(0)∈Ω E[(‖n1/2∆τ n(t0)‖−‖n1/2∆τ n(0)‖)2
exp(u(‖n1/2∆τ n(t0)‖−‖n1/2∆τ n(t0)‖)+) | Ξn(0)]

≤ limsupn→∞ supΞn(0)∈Ω E[(max{n1/2∆τ n(0), κ
2
+ 1

minj µ
n
j
n−1/2‖Zn(t0)‖})2

exp(u0(
κ
2
+ 1

minj µ
n
j
n−1/2‖Zn(t0)‖))|Ξn(0)]

< +∞,

(124)

where the last inequality follows from (130) in Lemma (4). We have thus proved (119), and thus
(58) in Proposition 4.
It remains to show that V (·) is a Lyapunov function with drift size parameter −1, drift term

parameter t0, and exception parameter κ for Ξ, or equivalently, to prove condition (56) for γ = 1.
Because V (Ξn(t)) and n−1/2‖∆τ n(t0)‖ only differs by almost a constant, proving (56) is equivalent
to proving the same condition for ‖n1/2∆τ n(t)‖ for some positive constant γ. To that end, we
choose t0 as (121) and get

sup‖n1/2∆τn(0)‖>κ{E[‖n1/2∆τ n(t0)‖ | ‖n1/2∆τ n(0)‖}
≤ sup‖n1/2∆τn(0)‖>κ{E[κ2 + 1

minj µ
n
j
n−1/2‖Zn(t0)‖ | ‖n1/2∆τ n(0)‖]}−κ

≤ c′ − κ
2

(125)

for some constant c′ > 0. In (125), the first inequality follows from inequality (122) and that
‖n1/2∆τ n(0)‖> κ, and the second inequality follows from (128) in Lemma 4 that n−1/2‖Zn(t0)‖
is uniformly upper bounded. By choosing a sufficiently large κ, we can have c′ − κ

2
< −1, which

proves that V (·) is a Lyapunov function with drift size parameter −1.
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Appendix I: Proof of Theorem 5

Proof. By Proposition 4, V (·) is a Lyapunov function with parameter −1, t0, and κ. Moreover,
the second inequality in (58) implies that there exists u0, such that u0L2(u0, t0, n) < 1 for all
sufficiently large n. Thus, both conditions of Theorem 6 in Gamarnik and Zeevi (2006) are satisfied
for all sufficiently large n. We then invoke their Theorem 6 and deduce that 1− u0/2> 0 and the
following inequality holds for all sufficiently n,

Pr
πn

(‖Qn(0)‖T >s)≤ (1−u0/2)
−1L1(u0, t0, n) exp(−u0(s−κ)). (126)

By the above inequality and the inequality in (58), we have

Pr
πn

(‖Qn(0)‖T >s)≤H1 exp(−h1s), (127)

for properly selected constantsH1 and h1. Inequality (127) implies uniform tightness of the sequence
of distributions (πn). The rest of the proof follows exactly as in Theorem 8 of Gamarnik and Zeevi
(2006).

Appendix J: Lemma 4 and its Proof

The following Lemma was used in both Lemma 3 and Proposition 4.

Lemma 4 There exists a constant u0 > 0, such that the following inequalities hold for all fixed
t0 ≥ 0,

limsup
n→∞

sup
‖Ξn(0)−ϑ‖>κ

n−1/2
E[‖Zn‖t0 |Ξn(0)]<∞, (128)

limsup
n→∞

sup
Ξn(0)∈Ω

E[exp(n−1/2u0‖Zn‖t0)|Ξn(0)]<∞, (129)

limsup
n→∞

sup
Ξn(0)∈Ω

E[‖Zn‖2t0 exp(n
−1/2u0‖Zn‖t0)|Ξn(0)]<∞, (130)

where Ξ
n(0) gives the initial state of the Markovian process, and Zn(t) is a J-dimensional centered

process defined in (32).

Proof. Using the argument provided at the beginning of the proof for Lemma A.1 in Gamarnik
and Zeevi (2006), inequality (129) implies (128) and (130). To prove (129), define An

j (t) :=∫ t

0
pj(X

n(s) ◦ (nµn)−1)ds. Let S∗
j (t) denote the cumulative number of customers that have com-

pleted service at the jth service provider up to time t,
By change of the time variables, we can derive the following bound for n−1/2‖Zn

j ‖t0 ,

n−1/2‖Zn
j ‖t0

≤ ‖n−1/2(N(nt)−nt)‖An
j (t0)

+ ‖n−1/2(nµn
j t−Sn

j (t))‖Wn
j (t0)

= ‖n−1/2(N(t)− t)‖nAn
j (t0)

+ ‖n−1/2(t−Sn
j (

t
nµn

j
))‖nµn

j W
n
j (t0)

≤ ‖n−1/2(N(t)− t)‖nt0 + ‖n−1/2(t−Sn
j (

t
nµn

j
))‖2nµj t0

≤ n−1/2‖N(t)− (t+Bj(t))‖nt0 +n−1/2‖Bj‖2nµj t0

+n−1/2‖Sn
j (t)− (t+B′

j(t))‖2nµjt0 +n−1/2‖B′
j(t)‖2nµj t0

(131)

where the second inequality follows from An
j (t0)≤ t0,W

n
j (t)≤ t, and µn

j < 2µj for a sufficiently large
n, B = (Bj) and B′ = (B′

j) denote two independent J -dimensional standard Brownian motions.
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We next derive the tail bounds for each term at the RHS of (131). Using standard bounds for
Brownian motion, we can bound the following two terms with constants c1, c2 > 0 which depend
on t0 but not on n,

Pr(‖Bj‖nt0 > 1
4
a
√
n) = c1 exp(−c2a

2)
Pr(‖B′

j‖nt0 > 1
4
a
√
n) = c1 exp(−c2a

2).
(132)

Using the functional strong approximation theorem (FSAT) (Theorem 5.14 and Remark 5.17 in
Chen and Yao (2001)), we may upper bound the tail probability of the other two terms in (131)
with constants c3, c4 > 0 as follows:

Pr(n−1/2‖N(t)− (t+Bj(t))‖nt0 ≥ 1
4
a) ≤ nc3 exp(−c4an

−1/2)
Pr(n−1/2‖Sn

j (t)− (t+B′
j(t))‖2nµjt0 ≥ 1

4
a) ≤ nc3 exp(−c4an

−1/2)
(133)

(131), (132), and (133) together imply that

Pr(n−1/2‖Zn
j ‖t0 ≥ a)≤ 2c1 exp(−c2a

2)+ 2nc3 exp(−c4a
√
n). (134)

We can then upper bound the expectation E[exp(n−1/2u0‖Zn‖t0)|Ξn(0)] for all sufficiently large
n and initial state Ξ

n(0) using the tail probability bounds,

E[exp(n−1/2u0‖Zn‖t0)|Ξn(0)]
≤ 2+

∫∞
2

Pr
(
exp(n−1/2u0‖Zn‖t0)>a

)
da

= 2+
∫∞
2

Pr
(

exp(n−1/2‖Zn‖t0)> logx
u0

)

dx

≤ 2+
∫∞
2

2c1 exp(−c2
log2 x

u2
0

)dx+
∫∞
2

2nc3 exp(−c4
logx
u0

n−1/2)dx

< 2M,

(135)

where the second inequality follows from (134) by replacing a with logx
u0

, and the last inequality
follows from the fact that both integrals can be uniformly upper bounded by a constant M > 0 for
sufficiently large n. Thus we have proved inequality (129).

Appendix K: Proof of Corollary 2

The proof is mostly similar to that of Theorem 4, but differs in two places: (1) the derivative of
Qn

j (t) includes an extra term −dXj(t), which represents the aggregate reneging rate at time t; (2)
the waiting time is no longer linear in Xj(t) but has to be computed using equation (59). We will
prove the theorem by highlighting the parts due to the above differences.
We next prove that by restricting the process to stay inside the bounded domain Ω(κ), the

bounded process {Qκ,n(t)|0≤ t≤ T} weakly converges to {Y κ(t)|0≤ t≤ T}. The rest of the proof,
including Lemma 3, follows the same routine as in the proof for Theorem 4 and we will not repeat
them.
We first express Qκ,n

j (t) in a similar way to (50) as follows:

Qκ,n
j (t) = Qκ,n

j (0)+n−1/2N
(

n
∫ t

0
pj(τ

κ,n(s))ds
)

−n−1/2N
(∫ t

0
dXκ,n

j (s)ds
)

−n−1/2Sκ,n
j (t)

n−1/2Lκ,n
j (t)−n−1/2Uκ,n

j (t)
= Qκ,n

j (0)
︸ ︷︷ ︸

(A.1)

+

∫ t

0

(

n1/2
(
pj(τ

κ,n(s))−µn
j −n−1dXκ,n

j (s)
)
− ((

∑

i

R∗
ji

(1+ τn
i d)µ

n
i

− d)(Qκ,n
i (s)−ϑi)− θj)

)

ds

︸ ︷︷ ︸

(A.2)

+n−1/2Zκ,n
j (t)

︸ ︷︷ ︸

(A.3)

+
∫ t

0

(

(
∑

i

R∗

ji

(1+τni d)µn
i
− d)(Qκ,n

i (s)−ϑi)− θj

)

ds+ 1√
n
Lκ,n

j (t)− 1√
n
Uκ,n

j (t),

(136)
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where the additional superscript κ represents that the corresponding process has a domain Ω(κ).
Note that the centered processZκ,n := (Zκ,n

j ) has included an extra term for the reneging customers,
which has the expression

Zκ,n
j (t) :=

(

N(
∫ t

0
npj(τ

κ,n(s)))−
∫ t

0
npj(τ

κ,n(s))ds
)

+
(
nµn

j t−Sκ,n
j (t)

)
−
(

N(
∫ t

0
dXκ,n

j (s)ds)−
∫ t

0
dXκ,n

j (s)ds
) (137)

We next analyze the terms labeled as (A.1)-(A.3) in (136).
1. Our assumption of the initial value implies that (A.1)⇒Y (0).
2. Since τj has to be computed using (59), the expression for ∆τ κ,n will be

∆τ κ,n(s) := τκ,n(s)− τ ∗

= 1
d
log(1+ (n1/2Qκ,n(s)+X∗) ◦ (nµn)−1)− 1

d
log(1+Xn,∗ ◦ (nµn)−1).

(138)

It is not difficult to show that n
1
2‖∆τ κ,n‖t is uniformly bounded and thus it suffices to expand

the Taylor series of n1/2 (pj(τ
n,∗ +∆τ κ,n(s))− pj(τ

n,∗)) till its first-order term. Some basic
algebra leads to

n1/2 (pj(τ
n,∗ +∆τ κ,n(s))− pj(τ

n,∗))→
∑

i

Qκ,n
i (s)−ϑi

(1+ τ∗
j d)µ

n
i

R∗
ji (139)

Thus, by our definition of θj and ϑj, we have

n1/2
(
pj(τ

n(s))−µn
j −n−1dXκ,n(s)

)

= n1/2 (pj(τ
n,∗ +∆τ κ,n)− pj(τ

n,∗))+n1/2
(
pj(τ

n,∗)−µn
j −n−1dXn,∗)

+n1/2 (n−1dXn,∗ −n−1dX∗)−n1/2 (n−1dXκ,n(s)−n−1dX∗)

→ ∑

i

Q
κ,n
i (s)−ϑi

(1+τ∗
j
d)µn

i
R∗

ji − θj + dϑj − dQκ,n
j (s)

(140)

The above convergence leads to that (A.2)→ 0 uniformly over any compact set.
3. n−1/2Zκ,n(t) is the sum of three centered processes. We have shown in the proof of Theorem 4

that the sum of the first two terms converges to ΣB(t) with Σ a diagonal matrix and Σjj =√

(1+ωj)2µj, respectively. Since
1
n

∫ t

0
dXκ,n

j (s)ds→ 1
n
dX∗

j t = (exp(τ∗
j d) − 1)µjt uniformly on

any compact set t∈ [0, T ], and 1
n

∫ t

0
dXκ,n

j (s)ds is a non-decreasing process in t, we may invoke
the random time-change theorem and FCLT to prove that

n−1/2

(

N(

∫ t

0

dXκ,n
j (s)ds)−

∫ t

0

dXκ,n
j (s)ds

)

⇒BD
j (t). (141)

where BD
j (t) is a Brownian motion whose covariance matrix is a diagonal matrix and the

jth entry of its diagonal is given by (exp(τ∗
j d)− 1)µj. Since n−1/2Zκ,n(t) is the sum of three

independent Brownian processes, we deduce that

n−1/2Zκ,n(t)⇒Σ
RB(t). (142)


