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Problem Definition: In the context of outpatient care, physicians often decide at the end of a consultation

session whether to schedule follow-up appointments for patients with potential needs. Those appointments

are referred to as prioritized follow-up appointments (PFU) (Ding et al. 2023). We study mechanisms that

encourage physicians to schedule the optimal quantity of PFUs, aiming to enhance continuity of care (COC)

while minimizing no-shows and late-cancellations.

Methodology/Results: Utilizing both empirical analysis and modeling, our research examines strategies for

enhancing COC within an appointment scheduling framework. Empirical evidence indicates that a greater

frequency of PFUs is associated with improved COC. Subsequently, we introduce a queueing model that

delineates the impact of PFU appointments on revenue generation and COC levels. The model reveals a

discrepancy between physician and health system preferences regarding the number of PFUs, with doctors

inclined to schedule fewer and health systems favoring more. To reconcile these differing objectives, we apply a

principal-agent model. For situations involving symmetric information, we suggest a particular performance-

based payment structure that effectively aligns the incentives of both stakeholders. When information is

asymmetric, we theoretically evaluate and compare four distinct contract types.

Managerial Implications: Our findings suggest that health systems ought to implement incentive schemes

that reward physicians for a higher proportion of PFUs in their scheduling. Such rewards are more cost-

effective when based on the ratio of PFUs rather than the aggregate number.

Key words : Appointment Scheduling, Queueing Models, Continuity of Care, Principal-Agent Models

1. Introduction

Value based payment models, such as accountable care organizations and bundled pay-

ments, have proliferated in the US under the broader umbrella of healthcare reform. Health

systems are increasingly paid a base amount either on an episode basis or on a population

basis with additional payments associated with producing good health outcomes, rather

than on the basis of the volume of services provided. However, many physicians are still

paid on a fee for service (FFS) basis. This creates challenges for health systems who need
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to align their priorities with those of doctors and other health professionals that provide

care. In this paper, we focus on one such challenge in the context of outpatient clinics –

namely, how to manage capacity when continuity of care (COC) affects a health system’s

profit, but doctors are paid on a fee-for-service (FFS) basis.

The medical literature has documented numerous benefits of higher COC, including

increased patient satisfaction (Sans-Corrales et al. 2006, Saultz and Albedaiwi 2004),

improved recognition of existing or previously identified health problems, fewer episodes

of sickness and laboratory tests (Dreiher et al. 2012, Rogers and Curtis 1980), decreased

hospitalizations and emergency department visits (Haggerty et al. 2003), higher acceptance

of suggested preventive services, and completion of recommended care (Atlas et al. 2009).

A systematic review of clinical trials on COC and its impact on quality-of-care has been

provided by Van Servellen et al. (2006). The lack of continuity, in contrast, is found to be

associated with lower patient satisfaction, higher morbidity, difficult consultations, non-

attendance, and an increase in utilization of open-access clinics (Kikano et al. 2000). De

Maeseneer et al. (2003) show that COC is one of the most important explanatory variable

related to the total healthcare cost via a multivariate linear regression analysis.

We consider an outpatient care system that is motivated to achieve a high COC level,

because COC is positively associated with health outcomes. Moreover, it may be either a

performance metric that affects its incentives payments, or a determinant of its costs of

providing care, or both. However, the doctors are paid on the FFS basis and not motivated

to the same extent. Health systems could choose from a variety of strategies to realize

higher COC. In this paper, we focus on one such strategy called “prioritized follow-up”

(PFU), where doctors would be incentivized to schedule a follow-up appointment (FUA) at

the conclusion of each visit when clinically appropriate. This strategy has been discussed in

recent literature as an effective means of enhancing COC (RCGP 2019, Ding et al. 2023).

The doctors choose which patients to advise to book PFU appointments, depending on the

estimated likelihood that the patient will need an FUA. We assume that patients follow

their doctors’ advice, although they may cancel the booked appointments later.

If the doctor does not book a PFU for the patient, and the patient later needs an FUA,

then they may book an appointment, which is referred to as “regular follow-up” (RFU).

Some returning patients, however, may not be able to book an RFU with the same doctor

on their desired dates because of appointments backlog. These patients may end up not
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booking an FUA, or booking an FUA with another doctor. We refer to such behaviour as

patient balking, which results in disruption of provider continuity and a lower COC level.

To quantify the effectiveness of the PFU strategy in enhancing COC, we conducted

an empirical analysis using data comprising more than 530,000 appointments spanning a

12-month period. We employed propensity score matching to control for various clinic-

related variables. The regression analysis revealed a positive association between a higher

ratio of PFU/RFU and an increase in COC levels. This finding not only supports the

efficacy of the PFU strategy in elevating COC, but also suggests that PFU can serve as a

reliable indicator of a provider’s COC performance. It holds particular significance because

health systems typically lack information about patients’ visit histories with unaffiliated

providers.

Whereas PFU appointments help maintain high COC, they are associated with a higher

spoilage rate compared to RFUs; see the empirical evidences provided by Ding et al. (2023)

and Green and Savin (2008). Some patients with PFU appointments may not need to follow

up with their doctors, and a fraction of them may fail to cancel in a timely fashion. This

increases the likelihood of PFUs being cancelled in the last minute or patient no-shows,

which elevates the risk of wasted appointment slots (Gallucci et al. 2005). Consequently,

doctors may be hesitant to schedule as many PFUs as a health system may deem optimal.

Note that higher spoilage rate can potentially reduce doctors’ revenue, particularly under

the FFS payment scheme. Given the aforementioned incentive misalignment, it is natural

to ask “What incentives should health systems offer to doctors to realize the desired level

of COC?” The primary objective of this paper is to develop a mathematical framework

capable of addressing this question. Through models representing interactions between

doctors, health systems, and patients, we explore strategies that align incentives and strike

a balance between maximizing throughput and enhancing COC.

This study introduces several principal-agent (P-A) models in which doctors are incen-

tivized to schedule an appropriate number of PFU appointments, thereby resulting in a

high level of COC. The health system serves as the principal and the doctor serves as the

agent. The P-A models rest on a chassis comprised of a queueing model, which calculates

the steady-state service rates for different types of appointments. In our models, the princi-

pal’s goals are to maximize the steady state throughput rate as well as the COC level. The

principal’s payment to the agent has two components: a volume based (per visit) payment
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to incentivize the doctor to serve more patients, and a performance-based payment to

incentivize the doctor to book more PFUs when clinically appropriate. However, in reality

the principal may not observe the agent’s effort level in booking PFUs because the num-

ber or the proportion of clinically-appropriate PFU appointments depends on the doctor’s

discretion as well as the distribution of the patients’ revisit probability. If this distribution

is known by both the principal and the agent, then that is referred to as the symmetric

information case. If the distribution is privately known to the agent but unobservable by

the principal, then that is referred to as the asymmetric information case. The key differ-

ence between the two cases is whether the principal can infer the agent’s effort level, that

is, the PFU-booking criterion, upon observing the number or proportion of booked PFU

appointments.

In the case of symmetric information, we propose a typical bonus contract in which

the principal rewards the agent if the latter’s effort has reached a predefined target. This

approach effectively aligns the objectives of both parties and incurs a cost that can be

tightly bounded. In the case of asymmetric information, we theoretically compare four

easy-to-implement contracts in which payments are proportional to different metrics that

can be derived from appointment data. These metrics are: (1) the percentage of served

FUAs among all served appointments, (2) the count of served FUAs, (3) the percentage

of served PFUs among all served appointments, and (4) the count of served PFUs. We

show that PFU based payments (3) and (4) outperform FUA based payments (1) and (2).

We also show that ratio-based payments (1) and (3) outperform count-based payments (2)

and (4). Moreover, we show that there is a gap between the first-best and the second-best

solution, but that gap can be explicitly bounded when payments are based on ratio metrics

(1) or (3). Notably, the PFU-ratio based payment (3) emerges as the most effective option

among the four, positioning it as a front runner on the throughput-COC spectrum.

A summary of the contributions of this paper is as follows.

• We empirically show that a higher PFU/RFU rate contributes to a higher COC level,

indicating that booking more PFU appointments is an effective means of enhancing

COC. We also explain this observation via an analytical model. Our study offers a

comprehensive view of how PFU appointments serve as a lever to improve COC and

complements the recent work by Ding et al. (2023) that examines the impact of PFUs

on the throughput rate.
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• By conceptualizing the PFU booking process as a queueing control problem, we show

that the doctor’s revenue is a quasi-concave function of the number of PFU appoint-

ments, whereas the COC level strictly increases in that. Importantly, this may result

in misalignment of the doctor and the health system’s interests and different PFU

booking strategies.

• Our exploration of a principal-agent model reveals how financial incentives can effec-

tively encourage physicians to schedule a target number or percentage of PFU appoint-

ments, thus elevating COC levels. We delve into contract designs under both symmet-

ric and asymmetric information scenarios, offering actionable strategies for enhancing

the principal-agent relationship in healthcare settings. This approach aligns with and

expands upon existing literature in personnel economics (Lazear and Shaw 2007),

specifically applying it within the healthcare context.

2. Literature Review

In this section, we review several literature streams relevant to our research topic, including

COC measurements, appointment scheduling with patient no-shows, queueing models with

return customers, and principal-agent models in health care operations.

Previous studies have proposed several different measures of COC — see (Sualtz and

John 2003) for a comprehensive overview. Examples include Continuity of Care Index,

which examines the concentration of patient visits among different providers, and the

Sequential Continuity SECON Index (Steinwachs 1979), which captures the sequential

continuity of care for individual patients over a specific measurement period. We focus

on COC in the appointment scheduling environment, which emphasizes a patient’s ability

to book a follow-up appointment with the same doctor (Nutting et al. 2003). This is

aligned with the concept of sequential continuity captured by the SECON Index. We

investigate the idea of booking PFU appointments to promote COC in outpatient care.

The downside of this approach is the higher no-show rate of PFU appointments due to its

long lead time (Ding et al. 2023, Green and Savin 2008). Literature has shown that no-

shows lead to disruptions and inefficiencies in the delivery of outpatient care (Cayirli et al.

2006, Luo et al. 2012). Specifically, several papers have studied how to manage patient

access in presence of no-shows through both inter-day (Liu et al. 2010, Feldman et al.

2014) and intra-day(Robinson and Chen 2010, Kong et al. 2013, 2020, Jiang et al. 2017)
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appointment scheduling. Some other papers study open-access policies to reduce no-show

rates (Steinbauer et al. 2006, Robinson and Chen 2010). In contrast, we show that by

implementing an appropriate PFU-booking strategy, which may result in higher no-show

rates and induce costs of incentives paid to the doctors, the health system can improve its

COC level and overall profit.

We model the appointment system as a system of queues with re-entrant customers.

Such queueing models have been utilized in a variety of service operations’ settings (e.g.,

Armony and Maglaras 2004, and Kostami and Ward 2009). For such models, the exact

characterization of the steady state probabilities of metrics such as the number in the

system and the customer waiting time can be obtained only in some special cases, e.g.,

M/M/1 queue with exponentially distributed in-orbit time (Guo et al. 2019, Yom-Tov

and Mandelbaum 2014, and Campello et al. 2017). In a majority of the models involving

returning customers, it is usually not possible to derive a closed-form characterization of

steady state probabilities, and researchers have used fluid and diffusion approximations to

obtain asymptotic characteristics of the system-level metrics (Huang et al. 2015, Chan et al.

2014, Dobson et al. 2013). For queues arising in appointment booking systems, common

assumptions of asymptotic analysis such as heavy traffic are difficult to justify. Therefore,

instead of using asymptotic analysis, we study the system using a the approximation which

is referred to as the returning customers see time averages (RTA) in the literature. This

concept was first introduced by Greenberg and Wolff (1987) for M/M/c queues with orbits,

where a customer is deemed to be in orbit in between two consecutive visits. This idea

was further discussed in Yang and Templeton (1987) and Wolff (1989). More recently,

Ding et al. (2023) used this approximation to analyze an appointment booking system

for throughput maximization. We use a similar approach for the purpose of designing

mechanisms that promote COC.

Our work uses a principal-agent model to align the incentives of the doctors and the

health systems. The principal-agent model has been widely used in health care management

and more generally in deciding how wages should be tied to performance. The latter has

spawned a subfield of economics called personnel economics (Lazear and Shaw 2007). In

the interest of brevity, we discuss only a few selected papers with healthcare focus. Gupta

and Mehrotra (2015) model the early implementation of the Bundled Payments for Care

Improvement by the CMS. In their paper, the principal (payer) selects the best agent
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(proposer) among multiple agents and the proposers select bundles and target quality

scores. They investigate whether the principal should reveal quality attribute weights it

would use to evaluate proposals and show that the principal may prefer not to do so.

Aswani and Shen (2019) studied the CMS’ Medicare Shared Savings Program (MSSP),

which aims to control escalating medicare spending and deliver healthcare more efficiently,

as a principal-agent model. They propose a subsidy-based contract to partially reimburse

the provider’s investment and prove it to be more efficient than the current MSSP contract,

leading to higher expected payoffs for both CMS and the provider. In a different example,

Adida et al. (2019) proposed an outcome-based penalty contract to handle the moral hazard

incurred by the provider that exerts effort.

A few papers have analyzed principal-agent models within a queueing framework. This

requires the authors to characterize the steady state of the queueing system. Such analyses

may not yield closed-form expressions, adding to their mathematical complexity. For exam-

ple, Jiang et al. (2012) applied a principal-agent framework to analyze different contracts

between a service purchaser (the principal) and the healthcare provider (the agent). The

agent maximizes his payoff by allocating his service capacity among urgent patients, dedi-

cated advance patients, and flexible advance patients. The principal aims to minimize the

cost of purchasing services while ensuring a target waiting-time by designing appropriate

contracts. They formulate the appointment dynamics as an M/D/1 queue and consider

both adverse selection and moral hazard that are common consequences of informational

asymmetry. Jiang et al. (2020) exploited a G/G/m queue to describe the patient care

process and use a principal-agent framework to study the performance-based contracting

problem. They show that patient benefits can be enhanced through increased competition

among hospitals and the introduction of incentives. Arifolu et al. (2020) used a principal-

agent model to demonstrate that the Hospital Readmissions Reduction Program does not

provide the right incentives for hospitals to reduce readmissions. In their model, patients

are assumed to return to the hospital with a fixed probability. In contrast, in our model,

the return probability depends endogenously on the PFU booking threshold decided by

the doctor. Our work uses the principal-agent framework to compare mechanisms based

on different functional forms of linear performance based payments, which has not been

studied in the literature.
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3. Empirical Evidence

In this section, we present empirical evidence to substantiate the assertion that a higher

frequency of PFUs correlates with higher levels of COC. Our focus is to show that clinics

scheduling a larger proportion of their appointments as PFUs achieve higher COC levels,

even after controlling for factors such as patient demographics, insurance status, clinic

location, and proportion of FUAs among all appointments. We utilize data on all patient

visits over a 12-month period to 37 clinics in a particular geographical area. All 37 clinics

were part of the same health system. We excluded data pertaining to doctors who had

fewer than 400 appointments in the year and those who worked in multiple clinics because

those doctors do not represent a regular practice pattern. After these exclusions, our data

includes 534,220 visit records for 315 doctors.

To measure provider-level care continuity, we utilize the average SECON score, as intro-

duced by Steinwachs (1979). For calculating the SECON score, we define the episodes and

FUAs following the method introduced by Ding et al. (2023) – an appointment is regarded

as an FUA if it occurs within 45 days of a preceding visit by the same patient. An episode

of visits consists of one initiating appointment, and multiple FUAs. For episodes with at

least one FUA, we calculate its SECON index using the following expression specified in

(Eriksson and Mattsson 1983),

SECON=

∑I
i=2 si

I − 1
, (1)

where I represents the total number of visits within an episode (including the initiating

visit) and and si is an indicator for the sequential continuity which takes value 1 if the ith

visit is conducted by the same doctor as the preceding one, and 0 otherwise. We exclude

episodes that do not include any FUA from the study because their SECON indices are

undefined. For each doctor, we calculate their average SECON index across all episodes

they were involved in during the study period. This aggregation results in a total of 315

doctor-level SECON indices, serving as the response variables in our regression analysis.

The treatment variable of our primary interest is the proportion of PFUs relative to

the total number of appointments scheduled by each doctor. Our data includes detailed

appointment booking times, which allow us to easily identify the PFUs as the appointments

that were booked during the preceding consultation session of the same patient. We use

the percentage instead of the absolute counts of PFUs to mitigate the influence of external
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variables such as the variation in patient age demographics and the size of the doctor’s

patient panel. Moreover, to isolate the specific effect of PFUs on COC, we also incorporate

the percentage of all follow-up appointments (FUAs) amidst all scheduled appointments

as control variables within our analysis framework.

Given this setup, we proceed to apply a reduced-form model to our dataset, structured

to precisely evaluate how the proportion of PFUs booked by each doctor influences the

level of care continuity, while duly accounting for other pertinent variables that could affect

this relationship. This modeling approach allows us to quantify the distinct contribution of

PFUs to enhancing COC, offering a clear understanding of the strategic value of prioritizing

follow-up appointments in outpatient care settings. Our regression model is as follows,

SECONj = α0+α1PFURatioj +α2FUARatioj + εj, (2)

where SECONj denotes the average SECON index for doctor j, while PFURatioj and

FUARatioj denote the ratios of PFUs and FUAs among all appointments served by doc-

tor j, respectively. Note that FUARatioj is the sum of PFURatioj and RFURatioj, where

RFURatioj is the percentage of RFUs among all appointments involving doctor j. How-

ever, directly fitting the above regression model to our data could lead to biased estimation

due to potential confounders such as the patient mix, the clinic’s location, and patients’

insurance status. To minimize the effect if confounding factors, we employ the propensity

score matching method (PSM) to create comparable samples of doctors for an unbiased

estimation the treatment effect.

For the PSM process, we divide the providers into two groups: treatment group and

control group, based on their PFU ratio. Doctors with PFU ratios below the median value

are classified into the control group, while the rest form the treatment group. To ensure

robustness of the results, we test different cutoff values other than the median to classify

the treatment groups and control groups and the results are presented in Appendix B.

For the propensity score matching, we include covariates of each doctor to ensure a robust

matching process. These covariates include the total number of visits (service volume) of

the doctor’s clinic, which would be related to the clinic’s location, the doctor’s service

volume, the distribution of patients across five age groups (< 15, 15∼ 30, 30∼ 50, 50∼ 65,

and > 65) treated by the doctor, and the distribution of patients across different insurance

types (commercial, government, and self-pay) treated by the doctor. By incorporating these
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variables into our matching algorithm, we aim to pair doctors in the control group with

counterparts in the treatment group who have similar profiles.

To calculate the propensity scores, we employ logistic regression with the aforementioned

covariates. We then perform nearest-neighbor matching within a specified caliper. Providers

whose propensity score differences exceed this caliper threshold are dropped from the

analysis as they cannot be adequately matched. This matching process significantly reduces

the disparities between the control and treatment groups, making them nearly equivalent

in terms of their covariates. The summary statistics of the covaraites for the two groups

are presented in Table 1.

The comparison of the matched and unmatched samples is detailed in Table 1. The %bias

column calculates the standardized difference of covariate values between treatment group

and control group (Harder et al. 2010). Notably, the %bias for all covariates have absolute

value of less than 10%, suggesting no systematic bias in the covariate values between the

control and treatment groups (Li et al. 2022). In addition, the p-values (> 0.1) of the

matched group also indicate no significant difference for covariate values between control

group and treatment group. This result supports the effectiveness of our matching process

and the validity of the subsequent empirical findings.

Table 1 Comparison Between the Treatment Group and Control Group

Unmatched (U) Mean
Matched (M) Treatment Control %bias p-value

NumApp Cli U 19933 25541 -59.1 0
M 22749 22101 6.8 0.595

NumApp Prov U 1712.2 1679.8 4.3 0.706
M 1579.7 1536.5 5.7 0.665

AgeCat1 Num∗ U 238.73 271.06 -15.2 0.179
M 240.94 241.57 -0.3 0.982

AgeCat2 Num U 263.13 355.21 -50.1 0
M 284.6 271.24 7.3 0.584

AgeCat3 Num U 491.52 563.96 -23.5 0.038
M 483.44 464.21 6.2 0.612

AgeCat4 Num U 381.17 345.97 16.2 0.153
M 346.02 341.65 2 0.878

Fin cla1 Num∗∗ U 915.98 1069.3 -34.2 0.003
M 911.85 889.69 4.9 0.698

Fin cla2 Num U 615.23 403.51 60.3 0
M 484.31 476.91 2.1 0.871

∗ We define five age categories: < 15, 15∼ 30, 30∼ 50, and 50∼ 65, and > 65 (default).

∗∗ There are three different financial methods: commercial insurance, government insurance, and self-pay (default).
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The PSM process excludes about 20% of the observations, resulting in 142 and 110

observations in the control and treatment groups, respectively. These 252 observations are

referred to as the PSM sample. We then apply the regression model (2) to both the full

sample and the PSM sample. The coefficient estimates are summarized in Table 2. The

estimate of α1 (i.e., the coefficient of PFURatio in Equation 2) captures the effect of PFUs

on the COC level. As evident in Table 2, with the full sample, we observe that a ten percent

increase in the PFU ratio correlates with an average rise in the SECON index by 0.1189.

Moreover, the same relationship holds in the PSM sample, where a similar magnitude of

effect, a 0.1072 increase in SECON index per ten-percent increment in the PFU ratio, is

noted. Significantly, both estimates are statistically significant, underscoring that a higher

proportion of PFUs is positively associated with an escalated SECON index. This finding

substantiates the claim that booking more PFUs instead of RFUs can lead to measurable

improvements in COC, as indicated by the SECON index.

Table 2 The PFUs effect on COC

Full sample PSM sample

Coeffecient p-value Coeffecient p-value

PFURatio 1.189 0.001 1.072 0.008
FUARatio 0.338 0.105 0.190 0.394
Constant 0.343 0.000 0.365 0.000

Obs. 315 252

4. Problem Description and Formulation

In this section, we describe a model created to investigate the impact of booking a potential

follow-up appointment as a PFU or not. Adopting a methodology similar to that of Ding

et al. (2023), we conceptualize the appointment scheduling system as a single-server priority

queue with returning customers. That allows us to obtain the steady-state consequences of

any PFU booking threshold in terms of the doctor’s and the health system’s revenue rate,

and to subsequently endogenize the choice of the threshold in a P-A model with incentives.

The latter is designed to align the doctor’s decision with that of the health system. For

clarity, we summarize the the notation used in model formulation in Table 3.

We assume that new (episode-initiating) appointment requests arrive according to a

Poisson process with rate λn. All appointments have i.i.d. service times following an expo-

nential distribution with rate µ= 1. Similar assumptions have been made in earlier works
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Table 3 Table of notation

Notation Explanation

µ Service rate, assumed to be 1
λn Poisson arrival rate for new arrivals
λp Poisson arrival rate for PFUs
λr Poisson arrival rate for RFUs
λd Effective departure (service) rate
λP
d The effective service rate of PFUs

λR
d The effective service rate of RFUs

λv The virtual arrival rate
p Probability of requiring a follow-up appointment

f(·) Probability density function for p
F (·) Cumulative distribution function for the probability p
G(x) Average revisit probability for the subpopulation with p∈ [0, x]: G(x) =

∫ x

0
pf(p)d(p)

p̄ p̄=G(1), the average revisit probability for the entire population
w The PFU booking threshold

wFB The booking threshold that solves the first-best model
wSB The booking threshold that solves the second-best model
ŵ The doctor’s optimal booking threshold
wO The maximizer of function λd(w)
γ The probability that a PFU appointment is canceled early enough to not be wasted
η The no-show probability
b The average balking rate of new and RFU appointments
θ The slope parameter for balking rate

P (w) The FUA balking rate given the threshold w
r The average revenue per served appointment
h The payment to the doctor per served appointment
ρ The financial loss resulted from per-unit increment in the FUA balking rate

ΠFB The optimal objective value of the first-best model
ΠSB The optimal objective value of the second-best model under symmetric information
R(w) The performance-based payment to the doctor

Green and Savin (2008), Guo et al. (2019) to ensure analytical tractability. Upon comple-

tion of an appointment, the patient may require a follow-up appointment (FUA) with the

same doctor at a later time with probability p, which is a random variable drawn from

a predefined distribution, characterized by a cumulative distribution function F (·) and a

continuous density function f(·). We refer to this random variable p as the revisit probabil-

ity, which follows an iid distribution F (·) regardless whether the preceding appointment is

an episode-initiating appointment or an FUA. After the value of the revisit probability p is

realized, the nature flips a biased coin with probability p of success to determine whether

an FUA is generated or not. In case no FUA is generated, an episode of visits concludes.

In our model, it is assumed that doctors can accurately estimate a patient’s revisit prob-

ability at the end of each consultation. In other words, the doctor observes the realization

of the random variable p before she decides on whether to book the potential FUA as a

PFU or not. As argued in (Ding et al. 2023), it suffices to focus on threshold-based PFU

booking policies, in which the doctor books a PFU for a patient if and only if p is greater
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than a predetermined threshold w ∈ [0,1]. Patients who do not have a PFU scheduled will

book a RFU on their own if it becomes necessary later on.

Figure 1(a) depicts the typical process of scheduling FUAs, which we explain first. Figure

1(b) depicts an approximate model that we will discuss later.

λs

Service

Orbit 1

Orbit 2
λrλn

Balking

Balking

PFU

NEW+RFU

No Show or Late-Cancellation Recovered

(a) Priority Queue with Returning Customers

λp

Service
λr

λn

Balking

PFU

NEW+RFU

No-shows

λd

Recovered

RTA

(b) An Approximate Model Using RTA

Figure 1 The RTA Approximation for a Priority Queue with Orbits (Ding et al. 2023)

Patients who complete their appointments are treated as “jobs” transitioning to either

the PFU or the RFU orbit, based on the doctor’s decision. These patients, or jobs, remain

in their respective orbits for a stochastic observation period. Upon completion of this

period, they may either recover, eliminating the need for further follow-up, or still require

an FUA. If a patient in the RFU orbit recovers and no longer needs an FUA, then they exit

the system. Such patients remain dormant until the next episode-initiating appointment.

However, if they do not recover and an FUA is necessary, then they re-enter the queueing
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system via the RFU queue. The dynamics for patients in the PFU orbit are different. If

they recover, then they either proactively cancel the PFU appointment with a probability

γ, or inadvertently fail to cancel with a probability of 1− γ, resulting in spoilage. If they

do not recover and need a FUA, then they return to the queueing system and join the

PFU queue. The distinction between RFU and PFU recovered and returning patients helps

model different likelihood of late cancellations or no-shows for these patients as well as

different levels of priority when they return to the queueing system. Another difference

is that PFU returning patients do not balk because they have high priority. Finally, for

all non-canceled appointments, we assume that there is a probability of η ∈ (0,1) that

the patient may not show up for unanticipated reasons, such as emergencies, last-minute

schedule changes, and traffic jams.

We assume that PFU requests have head-of-line priority over new (episode-initiating)

visits and RFU requests in the queue. This is based on the premise that when a PFU

request re-enters the queue from its orbit, it represents an appointment that was already

booked during the previous visit, typically a few weeks earlier. Moreover, it is unlikely that

a PFU appointment would be bumped in favor of a non-PFU appointment, justifying our

treatment of PFU requests as having head-of-line priority in the queueing system.

In the literature, such a system is often referred to as a queue with returning customers.

Analyzing these systems presents significant challenges, particularly in deriving closed-

form expressions for the steady-state distribution of queue length. To circumvent these

difficulties, we utilize the the RTA (Returning Customers See Time Averages) approxima-

tion Greenberg and Wolff (1987). Under the RTA assumption, PFUs and RFUs re-enter

the queue according to time-homogeneous Poisson processes with mean arrival rates equal

to the inverse of the average time spent in the orbit; see Figure 1(b). Consequently, the

doctor’s service queue has three independent Poisson arrival streams: new arrivals, RFUs,

and PFUs, with rates denoted by λn, λr, and λp, respectively.

In addition, we introduce the notion of average effective departure rate or service rate

and denote it by λd. The effective service rate λd only counts those patients who have

actually been served, deliberately excluding individuals who scheduled appointments but

subsequently canceled or were no-shows.

The conservation law applies to all patient flows. In particular, this means that the rate

at which patients enter the orbits must equal their effective departure rate, resulting in
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rate-balance equations that can be used to solve for parameters λd, λp and λr, for a given

λd. Specifically, these rate balance equations are as follows:

λp : = λd

∫ 1

w

(p+(1− p)(1− γ))f(p)dp= λd [(1− γ)(1−F (w))+ γ(p̄−G(w))]

λr : = λd

∫ w

0

pf(p)dp= λdG(w),

(3)

where G(w) :=
∫ w

0
f(p)dp denotes the average revisit probability for the subpopulation

with p≤w, and p :=G(1) denotes the average revisit probability for all patients.

Let λv represent the virtual arrival rate, encompassing all appointment types: new

appointments, RFUs, and PFUs. λv and λd differs in the amount of appointments that

were late cancelled or no shows.

To account for the demand loss due to congestion within the system, both new and RFU

patients may balk with probability b. In reality, patients may observe or be informed about

the waiting time at the time of booking appointments and thus b may depend on the real-

time queue length. However, with state-dependent balking, the steady-state waiting time

has no closed-form expression, which makes the subsequent analysis of the principal-agent

model very difficult. Therefore, for analytical tractability, we make an approximation by

assuming that the balking rate b only depends on the steady-state expected sojourn time,

W . This assumption is reasonable for health systems that only disclose average waiting

time over a past period instead of the real-time waiting times.

To construct a relatively simple model that captures the influence of congestion on

patient balking, we assume that the average balking rate b is a linear function of W with

slope θ > 0 until it reaches the upper limit 1. This assumption leads to the following

expression,

b=min{θW,1}=min

{
θ

1−λv

,1

}
, (4)

where W = (1−λv)
−1 is the steady-state average sojourn time in an M/M/1 queue. Know-

ing the expression for b, we next derive the following the rate-balance equation:

λd : = (1− η)(λn +λr)(1− b)+ (1− η)λd

∫ 1

w

pf(p)dp

= (1− η)(λn +λdG(w))(1− b)+ (1− η)(p̄−G(w))λd.

(5)

The above expression can be simplified as

λd =
λn(1− η)(1− b)

1− (1− η)(p̄−G(w)b)
, (6)
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where λn is a fixed system parameter that denotes the arrival rate of new patients, and b

is a function of λv as given in (4).

Furthermore, we can express the virtual arrival rate λv as

λv(w,λd) : = (λn +λr)(1− b)+λp

= (λn +λdG(w))(1− b)+λd [(1− γ)(1−F (w))+ γ(p̄−G(w))]

=
λd

1− η
+(1− γ)[1−F (w)− p̄+G(w)]λd

(7)

where the last equation follows from Equation (5).

Next, Lemma 1 states that the Equations (4)-(7) have a unique solution λd ∈ (0,1). All

proofs in this paper are provided in the Appendices.

Lemma 1. Given any fixed w ∈ [0,1], there exists a unique vector (λd, λv, b) that solves

Equations (4)-(7) and has λd, λv ∈ (0,1) and

b=
θ

1−λv(w)
. (8)

The significance of Lemma 1 is that for a given w ∈ [0,1], the values of λd, λv, and b

are unique, and therefore can be expressed as functions of w. In fact, we can solve the

expressions λv(w), λd(w), and d from equations (6), (7), and (8). Finally, we can first solve

λp(w) and λr(w) from Equation (3), using the expressions of λd(w).

We next investigate how λd(w) changes with w, which provides key insights into the

selection of the PFU booking threshold w.

Lemma 2. λd(w) is quasi-concave in w. In addition, its maximizer wO :=

argmaxw∈[0,1] λd(w), is unique and characterized by the following equation,

[1− (1− η)(p−G(wO))](1− γ)(1−wO)λd = (1− η)(1− θ−λv)wO.

Unlike λd(w), both λv(w) and b(w) monotonically decrease in w, as shown in the next

Lemma.

Lemma 3. Both λv(w) and b(w) are non-increasing in w ∈ [0,1]. Moreover, if γ < 1 or

w> 0, then both are strictly decreasing in w.

The intuition behind Lemma 3 is that a larger PFU booking threshold w implies fewer

PFUs will be booked and overall spoilage rate will decrease, which results in less congestion

in the queue. Consequently, there are fewer patients balking.

The properties of the functions λd(w), λv(w), and b(w) allow us to investigate the doctor’s

optimal choice of w under different incentive schemes, which is discussed in the next section.
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5. Mechanism Design

We begin with calculating the health system’s optimal PFU booking threshold in the first

best model in which the health system fully observes and controls the doctor’s effort level,

which is captured by the PFU booking threshold w. We then formulate a second-best

model in symmetric information case, in which the health system can no longer control the

doctor’s decision, but can infer the doctor’s effort level by owning the same information as

the doctor has. Finally, we formulate a second-best model in asymmetric information case

in which the health system neither controls nor could infer the doctor’s effort level.

5.1. First-Best Model

We consider a scenario where a health system’s profit depends on the effective service rate

λd and the COC level. In our model, COC is a key metric of care quality and may influence

the health system’s profit. For analytical tractability, we use the FUA balking rate as a

measure for disruptions of COC, which has the following expression:

P (w) :=
b(w)G(w)(1− η)λd

(1− η) ·λd · p̄
=

b(w) ·G(w)

p̄
. (9)

In the presented expression, the numerator b(w)G(w)(1−η)λd quantifies the rate at which

patients discontinue their follow-up consultations with the same doctor. The denominator

(1 − η) · λd · p̄, on the other hand, calculates the arrival rate of effective FUAs. Thus,

the ratio captures the percentage of balkings out of the total FUAs. This computation

is conducted on a per-appointment basis, distinguishing it from the SECON index that

calculates the balking rate on an episodic basis. Despite the technical difference, both

metrics aim to assess the frequency at which the continuity of provider care is interrupted.

For our modeling analysis, we use the FUA balking rate instead of the SECON index due

to its simplicity in facilitating analysis. The next lemma shows that the FUA balking rate

P (w) is monotonically increasing in w.

Lemma 4. P (w) is increasing in w.

Lemma 4 states that the FUA balking rate P (w) increases as the threshold w increases.

This implies that setting a higher threshold for scheduling PFU appointments leads to a

reduction in the number of PFUs, thereby diminishing the Continuity of Care (COC).
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We can then formulate the health system’s decision problem as

ΠFB := max
w∈[0,1]

(r−h) ·λd(w)− ρ · b(w) ·G(w)/p̄, (10)

where r represents the average revenue per served appointment, h represents the payment

to the doctor per served appointment, and ρ signifies the monetary cost from per-unit

increment in the FUA balking rate. This cost, ρ, may be determined by the health system

based on its evaluation of the potential financial loss related to disruptions in provider care

continuity and the resulting inferior care quality. Alternatively, in certain scenarios, ρmight

reflect direct financial penalties as specified by pay-for-performance policies enacted by

healthcare payers. This formulation allows the health system to consider the optimal level

of effort that should be exerted (represented by w) to balance revenue maximization against

the costs incurred from decreased COC due to patient balking at follow-up appointments.

We refer to the optimal solution to (10) as the health system’s first-best solution, and

denote it by wFB. We call it first-best because it is the ideal PFU booking threshold

under centralized decision making and no informational asymmetry. In particular, when

ρ= 0, the health system is solely maximizing the throughput rate λd(w) and we let wO :=

argmaxw∈[0,1] λd(w) denote the throughput-maximizing PFU booking threshold. Whereas,

as ρ increases, the health system is more and more concerned about minimizing P (w),

which requires to lower w due to Lemma 4. Therefore, the health system face conflicting

objectives when choosing w over the interval [0,wO]. The next proposition proves mono-

tonic properties of wFB with respect to ρ.

Proposition 1. The optimal solution wFB(ρ) is decreasing with respect to the parameter

ρ. Consequently, wFB(ρ)<wO for all ρ > 0. Furthermore, the set of values of ρ for which

wFB(ρ) has more than one maximizers is countable and has a measure of zero.

Proposition 1 elucidates that if a health system places greater emphasis on improving

COC, it should choose a lower PFU booking threshold wFB, thereby scheduling more PFUs.

This conclusion aligns with our empirical finding that higher COC levels are associated

with increased ratio of PFUs. Such a scheduling approach is critical for fostering improved

care continuity. Further insights along these lines will be explored in the analysis of the

second-best model, which more closely mirrors real-world conditions and practices.
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5.2. Second-Best Model under Symmetric Information

In practice, the health system cannot estimate a patient’s revisit probability, and thus

cannot decide whether to book a PFU or not. Instead, the PFUs are recommended by the

doctor whose objective may differ from the clinic’s, making it difficult to implement the

first-best solution directly.

Because doctors are paid on a FFS basis, they would choose the throughput maximizing

PFU booking threshold wO to maximize their revenue. Therefore, the doctor’s optimal

decision is to book a PFU if and only if the patient’s estimated revisit probability p≥wO.

However, if the health system is interested in promoting provider continuity and reducing

FUA balking rate, i.e., whenever ρ > 0, Proposition 1 implies that the health system’s

desired PFU booking threshold is wFB(ρ)<wO. That is, the health system would choose

a lower PFU booking threshold than the doctor. The doctor’s objective is thus not aligned

with that of the health system.

Suppose the health system knows the distribution of patient revisit probability G(·). In

this case, the health system can infer the threshold w used by the doctor by observing

appointment data such as λd, λv, λr, and λp. From this reasoning, in our principal-agent

model, the agent’s effort level w is observable by the principal. This allows the principal to

implement an incentive contract with two components. The doctor receives a volume-based

payment hλd as well as a performance-based payment R(w), where R(w) is decreasing in

w so as to incentivize the agent to choose a smaller w and thereby to book more PFUs.

We assume that the health system selects the performance-based payment R(·) : [0,1]→

R to maximize its objective; while the volume-based payment has a fixed rate h. The latter

assumption is without loss of generality, because if the health system pays a different rate

h′, then the difference (h′ − h)λd(w) is a function of w can always be incorporated into

R(w). The second-best problem can be formulated as follows.

ΠSB := max
R(·)∈[0,1]R

(r−h)λd(ŵ)−R(ŵ)− ρ · b(ŵ) ·G(ŵ)/p (11)

s.t. R(w)≥ 0, ∀w ∈ [0,1] (12)

ŵ ∈ argmaxw∈[0,1] hλd(w)+R(w), (13)

where (12) is the individual rationality (IR) constraint, which ensures the agent’s partici-

pation by promising to pay them no less than their regular salary, which could be regarded
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as the agent’s outside option; (13) is the incentive compatibility (IC) constraint, which

ensures optimality of the agent’s action ŵ. We use ΠSB to denote the optimal objective

values for the second-best formulation.

To solve the second best problem (11)-(13), we consider the following payment scheme.

For a given z ∈ [0,1], we define

ϕz(w) :=

0 if w≥ z

hλd(wO)−hλd(z) if w≤ z,
(14)

where wO := argmaxλd(w) is the throughput maximizing threshold. Since health system

prefers the doctor to adopt an even smaller w than wO to further improves COC, it

introduces a performance-based payment scheme, ϕz(·), whereby a doctor receives a bonus

payment hλd(wO)− hλd(z) by choosing a PFU booking threshold w ≤ z; and receives no

payment otherwise.

The incentive scheme characterized by ϕz(·) is commonly implemented to calculate year-

end bonuses for salespeople and managers, rewarding employees only when they surpass

a specific performance benchmark, like a sales quota or a target level of operational effi-

ciency, within an observation cycle. This approach is analogous to incentive structures

studied in the literature, including works by Oyer (1998) and Lazear and Shaw (2007),

highlighting the effectiveness of performance-based rewards in aligning individual actions

with organizational goals.

The next proposition shows that the second best can be achieved through a payment

scheme in the form of ϕz(·), which is the minimum compensation that the principal must

offer the agent to motivate the adoption of a PFU z that is lower than wO. This strategic

payment formula is designed to bridge the gap between the optimal and actual practices

by financially encouraging physicians to prioritize COC in their scheduling decisions.

Proposition 2. The second-best optimization problem (11)-(13) is solved by a payment

scheme R(·) = ϕwSB(·), where

wSB := argmax
w∈[0,1]

rλd(w)− ρ · b(w) ·G(w)/p. (15)

According to Proposition 2, to solve the second-best problem (11)-(13), it suffices to

perform a one-dimensional search for the maximizer of (15). The resulting wSB is the PFU
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booking threshold that the agent chooses under the payment scheme ϕwSB(·), at which the

second best is achieved.

We next derive a lower bound for the second-best optimal value ΠSB, which further

yields a closed-form upper bound for the gap ΠFB −ΠSB. To that end, we notice that if a

performance-based payment scheme ϕwFB(·) is implemented in addition to a volume based

incentive of hλd(w), then the doctor will will voluntarily choose the first-best PFU booking

threshold wFB. In this case, the health system has to pay an extra ϕwFB(wFB) compared

to the amount that she pays in the first best case. As a result, ϕwFB(wFB) provides an

upper bound for the gap ΠFB −ΠSB as the second-best model could potentially do better

by adopting a payment scheme ϕwSB(·) instead of ϕwFB(·). A formal statement is presented

in the following proposition.

Proposition 3. If the health system sets R(w) = ϕwFB(·), then the doctor will choose

ŵ=wFB. As a result,

ΠFB −ΠSB ≤ ϕwFB(wFB) = hλd(wO)−hλd(wFB).

Furthermore, wSB decreases in ρ.

Proposition 3 shows that when ρ increases, the PFU booking threshold wSB decreases,

resulting in a larger proportion of PFUs. Therefore, in both the first-best and the second-

best scenario, our analytical results are consistent with the earlier empirical result revealing

a positive correlation between elevated levels of COC and a higher proportion of PFUs.

When ρ approaches zero, we have wFB →wO and consequently ϕwFB(wFB)→ 0 by its def-

inition. Therefore, when ρ approaches zero, the relative gap (ΠFB −ΠSB)/ΠFB approaches

zero. This is because when the health system is less concerned with COC, the health

system’s and the doctor’s interests are closely aligned.

Finally, we want to compare the values of wO, wFB, and wSB. Since the effective through-

put rate λd(w) is quasi-concave whereas the FUA balking rate P (w) is strictly decreasing

in w, the throughput-maximizing threshold wO, is identified as having the largest value.

wFB, as the solution to the first best model, has the lowest value. This is because, in the

first best scenario, the reward from minimizing P (w) has been fully integrated into the

decision-making process. Whereas in the second-best model, the reward from minimizing

P (w) is only partially incorporated into the doctor’s objective, resulting in a wSB posi-

tioned between wFB and wO. The comparison is summarized in the next Corollary. Its

proof immediate follows the above logic and is omitted.
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Corollary 1. If ρ> 0, then wFB <wSB <wO.

The primary takeaway of Corollary 1 is that in a practical health system, which closely

aligns with the second-best scenario, the proportion of PFUs should be higher than in a

scenario without intervention (wO), yet lower than in a fully coordinated system (wFB).

5.3. Second-Best Model under Asymmetric Information

This section deals with the scenario in which the doctors can infer the distribution of their

patients’ revisit probability (G(·)) based on knowledge of her patients’ clinical histories. In

contrast, while the health system can observe the appointment booking rates and service

rates, i.e., λd and λv, it neither observes the PFU booking threshold w, nor the revisit prob-

ability distribution G(·). In practice, the health system might eventually approximate the

distribution G(·), using extensive historical data, provided that the health system operates

under steady conditions. However, in scenarios where the health system is newly estab-

lished or does not have access to comprehensive data within a health network, accurately

estimating G(·), or even other environmental parameters such as θ, becomes impractical.

This information asymmetry presents a significant hurdle in executing the contract pro-

posed in Section 5.2. The inability to observe w directly, compounded by the lack of

knowledge regarding G(·), prevents the health system from quantifying the performance

based payment R(·). This information asymmetry thus necessitates alternative approaches

for the health system to compensate the doctor. One alternative is to compensate the agent

based on observable proxy measures instead of the unobservable effort level w. The set of

possible observable measures includes the following candidates: λd, λv, λ
R
d := (1− η) · λd ·

G(w) · [1− b(w)], and λP
d := (1− η) ·λd · (p̄−G(w)). Whereas λd and λv have been defined

earlier, the two additional rates can be explained as follows.

• λR
d is the effective service rate of RFUs. The health system can identify RFUs using

patients IDs and visit histories. The health system can further identify which RFUs

were effectively served by looking into the appointment records.

• λP
d is the effective service rate of PFUs. The PFUs can be identified by matching the

appointment booking time and patients previous visit time by patient ID. A PFU is

effectively served if it was neither a cancellation nor a no show. Such information is

available in the appointments data.
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The functional form of the incentive payment R will then depend on the rates identified

above. We analyze four functional forms as shown below:

[FUA-Ratio] RFR(w) :=
λR
d (w)+λP

d (w)

λd(w)

[FUA-Count] RFC(w) := λR
d (w)+λP

d (w)

[PFU-Ratio] RPR(w) :=
λP
d

λd

[PFU-Count] RPC(w) := λP
d

(16)

Our comparison of the four types of contracts is first carried out under a bi-objective

optimization framework in which the health system is assumed to maximize two objectives:

(1) profit, which is the difference between the revenue and the financial compensation paid

to the doctor; (2) COC, measured by the negative of FUA balking rate −P (W ). This leads

to the following formulation for the four contracts Rt(w) with t∈ {FR,FC,PR,PC}.

max
c≥0

(r−h)λd(ŵ(c))− cRt(ŵ(c)) (17)

min
c≥0

b(ŵ(c))G(ŵ(c))/p (18)

s.t. R(w)≥ 0, ∀w ∈ [0,1] (19)

ŵ(c)∈ argmax
w∈[0,1]

hλd(w)+ cRt(w), (20)

where (19) denotes the individual rationality (IR) constraint and (20) denotes the incentive-

compatibility (IC) constraint, which are the same as the constraints in the symmetric

information case.

Our approach involves outlining the Pareto-frontier for each type of contracts on the

profit-COC spectrum and then compare these frontiers through Pareto dominance to iden-

tify the most effective contract type. For a given contract type t, we calculate a pair of

objective values ((r− h)λd(ŵ(c))− cRt, P (ŵ(c))) for each coefficient c≥ 0. By varying c,

we generate a set of points {((r − h)λd(ŵ(c)) − cRt, P (ŵ(c)))|c ≥ 0} on the profit-COC

spectrum, which constitutes the Pareto-frontier of contract type t. To assess and compare

the efficacy of different contract types, we introduce a partial order ⪰, where for any two

contract types t1, t2 ∈ {FR,FC,PR,PC}, we say t1 ≻ t2 if and only if the Pareteo frontier
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of contract Rt1 dominates that of contract Rt2. Mathematically, it means that there exists

c1, c2 ≥ 0, such that

P (ŵ(c1)) = P (ŵ(c2)) and (r−h)λd(ŵ(c1))−c1Rt1(ŵ(c1))≥ (r−h)λd(ŵ(c2))−c2Rt2(ŵ(c2)),

(21)

where ŵ(c) is the solution to the IC condition (20). The following theorem compares the

four types of contracts with respect to the above partial order.

Theorem 1. (1) PR⪰FR⪰FC; (2) PR⪰PC⪰FC.

Theorem 1 suggests that the Pareto-frontier of the PFU ratio-based contract (PR)

dominates all other contracts, while the FUA count-based contract (FC) is dominated by

all other contracts. The performances of contracts PC and FR lie in the middle, whereas

there is no dominance relationship between these two contracts as shown in Figure 2.

Figure 2 also illustrates that all four contracts are Pareto-dominated by the frontier of

the second best model with symmetric information (11) and the first best model (10), and

the gap could be significant when emphasis is placed on improving COC. Notably, the gap

between the first best model and the second best model with symmetric information is

much smaller than the gap between the second best model and the best performed contract

(PR), suggesting information asymmetry as a major challenge in incentivizing doctors

towards the optimal PFU booking practices.

Figure 2 Pareto Frontiers for the first best, second best, and the four types of contracts (f(·) = Beta(0.5,0.5),

r= 2, h= 1, η= 0.1, γ = 0.5,λn = 0.6, θ= 0.05)

In general, it is widely recognized that booking more FUA can enhance Continuity of

Care. For instance, the Royal College of General Practitioners (RCGP) Guidelines for
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Continuity of Care suggest that clinicians can negotiate with patients and proactively

schedule FUAs to improve COC1. Similar arguments have been made in the context of

resident training clinics, where researchers have found that enhancing scheduling support

significantly increases rates of resident continuity(LaVine et al. 2020). However, how to

effectively incentivize doctors to improve provider continuity of care and to maximize the

clinic’s profit remains unclear. Theorem 1 elucidates that incentivizing doctors through

PFUs rather than general FUAs, and focusing on the relative ratio rather than the total

counts, emerges as a more effective strategy.

We will then extend the result from Theorem 1 and compare the four contract types

under a single-objective optimization framework. The formulation of the single objective

follows (10) and (11), in which the health system is assumed to pay a penalty ρP (w)

proportional to the FUA balking rate for a given parameter ρ≥ 0. Mathematically, for each

contract type t∈ {FR,FC,PR,PC}, the health system solves the following single-objective

optimization problem:

Πt :=max
c≥0

(r−h)λd(ŵ(c))− cRt(ŵ(c))− ρP (ŵ(c)), (22)

s.t. (19), (20). (23)

For each fixed ρ≥ 0, We can compare the optimal objective values Πt of the four contract

types; see the next Corollary. The comparison result aligns with Theorem 1.

Corollary 2. (1) ΠPR ≥ΠFR ≥ΠFC ; (2) ΠPR ≥ΠPC ≥ΠFC .

Furthermore, we can derive a constant upper bound for the gap between the first-best

objective value ΠFB and that under a FUA-ratio based contract. Since ΠPR ≥ ΠFB, this

constant upper bound trivially applies to the gap ΠFB −ΠPR.

Theorem 2. ΠFB −ΠFR ≤ hρ/(r−h).

The main idea of the proof of Theorem 2 is to select c= hρ
(r−h)(1−η)p̄

in a FUA-ratio based

contract, which yields a threshold ŵ(c) = wFB according to the IC condition. In other

words, with the above c, the FUA-ratio based contract aligns the agent’s effort level with

that in the first best case. The resulting right-hand-side of (22) thus differs from ΠFB by

1 https://www.rcgp.org.uk/getmedia/d77f39b7-3745-4942-acef-20f4a3118c31/RCGP-continuity-of-care-guide-
141119.pdf
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hρ
r−h

, which gives an upper bound for ΠFB −ΠFR as the latter may do better by selecting

a different c.

The result of Theorem 2 implies that when the penalty for care discontinuity, ρ, is

small, achieving the first best outcome through a FUA-ratio based contract is feasible. This

aligns with our earlier observation that aligns the interests of the health system and the

doctor becomes more costly as the penalty for care discontinuity rises. Remarkably, in the

hypothetical scenario where ρ= 0, the interests of the two parties can be perfectly aligned.

Under such circumstances, the FUA-ratio based contract is capable of realizing the first

best outcome. Moreover, when the ratio h/(r−h) is low, it signifies a larger profit margin

for the health system. This economic leverage makes it more cost-effective to offer financial

incentives to physicians for scheduling more PFUs, thereby narrowing the gap between

the current operational model and the ideal first-best scenario. This result underscores

the nuanced interplay between financial structures, incentive strategies, and healthcare

outcomes, emphasizing the critical role of contract design in enhancing the alignment of

objectives within healthcare systems and improving overall care continuity.

6. Sensitivity Analyses

In this section, we conduct a series of numerical experiments to validate the effectiveness

of the proposed contracts. Following Ding et al. (2023), in the base case setting, we assume

λn = 0.6 and f(·) =Beta(0.5,0.5), thereby resulting in p̄= 0.5. Other parameters are set

as follows: r= 2, h= 1, η= 0.1, γ = 0.5, and θ= 0.05.

We first compare the optimal values of the first-best model ΠFB, the optimal value of

the second best model ΠSB, and a lower bound for the second best model ΠSB, which is

obtained by using a payment contract ϕwFB(wFB), across various values of ρ. The results

are plotted in Figure 3.

Figure 3 reveals a consistent downward trend in the objective values for all three models

as the parameter ρ increases. This behavior stems from the heightened penalty imposed on

the FUA balking rate, resulting more PFUs being booked and a lower effective throughput

rate as outlined in Proposition 1 for all three models. Additionally, the narrow gap between

ΠSB and ΠSB suggests that the contract ϕwFB(wFB) serves as a reliable approximation for

the second-best model, showcasing its effectiveness.

Next, we study how the relative gap between the first-best model and the second-best

model, (ΠFB−ΠSB)/ΠFB, changes with key parameters such as ρ, λn and θ. The parameter
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Figure 3 ΠFB , ΠSB , and ΠSB , as a function of ρ (f(·) =Beta(0.5,0.5), r = 2, h= 1, η = 0.1, γ = 0.5, λn = 0.6,

θ= 0.05)

(a) variation to λn (θ= 0.05) (b) variation to θ (λn = 0.6)

Figure 4 Relative gap (ΠFB −ΠSB)/ΠFB for parameters (f(·) =Beta(0.5,0.5), r= 2, h= 1, η= 0.1, γ = 0.5)

(a) variation to λn ( θ= 0.05) (b) variation to θ (λn = 0.6)

Figure 5 Relative gap (ΠFB −ΠSB)/ΠFB for different Beta distribution (r= 2, h= 1, η= 0.1, γ = 0.5, ρ= 30)

configuration remains consistent with that in Figure 3, except for the varying parameter.

The comparative results are presented in Figure 4.

According to Figure 4, when the health system is more concerned with promoting COC,

it is more costly to align the health system’s and the doctor’s interests. Similarly, when

the system is more congested (larger λn and less θ), the alignment is also more costly. The

explanation is that in a more congested system, it is more costly to incentivize the doctor

to book more PFUs due to the increased opportunity value of an appointment slot.
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(a) Beta(1,3) (b) Beta(5,1)

Figure 6 Relative gap (πFB −πPR)/πFB as a function of FUA balking rate P (w) for different λn ( r= 2, h= 1,

η= 0.1, γ = 0.5, θ= 0.05)

We then investigate whether similar trend of the relative gap concerning parameters λn

and θ holds across different distributions of revisit probability F (·). We fixed ρ= 30 and

test two different distributions, i.e., Beta(5,1) and Beta(1,3). The results are depicted in

Figure 5. It is evident from subfigure (a) of Figure 5 that the gap related to parameter

λn is robust across different distributions. However, as demonstrated in subfigure (b) of

Figure 5, the monotonic property does not exhibit robustness concerning the parameter θ.

Next, we compare the four contract types developed under the asymmetric information

case. To begin, we compare the profit-FUA balking rate frontier for these contracts. Using

the same parameter settings as in Figure 3, the frontiers of the first-best model, second-best

model, and the four contracts in the asymmetric information case are presented in Figure

2 in Section 5. Figure 2 indicates that among the four proposed contracts, the contract PR

stands out as the most favorable, while the contract FC is comparatively less effective, as

outlined in Theorem 1.

We then proceed to compare the relative profit gap between the first-best model and the

contract PR with a given FUA balking rate P (w). Let πFB and πPR denote the profits for

the first-best model and the PR contract, respectively. The relative profit gap is defined

as πFB−πPR

πFB
. The results are illustrated in Figure 6 and Figure 7.

Figure 6 demonstrates that the smaller λn (larger P (w)), the smaller relative gap between

the first-best model and the contract PR. These results hold consistently across different

distributions f(·). However, Figure 7 reveals varying patterns concerning the parameter θ

under different distribution functions f(·). In summary, both Figure 6 and Figure 7 indicate

that the relative gap remains acceptable when the FUA balking rate is not extremely small.
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(a) Beta(1,3) (b) Beta(5,1)

Figure 7 Relative gap (πFB − πPR)/πFB as a function of FUA balking rate P (w) for different θ ( r = 2, h= 1,

η= 0.1, γ = 0.5,λn = 0.6)

7. Conclusion

In this study, we explored the integration of Continuity of Care (COC) into the early

reservation of follow-up appointments, underscoring its significance in outpatient care man-

agement. Through empirical analysis, we established that the rate of prioritized follow-up

(PFU) appointments serves as a reliable indicator of COC. Addressing the challenge of

COC observability in decentralized systems, we developed various principal-agent models

to encourage physicians to schedule an optimal number of PFUs, thereby enhancing COC.

In these models, the health system (principal) offers a fee-for-service payment as well as a

performance-based payment, while the physician (agent) determines the quantity of PFU

appointments.

Our findings reveal that, in scenarios with symmetric information where both parties

are aware of the revisit probability distribution, we can identify an optimal contract that

approximates the second-best solution and suggest another that aligns the agent’s actions

with the first-best outcome. This suggests that carefully designed incentives can guide

physicians towards decisions preferred by the health system. In cases of asymmetric infor-

mation, where the distribution is known only to the agent, we examined four types of

performance-based contracts. The analysis showed that contracts focused on PFUs out-

shine those based on general follow-up appointments (FUAs), and contracts emphasizing

the ratio of PFUs are more effective than those based on absolute counts, highlighting the

superiority of PFU ratio-based contracts.

This research, however, is not without limitations. We initially assume exponential ser-

vice times, a simplification that future work could expand upon by considering more general

service durations. Additionally, our current model focuses on a single-server setting for
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contract design to improve COC, which could be extended to examine competitive servers

within the principal-agent framework. Lastly, we model the balking rate based on the

expected steady-state queue length rather than real-time queue lengths, an assumption

that could be revisited for more dynamic modeling.
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Appendices (Online Supplements)

A. Proofs

A.1. Proof of Lemma 1

Proof: To establish the uniqueness of the solution, we need to show that there exists a unique

value of b that satisfies equation (4). Once we determine b, the remaining variables in the feasible

performance vector, namely λd and λv, can be computed using equations (6) and (7), respectively.

Thus, the uniqueness of b guarantees the uniqueness of the entire feasible performance vector.

(V (b,λv(b), λd(b)) :=)b−min

{
θ

1

1−λv(b)
,1

}
= 0. (A.1)

Note that if θ 1
1−λv(b)

≥ 1, we have b= 1, resulting λd = 0. As a result, we must have θ 1
1−λv(b)

<

1. Therefore, it is sufficient to show that the equation V (b,λv(b), λd(b)) = 0 has a unique solu-

tion b ∈ (0,1). We will establish this by demonstrating the following two points: (1) the func-

tion V (b,λv(b), λd(b)) is negative when b= 0 and positive when b= 1. By continuity, this implies

that there exists at least one solution to equation (A.1) in the interval (0,1); (2) the function

V (b,λv(b), λd(b)) strictly decreases with respect to b in the interval (0,1). This guarantees that

equation (A.1) has at most one solution in the interval (0,1).

We first show (1). It is straightforward to see that

V (b,λv(b), λd(b))|b=0 =−min

{
θ

1

1−λv(b)
,1

}
< 0

In addition, we have

V (b,λv(b), λd(b))|b=1 = 1−min

{
θ

1

1−λv(b)
,1

}
> 0

We next show (2). The derivative of V (b,λv(b), λd(b)) with respect to b can be calculated as

dV

db
= 1− θ

(1−λv)2
dλv

db
I
(

1

1−λv(b)
≤ 1

θ

)
Since

dλv

db
=

dλv

dλd

dλd

db

=

[
1

1− η
+(1− γ)(1−F (w)− p̄+G(w))

]
−λn(1− η) [[1− (1− η)(p̄−G(w)b)] + (1− b)(1− η)G(w)]

[1− (1− η)(p̄−G(w)b)]2

≤ 0

We have dV
db

≥ 1> 0. In other words, V (b,λv(b), λd(b)) is strictly increasing in b and the derivative

is lower bounded by a positive constant 1. This completes the proof. ■
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A.2. Proof of Lemma 2

Proof: We first build the relationship between dλv
dw

and dλd
dw

as follows:

dλv

dw
=

1

1− η

dλd

dw
+(1− γ)(wf(w)− f(w))λd +(1− γ)[1−F (w)− p̄+G(w)]

dλd

dw

=

[
1

1− η
+(1− γ)[1−F (w)− p̄+G(w)]

]
dλd

dw
− (1− γ)f(w)(1−w)λd

:=A
dλd

dw
−B

where

A :=
1

1− η
+(1− γ)[1−F (w)− p̄+G(w)]

B :=(1− γ)f(w)(1−w)λd

Note that
db

dw
=

db

dλv

dλv

dw
=

θ

(1−λv)2
dλv

dw
(A.2)

Then, we have

dλd

dw
=
−λn(1− η) db

dw
[1− (1− η)(p̄− bG(w))]−λn(1− b)(1− η)2(bwf(w)+G(w) db

dw
)

[1− (1− η)(p̄− bG(w))]2

=
−λn(1− η) db

dw
[1− (1− η)(p̄−G(w))]−λn(1− b)(1− η)2bwf(w)

[1− (1− η)(p̄− bG(w))]2

=
−λn(1− η)[1− (1− η)(p̄−G(w))] db

dλv

dλv

dw
−λn(1− b)(1− η)2bwf(w)

[1− (1− η)(p̄− bG(w))]2

=
−λn(1− η)[1− (1− η)(p̄−G(w))] θ

(1−λv)2
dλv

dw
−λn(1− b)(1− η)2bwf(w)

[1− (1− η)(p̄− bG(w))]2

Define

C :=[1− (1− η)(p̄− bG(w))]2

D :=λn(1− η)[1− (1− η)(p̄−G(w))]
θ

(1−λv)2

E :=λn(1− b)(1− η)2bwf(w)

Then, we have

C
dλd

dw
=−D

dλv

dw
−E =−D

(
A
dλd

dw
−B

)
−E

As a result, we have

dλd

dw
=

DB−E

C +DA

=
λn(1− η)[1− (1− η)(p̄−G(w))] θ

(1−λv)2
(1− γ)f(w)(1−w)λd −λn(1− η)2b(1− b)wf(w)

[1− (1− η)(p̄− bG(w))]2 +λn(1− η)[1− (1− η)(p̄−G(w))] θ
(1−λv)2

[
1

1−η
+(1− γ)[1−F (w)− p̄+G(w)]

]
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It is easy to show that dλd
dw

|w= 0≥ 0 and dλd
dw

|w= 1≤ 0. Let dλd
dw

= 0, we have

[1− (1− η)(p̄−G(wO))]
θ

(1−λv)2
(1− γ)(1−wO)λd = (1− η)b(1− b)wO

which is equivalent to

[1− (1− η)(p̄−G(wO))](1− γ)(1−wO)λd = (1− η)(1− θ−λv)wO

Next, we prove quasi-concavity of λd. Since C+DA> 0, we just need to identify the sign of the

derivation of dλd
dw

C+DA
λn(1−η)f(w)

(1−λv)
2

θ
at the point wO. Note that

dλv

dw
|wO

=A
dλd

dw
−B|wO

=−B =−(1− γ)(1−w)f(w)λd|wO

and

b=
θ

1−λv

< 1⇒ 1−λv − θ > 0

Thus, we have (
dλd

dw

C +DA

λn(1− η)f(w)

(1−λv)
2

θ

)′

|wO

=[[1− (1− η)(p̄−G(w))](1− γ)(1−w)λd − (1− η)(1− θ−λv)w]
′ |wO

=(1− η)wf(w)(1− γ)(1−w)λd

+ [1− (1− η)(p̄−G(w))](1− γ)

[
−λd +(1−w)

dλd

dw

]
+(1− η)

dλv

dw
w− (1− η)(1− θ−λv)|wO

=(1− η)wf(w)(1− γ)(1−w)λd − [1− (1− η)(p̄−G(w))](1− γ)λd

− (1− η)(1− γ)(1−w)f(w)λdw− (1− η)(1− θ−λv)|wO

=− [1− (1− η)(p̄−G(w))](1− γ)λd − (1− η)(1− θ−λv)|wO

≤0

The above inequality become strictly less than if 0< η < 1. This completes the proof. ■

A.3. Proof of Lemma 3

Proof: It suffice to prove dλv
dw

≤ 0. From the proof of Lemma 2, we have

dλd

dw
=
−λn(1− η)[1− (1− η)(p̄−G(w))] θ

(1−λv)2
dλv
dw

−λn(1− b)(1− η)2bwf(w)

[1− (1− η)(p̄− bG(w))]2

=
−λn(1− η)[1− (1− η)(p̄−G(w))] θ

(1−λv)2
dλv
dw

−E

C

=:
−D dλv

dw
−E

C
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Then, we have

dλv

dw
=

[
1

1− η
+(1− γ)[1−F (w)− p̄+G(w)]

]
dλd

dw
+(1− γ)(wf(w)− f(w))λd

=A
dλd

dw
−B

=A ·
−D dλv

dw
−E

C
−B

Through algebraic manipulation, if w> 0 or γ < 1, we can deduce

dλv

dw
=−AE+BC

C +AD
< 0

Based on equation (A.2), we have

db

dw
=

db

dλv

dλv

dw
=

θ

(1−λv)2
dλv

dw
< 0

■

A.4. Proof of Lemma 4

Proof: Define wO := argmaxλd(w). We prove Lemma 4 for two successive interval: [0,wO] and

[wO,1]. Note that

dP (w)

dw
=

1

p̄

[
db

dλv

dλv

dw
G(w)+ bwf(w)]

]
(A.3)

For w ∈ [0,wO]. We know that λd is increasing in w ∈ [0,wO]. And by the definition we have

dλv

dw
=

[
1

1− η
+(1− γ)[1−F (w)− p̄+G(w)]

]
dλd

dw
+(1− γ)(wf(w)− f(w))λd

≥ (1− γ)(wf(w)− f(w))λd

(A.4)

Then the derivative of p̄P (w) for w ∈ [0,wO] is

d (p̄P (w))

dw
=

db

dλv

dλv

dw
G(w)+ bwf(w)

=
θ

(1−λv)2

[
G(w)

dλv

dw
+(1−λv)wf(w)

]
≥ θ

(1−λv)2
[G(w)(1− γ)(wf(w)− f(w))λd +(1−λv)wf(w)]

=
θf(w)

(1−λv)2
[G(w)(1− γ)(w− 1)λd +(1−λv)w]

(A.5)

Note that for w ∈ [0,wO], each term in [G(w)(1− γ)(w− 1)λd +(1−λv)w] is increasing in w. As a

result, we have
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θf(w)

(1−λv)2
[G(w)(1− γ)(w− 1)λd +(1−λv)w]

≥ θf(w)

(1−λv)2
[G(w)(1− γ)(w− 1)λd +(1−λv)w] |w=0

=0

(A.6)

indicating P (w) is increasing in [0,wO].

For w ∈ [wO,1]. We know that λd is decreasing in w ∈ [wO,1]. And by the definition we have

−[1− (1− η)(p̄−G(w))]
θ

(1−λv)2
dλv

dw
− (1− b)(1− η)bwf(w)≤ 0 (A.7)

Then the derivative of p̄P (w) for w ∈ [wO,1] is

d (p̄P (w))

dw
=

db

dλv

dλv

dw
G(w)+ bwf(w)

=
θ

(1−λv)2
dλv

dw
G(w)+ bwf(w)

≥ θ

(1−λv)2
dλv

dw
G(w)+

−[1− (1− η)(p̄−G(w))]

(1− b)(1− η)

θ

(1−λv)2
dλv

dw

=−1− (1− η)(p̄− b(w)G(w))

(1− b)(1− η)

θ

(1−λv)2
dλv

dw

≥ 0

(A.8)

indicating P (w) is increasing in [wO,1]. ■

A.5. Proof of Proposition 1

Proof: Since b(w) ·G(w) is increasing in w, we have ∂2ΠFB
∂ρ∂w

< 0, which means ΠFB is strictly

submodular in w and ρ. Based on the result of Theorem 2 in (Amir 2005), we can conclude that

the set of values wFB(ρ) is strictly decreasing in ρ. As a result, wFB(ρ)<wFB(0) =wO.

Since each element in the set wFB(ρ) is strictly decreasing with respect to ρ, the sets correspond-

ing to different values of ρ must not overlap. Therefore, for each value of ρ that results in multiple

maximizers, we can assign a distinct rational number to that ρ. Therefore, the number of ρ values

that lead to multiple maximizers is upper bounded by the cardinality of rational numbers, which

is countably infinite and has a measure of zero. ■

A.6. Proof of Proposition 2

Proof: Suppose that R∗(·) is the optimal payment scheme that solves the second-best optimiza-

tion problem (11)-(13). Let ŵ denote the doctor’s PFU booking threshold under R∗. The incentive

compataibility constraint (13) then implies that R∗(ŵ)≥ hλd(wO)−hλd(ŵ). Thus, we have

ΠSB =(r−h)λd(ŵ)− ρb(ŵ)G(w)/p−R∗(ŵ) (A.9)
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≤rλd(ŵ)− ρb(ŵ)G(w)/p−hλd(wO) (A.10)

≤rλd(wSB)− ρb(wSB)G(wSB)/p−hλd(wO). (A.11)

The last inequality follows (15). The right-hand-side of the above equation is the objective value

under payment scheme ϕwSB (·). This proves ϕwSB (·) is the optimal payment scheme that solves

(11)-(13). Moreover, ∂2−ρb(w)G(w)

∂w∂ρ
< 0, so the objective function is submodular in w and ρ. That

implies that the maximizer of (15), wSB, decreases in ρ following Theorem 2 in (Amir 2005). ■

A.7. Proof of Proposition 3

Proof: If R(w) = ϕwFB (·), We first examine the IC constraint (13):

hλd(wFB)+R(wFB) = hλd(wO)

≥hλd(w)+hλd(wO)−hλd(w) = hλd(w)+R(w), ∀w

indicating the IC constraint (13) holds.

Since the first-best solution is the optimal solution for the doctor, we have ŵ = wFB. Note

that the IC constraint (13) indicates that hλd(wFB)+R(wSB)≥ hλd(wO)+R(wO) = hλd(wO)≥ 0,

indicating the IR constraint (12) holds. Therefore, solution R(w) = ϕwFB (·) is a feasible solution.

Then, the gap can be bounded by:

ΠFB −ΠSB ≤(r−h) ·λd(wFB)− ρ · b(wFB)/p̄ ·G(wFB)

− [(r−h)λd(wFB)− ρ · b(wFB)/p̄ ·G(wFB)−ϕwFB (wFB)]

=ϕwFB (wFB)

=hλd(wO)−hλd(wFB)

■

A.8. Proof of Theorem 1

Proof: We prove the Theorem 1 by comparing the profits under the identical FUA balking rate

P (w∗), thus the identical PFU booking threshold w∗. Let c, ĉ, c̃, c̄ denote parameter chosen by the

health system such that ŵ(·) =w∗ for the proposed four contracts, respectively.

We first prove the statement (1). For FR and FC, we first reformulate two contracts as the form

which involves effective service rate and FUA ratio. Note that the contract (16) (FR) is equivalent

to
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max
w

hλd + c
λR
d +λP

d

λd

=max
w

hλd + c(1− η)(p̄− b(w) ·G(w))

=max
w

hλd − c(1− η)b(w) ·G(w)+ c(1− η)p̄

(A.12)

And the contract FC is equivalent to

max
w

hλd + ĉ(λR
d +λP

d )

=max
w

hλd + ĉ(1− η)(p̄λd − b(w) ·G(w)λd)

=max
w

(h+ ĉ(1− η)p̄)λd − ĉ(1− η)b(w) ·G(w)λd

(A.13)

For any given specific level of FUA balking rate P (w∗) for two contracts, the first order conditions

of (A.12) and (A.13) must satisfy

h
dλd

dw
− c(1− η)wf(w)b(w)− c(1− η)G(w)

θ

(1−λv)2
dλv

dw
|w∗= 0

[h+ ĉ(1− η)p̄]
dλd

dw
− ĉ(1− η)

[
dλd

dw
G(w)b(w)+λdwf(w)b(w)+λdG(w)

θ

(1−λv)2
dλv

dw

]
|w∗= 0

(A.14)

The relationship in (A.14) indicates that

[h+ ĉ(1− η)p̄] |w∗= ĉ(1− η)

[
G(w∗)b(w∗)+

hλd(w
∗)

c(1− η)

]
(A.15)

which is equivalent to

ĉ(1− η)[p̄−G(w∗)b(w∗)] = h
ĉλd(w

∗)− c

c
(A.16)

Note that (A.16) indicating ĉλd(w
∗)− c≥ 0. Then, under the specific level of FUA balking rate

with respect to (λd(w
∗), b(w∗)G(w∗)), the profit difference between two contracts is:

[(r−h)λd(w
∗)+ c(1− η)b(w∗)G(w∗)− c(1− η)p̄]− [(r−h)λd(w

∗)− ĉ(1− η)p̄λd(w
∗)+ ĉ(1− η)b(w∗)G(w∗)λd]

=(1− η)b(w∗)G(w∗)(c− ĉλd(w
∗))+ (1− η)p̄(ĉλd(w

∗)− c)

=(1− η)[p̄− b(w∗)G(w∗)](ĉλd(w
∗)− c)

≥0
(A.17)

This leads to FR⪰FC.

Next we compare PR and FR. Note that the contract PR is equivalent to

PR max
w

hλd + c̃(1− η)(p̄−G(w)) (A.18)

For any given level of FUA balking rate P (w∗) for two contracts, the first order conditions of

contract FR and PR must satisfy
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h
dλd

dw
− c(1− η)wf(w)b(w)− c(1− η)G(w)

θ

(1−λv)2
dλv

dw
|w∗= 0

h
dλd

dw
− c̃(1− η)wf(w) |w∗= 0

(A.19)

The relationship in (A.19) indicates that

h
dλd

dw

c̃− cb(w)

c̃
|w∗= c(1− η)G(w)

θ

(1−λv)2
dλv

dw
|w∗≤ 0 (A.20)

indicating c̃− cb(w∗)≤ 0.

Then, for the clinic, under a certain level of FUA balking rate with respect to

(λd(w
∗), b(w∗)G(w∗)), the profit difference between contract PR and FR is:

[(r−h)λd(w
∗)− c̃(1− η)p̄+ c̃(1− η)G(w∗)]− [(r−h)λd(w

∗)+ c(1− η)b(w∗)G(w∗)− c(1− η)p̄]

=(1− η)p̄(c− c̃)+ (1− η)G(w∗)(c̃− cb(w∗))

≥(1− η)p̄(cb(w∗)− c̃)+ (1− η)G(w∗)(c̃− cb(w∗))

=− (1− η)(c̃− cb(w∗))(p̄−G(w∗))≥ 0
(A.21)

indicating PR⪰FR.

Next, we prove the statement (2). We first prove PR ⪰ PC. Note that the contract PC is

equivalent to

PC max
w

hλd + c̄(1− η)(p̄−G(w))λd (A.22)

Then, for any given level of FUA balking rate P (w∗) for two contracts, the first order conditions

of contract PR and PC must satisfy

h
dλd

dw
− c̃(1− η)wf(w) |w∗= 0

h
dλd

dw
− c̄(1− η)wf(w)λd + c̄(1− η)

dλd

dw
(p̄−G(w)) |w∗= 0

(A.23)

The relationship in A.23 indicates that

dλd

dw

[
h− hc̄

c̃
λd + c̄(1− η)(p̄−G(w))

]
|w∗= 0 (A.24)

indicating
h

c̃
(c̃− c̄λd(w

∗)) |w∗=−c̄(1− η)(p̄−G(w)) |w∗≤ 0 (A.25)

Then, under a certain level of FUA balking rate with respect to (λd(w
∗), b(w∗)G(w∗)), the profit

difference between contract PR and PC is:

[(r−h)λd(w
∗)− c̃(1− η)(p̄−G(w∗))]− [(r−h)λd(w

∗)− c̄(1− η)(p̄−G(w∗))λd(w
∗)]

=(1− η)(p̄−G(w∗))(c̄λd(w
∗)− c̃)

≥0

(A.26)
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indicating PR⪰PC.

Similarly, the first order conditions of contract PC and FC must satisfy

h
dλd

dw
− c̄(1− η)wf(w)λd + c̄(1− η)

dλd

dw
(p̄−G(w)) |w∗= 0

[h+ ĉ(1− η)p̄]
dλd

dw
− ĉ(1− η)

[
dλd

dw
G(w)b(w)+λdwf(w)b(w)+λdG(w)

θ

(1−λv)2
dλv

dw

]
|w∗= 0

(A.27)

The relationship in A.27 indicates that

dλd

dw

h

c̄
(c̄− ĉb(w)) |w∗= ĉ(1− η)λdG(w)

θ

(1−λv)2
dλv

dw
|w∗≤ 0 (A.28)

indicating c̄− ĉb(w)≤ 0

Therefore, under a certain level of FUA balking rate P (w∗), the profit difference between contract

PC and FC is:

[(r−h)λd(w
∗)− c̄(1− η)(p̄−G(w∗))λd(w

∗)]− [(r−h)λd(w
∗)− ĉ(1− η)(p̄− b(w∗)G(w∗))λd(w

∗)]

=(1− η)p̄λd(w
∗)(ĉ− c̄)+ (1− η)G(w∗)λd(w

∗)(c̄− ĉb(w∗))

≥(1− η)p̄λd(w
∗)[ĉb(w∗)− c̄] + (1− η)G(w∗)λd(w

∗)[c̄− ĉb(w∗)]

=(1− η)λd(w
∗)[p̄−G(w∗)][ĉb(w∗)− c̄]

≥0
(A.29)

indicating PC⪰FC. This completes the proof. ■

A.9. Proof of Corollary 2

Proof: It suffices to prove ΠPR ≥ ΠFR as the proofs of the rest inequalities follow the same

logic. Let cFR denote the maximizer to the single-objective optimization (22) for contract FR.

By Theorem 1, we know PR ⪰ FR. Then by the definition of Pareto dominance (21), there

must exist ĉ such that the P (ŵ(ĉ)) = P (ŵ(cFR)) and

(r−h)λd(ŵ(ĉ))− ĉRPR(ŵ(ĉ))≥ (r−h)λd(ŵ(cFR))− cFRRFR(ŵ(cFR)).

Therefore,

ΠPR ≥(r−h)λd(ŵ(ĉ))− ĉRPR(ŵ(ĉ))− ρP (ŵ(ĉ)) (A.30)

≥(r−h)λd(ŵ(cFR))− cFRRFR(ŵ(cFR))− ρP (ŵ(cFR)) (A.31)

=ΠFR, (A.32)
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where the first inequality follows that the optimal objective value of the single-objective opti-

mization problem for contract type PR should be at least what is achieved by using the contract

ĉRPR(·), and the second inequality follows from PR ⪰ FR, and the equality follows that cFR is

the maximizer. ■

A.10. Proof of Theorem 2

Proof: Let c= hρ
(r−h)(1−η)p̄

. Then, for Contract FR, the doctor’s objective becomes

max
w

hλd(w)+ c
λR
d (w)+λP

d (w)

λd

=max
w

hλd(w)+
hρ

(r−h)(1− η)p̄

λR
d (w)+λP

d (w)

λd

=max
w

hλd(w)+
hρ

(r−h)p̄
(p̄− b(w) ·G(w))

=max
w

h

[
λd(w)−

ρ

(r−h)p̄
b(w) ·G(w)

]
+

hρ

r−h

(A.33)

Note that the first-best model equals to

max
w∈[0,1]

ΠFB = (r−h)λd(w)− ρb(w)G(w)/p̄

= (r−h)

[
λd(w)−

ρ

(r−h)p̄
b(w)G(w)

]
which would result in the same solution with the problem A.33. Therefore, we can conclude that

the threshold ŵ(c) =wFB aligns the agent’s effort level with that in the first best case. In addition,

the above c resulting a lower bound for ΠFR. Then, we have

ΠFB −ΠFR ≤ [(r−h)λd(wFB)− ρb(wFB)G(wFB)/p̄]−
[
(r−h)λd(wFB)− c

λR
d (wFB)+λP

d (wFB)

λd(wFB)
− ρb(wFB)G(wFB)/p̄

]
=c

λR
d (wFB)+λP

d (wFB)

λd(wFB)

=
hρ

(r−h)(1− η)p̄

λR
d (wFB)+λP

d (wFB)

λd(wFB)

=
hρ

(r−h)(1− η)p̄
[(1− η)(p̄− b(wFB)G(wFB))]

=
hρ

(r−h)p̄
[p̄− b(wFB)G(wFB)]

≤ hρ

r−h

■
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B. Robustness Test for Empirical Analyses

In Section 3, we employ the propensity score matching method (PSM) to create comparable samples

of doctors for an unbiased estimation the treatment effect. During the PSM process, doctors with

PFU ratios below the median value are classified into the control group, and those above the median

value are classified into the treatment group. We now test the robutness of the results by trying

other cutoff values that are used to classify the control and treatment groups. Specifically, we test

two the 40-quantile and the 60-quantile as the cutoff values. Doctors with PFU ratios below the

cutoff are classified into the control group while the other doctors are classified into the treatment

group.

Using the same covariates and same PSM process as in Section 3, comparison of the matched

and unmatched samples with the 40-quantile and 60-quantile cutoffs are presented in Table 4. We

can see that for both cutoffs, the %bias for all covariates, except for covariate AgeCat1 Num

(AgeCat4 Num), have absolute value of less than 10%, suggesting no significant systematic bias in

the covariate values between the control and treatment groups. After the matching procedure, using

the 40-quantile threshold yields a PSM sample comprising 107 and 133 observations in the control

and treatment groups, respectively. Using the 60-quantile threshold results in 167 observations in

the control group and 104 observations in the treatment group.

Table 4 Comparison Between the Treatment Group and Control Group for Robust Test

40-quantile threshold 60-quantile threshold

Unmatched (U) Mean Mean
Matched (M) Treated Control %bias p-value Treated Control %bias p-value

NumApp Cli U 20490 26131 -59.3 0 19431 24956 -57.9 0
M 23990 23080 9.6 0.4 21204 20369 8.7 0.513

NumApp Prov U 1692.2 1701.6 -1.2 0.915 1709.3 1687 2.9 0.799
M 1598.7 1626.7 -3.7 0.766 1681.9 1719.5 -4.9 0.727

AgeCat1 Num U 242.29 273.92 -14.4 0.198 242.4 263.3 -9.9 0.395
M 254.68 284.32 -13.5 0.325 254.3 248.99 2.5 0.847

AgeCat2 Num U 275.78 359.62 -44.8 0 264.1 339.46 -40.6 0
M 289.13 300.85 -6.3 0.581 278.28 284.82 -3.5 0.792

AgeCat3 Num U 496.71 574.57 -25 0.029 481.63 558.67 -25.3 0.03
M 495.34 496.72 -0.4 0.97 492.41 521.09 -9.4 0.474

AgeCat4 Num U 369.41 354.67 6.7 0.558 378.31 353.65 11.4 0.327
M 350.11 342.76 3.3 0.789 365.01 393.47 -13.2 0.351

Fin cla1 Num U 928.41 1089.6 -35.9 0.002 902.12 1053.4 -33.9 0.004
M 949.82 957.41 -1.7 0.885 927.78 962.5 -7.8 0.557

Fin cla2 Num U 583.86 396.79 54.6 0 628.11 429.65 55 0
M 461.6 483.32 -6.3 0.607 569.27 565.97 0.9 0.951

We then estimate the regression model in Section 3 for both classifications using the 40-quantile

and 60-quantile cutoffs. The estimated results are presented in Table 5. For the 40-quantile thresh-

old case, we observe that a ten percent increase in the PFU ratio correlates with an average rise
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in the SECON index by 0.1115. While for the 60-quantile threshold case, a similar magnitude of

effect, a 0.0996 increase in SECON index per ten-percent increment in the PFU ratio, is observed.

In addition, both estimates are statistically significant, indicating our result, i.e., booking more

PFUs instead of RFUs can lead to measurable improvements in the SECON index, is robust.

Table 5 The PFUs effect on COC (Robust test)

40-quantile threshold 60-quantile threshold

Coefficient p-value Coefficient p-value

PFURatio 1.115 0.006 0.996 0.013
FUARatio 0.124 0.600 0.248 0.270
Constant 0.378 0.000 0.362 0.000

Obs. 240 271
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