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Problem Definition: Emergency department (ED) physicians treat patients with different symptoms and

constantly switch between tasks. Utilizing three years of comprehensive data on patient visits and lab tests

from two large EDs, we investigate the impact of task switching on physician productivity, quality of care,

and patient routing. We subsequently provide operational solutions based on the identification findings.

Methodology: To address estimation bias due to measurement errors and endogenous patient selection, we

refine the sample period and construct an instrumental variable called switching likelihood, which exploits

the exogenous composition of waiting patients. By exploring the heterogeneous impact on physician pro-

ductivity among different patient type pairs from data, we leverage a max bisection algorithm to partition

patients into two clusters to minimize the negative impact of task switching.

Results: Our estimates indicate that, at different EDs, a 10% increase in the switching frequency of physi-

cians reduces the number of patients treated per hour by 8.65% - 11.53% on average. However, we find no

significant influence on treatment quality. We propose a data-driven queue management method to optimally

partition patients into two queues. Based on the simulation of implementing the proposed two-queue system

in our collaborating EDs, we find that the average waiting time is reduced by up to 40%.

Managerial Implications: Task switching negatively impacts ED physician productivity, and this impact

is more prominent for certain patient type pairs. Being aware of the switch cost, we propose measures to

mitigate switch costs, which can considerably reduce ED congestion and patient waiting times.

Key words : Task switching, emergency department, behavioral queueing, data-driven, queue management,

empirical, max bisection, graph.

1. Introduction

Recent technological advancements and economic growth have given rise to an increase in skilled

and complex jobs, replacing routine and monotonous positions (Autor et al. 2003, Acemoglu and

Autor 2011, Acemoglu and Restrepo 2018). As a result, workers are now required to frequently

perform and transition between various tasks (Lindbeck and Snower 2000). However, this trend

poses challenges, as psychological studies have demonstrated that task switching imposes additional

cognitive burdens, prolongs task completion times, and increases performance errors (Jersild 1927,

Allport et al. 1994, Rogers and Monsell 1995, Rubinstein et al. 2001). Consequently, the cost of task

switching (also known as switch cost) has become an increasingly crucial determinant of worker

productivity.
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Despite the psychological experiments conducted, there remains limited evidence concerning the

impact of task switching on workplace productivity. Studies investigating this phenomenon face

challenges in measuring task switching, as detailed diary data on tasks performed during everyday

work is often unavailable or too expensive to gather. Furthermore, task switching frequently occurs

endogenously (Ibanez et al. 2018), resulting in biased estimates. These complications hinder the

evaluation of task switching consequences, particularly from a causal perspective.

In this study, we investigate the influence of task switching on the productivity of emergency

department (ED) physicians. As jacks of all trades, ED physicians possess a wide array of medical

knowledge, practice various clinical skills, and treat patients presenting diverse medical symptoms.

Due to the variability in patients’ symptoms and treatment approaches, physicians are compelled

to switch tasks regularly. Additionally, ED physicians work individually and face a high volume

of incoming patients their shifts. These factors establish EDs as an ideal setting to examine task

switching and its effects on physician productivity.

We leverage the administrative data of patient visits and lab tests from two large EDs on the

west coast of Canada. To identify task switching, we categorize patients into different types based

on their chief complaint systems (CCSs), which are recorded by a triage nurse upon the patient’s

arrival at the ED. For each physician, we measure task switching by calculating the switching

frequency, defined as the number of patients with a differing type from the preceding picked patient

relative to the total number of patients treated by the physician within a specific time frame. We

then quantify the switch cost by examining how switching frequency impacts service speed and

quality. Additionally, we explore the effects of task switching on physicians’ routing decisions.

Our analysis, however, encounters two primary challenges. The first challenge pertains to the

measurement of physician service speed. Since our data does not capture every detailed activ-

ity of physicians, there is no direct measure of the actual time a doctor spends on each patient.

Specifically, ED physicians frequently face interruptions from reentrant patients and multitasking

(KC 2013). The second challenge lies in addressing the endogeneity issue during the estimation

process. In our collaborating EDs, physicians select patients to treat when they become available,

rather than being assigned patients by others. This grants physicians considerable discretion in

patient selection. Consequently, the observed sequence of patient types is subject to selection bias,

as physicians may strategically choose patients. If physicians aim to minimize switch cost by prior-

itizing patients of the same type, ordinary least squares (OLS) estimates will likely underestimate

the actual impact of task switching (Heckman 2010).

To address the first challenge, we refine the sample period to a clean period and employ the

number of patients treated per hour (PPH) as a measure of physician service speed. Leverag-

ing a comprehensive and unique lab test dataset, we obtain the earliest lab result time for each
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physician’s shift by identifying the minimum lab result release time among two patient groups:

(1) patients selected by the focal physician earlier in the day, and (2) patients picked by other

ED physicians earlier in the day whose shifts have concluded by the lab result release time. The

second group encompasses all potential hand-over patients. We then define the clean period as the

duration from the start of the shift to the earliest lab result time for each physician. During the

clean period, physicians primarily perform initial assessments (IA) for new patients, with reen-

trant interruptions being virtually absent as no lab results have been returned yet. Meanwhile, the

PPH measures a physician’s average efficiency over a time period, effectively averaging out patient-

specific measurement errors and noises. Notably, the PPH is unaffected by physicians’ batch-picking

and multitasking behavior. We divide the obtained clean period into several 30-minute blocks, for

which we compute the PPH.

We address the second challenge by proposing an instrumental variable (IV) as we utilize the

switching likelihood (SL) as the IV. SL is the ratio of unique types to the queue length at the

beginning of each 30-minute block. By design, SL is positively correlated with the physician’s

actual switching frequency and independent from the focal patient’s unobserved physical attributes.

Importantly, it capitalizes on the type composition of waiting patients determined prior to patient

selection in the subsequent stage. This allows for exogenous variation in patient-type switching,

enabling us to distinguish the switch cost from the endogenous patient selection process.

Our analysis reveals that across different EDs, a higher switching frequency leads to decreased

physician productivity. Specifically, holding others constant, a 10% increase in the switching fre-

quency results in an average reduction of 0.41 to 0.47 patients treated per hour, or an 8.65% to

11.53% decrease in PPH at the two EDs. The estimated cost is statistically significant and robust

across alternative specifications. Additionally, we find that physicians exhibit switch-aversion,

meaning they strategically select patients of the same type to circumvent task switching. However,

task switching has minimal impact on treatment quality, as measured by 7- and 30-day revisit-

and-readmission (RAD) rates. These findings suggest that task switching primarily influences the

efficiency of ED operations, while physicians manage to reduce task switching (possibly subcon-

sciously rather than intentionally) without significantly affecting service quality.

As an operational solution, we propose a practical, data-driven queue management method

that leverages the identified switch cost heterogeneity among different CCS pairs to optimally

partition patients into two queues. Our queue redesign minimizes intra-queue switching costs and

maximizes inter-queue switching costs to mitigate the negative impact of task switching on ED

efficiency. We demonstrate that designing such a two-queue system is equivalent to solving a max

bisection problem, which can be addressed using semi-definite programming (SDP) relaxation

(Goemans and Williamson 1995, Frieze and Jerrum 1997). Through simulation, we further show
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that physicians’ productivity improves under the proposed two-queue system, resulting in a more

substantial reduction in patient waiting times and ED congestion compared to current practices.

Our findings indicate that the average PPH at both EDs increases by 3.25% to 6.19% using this

new design, translating to a 38.16% to 39.66% reduction in average patient waiting time.

Our study makes several contributions. First, we illustrate that task switching is costly for

emergency care delivery by impairing physician productivity. Our estimates indicate that task

switching reduces ED physician service speed. Due to the queueing system’s externality, task

switching’s negative impact can be more significant at the ED system level compared to the patient

level. We also find evidence that ED physicians tend to prioritize patients without task switching

in the routing stage. Although this may partially alleviate the switch cost, the estimated impact

of task switching remains sizeable and robust.

Second, we propose an implementable data-driven queue management method in ED based

on heterogeneous switch cost estimates. To mitigate the negative impact of task switching, we

partition patients into two queues so that patients with inexpensive switching costs are clustered

into the same queue. This method is general and can easily be extended to incorporate other patient

demographics. Through a simulation study, we find that implementing such a two-queue system

can reduce average patient waiting time by up to 40%. This will yield a substantial improvement

if implemented in our collaborating ED.

Third, the identification strategy developed in this paper may appeal to other empirical

researchers interested in ED operations. By exploiting the lab test data, we propose a new approach

to identify a clean period in which physicians are almost free from interruptions from reentrant

patients, a primary challenge in estimating the ED physician’s productivity. We also propose an

IV to address endogeneity due to physicians’ strategic patient selection. This IV can be easily

constructed in commonly used ED data sets and generalized to other ED-related studies.

The remainder of our paper is organized as follows. The next section reviews the literature related

to our work. Section 3 describes the ED background information and the data we use. Section

4 formulates the empirical models. The main results are presented in Section 5. Then Section 6

proposes a data-driven queue management method and present simulation results. In Section 7, we

explore the influence of task switching on the quality of care and patient routing decisions. Finally,

Section 8 discusses the managerial implications. Section 9 concludes.

2. Literature Review

Our paper is related to five strands of literature. First, we contribute to healthcare management

studies on physician productivity. From a queueing theoretic perspective, EDs can be modeled

as a system with state-dependent service rate (Mandelbaum and Pats 1998, Abouee-Mehrizi and
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Baron 2016). As such, existing research has investigated various factors affecting productivity and

efficiency in ED, including queue length (KC and Terwiesch 2009), shift schedules (Chan 2018, Batt

et al. 2019), triage (Batt and Terwiesch 2016) and peer pressure (Chan 2016, Silver 2020). They

also propose alternative designs of the care delivery system regarding physician shift scheduling

(Liu and Xie 2018, Zaerpour et al. 2022), new triage policies (Saghafian et al. 2014), and waiting

time prediction and announcement (Ang et al. 2016, Dong et al. 2019, Ding et al. 2020). KC (2019)

provides an overview of studies on worker productivity from different angles. We complement the

above literature by identifying the switch cost as a novel factor influencing physician productivity

and system performance.

Second, our paper is related to research on multitasking (KC 2013, Goes et al. 2018) and inter-

ruptions (Cai et al. 2017, Gurvich et al. 2019). KC (2013) shows that a physician’s productivity has

an inverted U-shape response to her on-hand patients indicating the multitasking level. Our paper

complements this finding by showing that the patient mix and the service sequence also matter—a

physician becomes more productive when he consecutively sees patients sharing the same type.

Since we are concerned with the IA time the physician spends on each individual patient, we use

a different measure of physician productivity from KC (2013). Regarding interruptions, note that

it is different psychological notion than task switching as interruptions represent distinct cogni-

tive demands and disruptions. Task switching, as an executive function, involves voluntarily or

involuntarily shifting attention and cognitive resources between tasks (Jersild 1927, Allport and

Wylie 1999, Monsell 2003). This cognitive flexibility enables individuals to adapt to new task

demands. Interruptions, however, entail unexpected breaks that introduce new tasks, often involun-

tarily (Miyata and Norman 1986). These disruptions, such as phone calls or messages, necessitate

a temporary shift in attention before resuming the interrupted task (Miyata and Norman 1986,

González and Mark 2004, Mark et al. 2005). While both task switching and interruptions demand

attentional and cognitive shifts, the primary distinction lies in the voluntary or involuntary nature

of these shifts. Our paper complements this thread of existing literature by examining the impact

of task switching on focal task service speed.

Our research is also related to task specialization (Ong and Png 2021, Gong and Png 2022)

and task variety and their effects on productivity (Staats and Gino 2012, Avgerinos and Gokpinar

2018, Narayanan et al. 2009). Conceptually, task specialization and task variety are cumulative,

and their effects on productivity dampen or exacerbate over time. However, task switching is an

instantaneous event, and its effect is relatively transitory. Note that task variety also differs from

our ”frequency of task switching.” To illustrate, consider two job sequences consisting of two job

types: 1-2-1-2-1-2-1-2-1-2 and 1-1-1-1-1-2-2-2-2-2. Both sequences have the same ”variety of tasks”

but exhibit distinct task switching frequencies. Existing research also shows that task performance
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only benefits from experience on related tasks (Schilling et al. 2003, Boh et al. 2007, KC and Staats

2012). Some researchers explore task pooling and its impacts on healthcare service efficiency and

quality (Song et al. 2015, 2020). Our subsequent queue design also connects to this thread.

Fourth, our paper connects to a growing body of research on discretionary task routing. Ding

et al. (2019) show that ED physicians route patients according to their waiting time and triage

acuity codes, but Bayati et al. (2017) find that the arrival of low acuity patients may delay the

treatment of high acuity patients. Related to our paper, KC et al. (2020) examine how varying

workload conditions lead individuals to self-select tasks from a larger set of available tasks in the

ED context, focusing on the short-term and long-term effects of such behavior. Their study centers

on physicians’ inclination to choose easier patients when workloads are heavier. This definition

of ”task switching” differs from ours, as easier patients may have the same or different types as

previous patients. Furthermore, they find that this behavior improves throughput for the current

shift but hurt long-term productivity in the future. However, we focus on the the influence of task

switching on the focal task. Ibanez et al. (2018) examine how radiological physicians sequence tasks

given a preassigned workload and how that will impact productivity. They find that endogenously

circumventing task switching by grouping similar tasks impedes productivity. Although they posit

that exogenously grouping similar tasks could be beneficial. In our paper, we find that most ED

physicians have a tendency to prioritize tasks of similar types, resulting in task switching arising

from a combination of endogenous and exogenous behavior. In this context, we show that task

switching still negatively impacts productivity.

Finally, we contribute to the literature on the efficiency-quality trade-off in service queues. Allon

and Kremer (2019) review a broad scope of papers in behavioral queuing research. They quan-

titatively identify the total system welfare as the product of customers’ net utility and system

throughput. These two components represent the system operation efficiency and service qual-

ity, respectively. Song and Veeraraghavan (2018) review and show that a vital triptych of quality

measures is structure, process, and outcome in healthcare analytics. Roth et al. (2019) study the

trifecta among efficiency, quality ,and patient experience in hospitals. In addition, Batt and Tong

(2020) investigate when and how server-level quality metrics differ from customer-experienced met-

rics and the effect of such judgment. Our paper investigates the potential trade-off between the

time and quality of care delivery due to task switching and finds that switch cost materializes in

the dimension of time mostly.

3. Clinical Setting and Data

Our study takes place at two major EDs in Vancouver, Canada. Both EDs provide emergency care

for thousands of patients each month. ED A operates from 8 AM to 8 PM seven days a week, while



Authors’ names blinded for peer review
Article submitted to Manufacturing & Service Operations Management; manuscript no. 7

ED B functions on a 24/7 basis. ED physicians work independently, treating patients with a wide

range of demographics and medical conditions. A typical physician’s shift lasts for seven to eight

hours.

3.1. The Care Delivery Process

Figure 1 illustrates the treatment process when a patient visits an ED. Upon arrival, a triage nurse

attends to the patient, collecting their demographic and clinical information, evaluating the medical

situation, and assigning a triage acuity code ranging from 1 (resuscitation) to 5 (nonurgent). The

nurse also classifies the patient’s symptoms into a chief complaint according to the a specified list

(Grafstein et al. 2008). These information are recorded in an online system that physicians can

easily access. Patients with a triage code of 1 are sent directly to physicians for urgent treatment

(which account for less than 0.5% of all visits), while others typically wait in the waiting room

until an available physician selects and meets them. When available, physicians scan the online

patient information and pick the next patient from the waiting room. A physician then meets with

the selected patient in the treatment room for an initial assessment (IA), which is the focus of our

study. Although there is no explicit selection rule, it has been shown that physicians consider both

the patient’s waiting time and triage code. Specifically, physicians attempt to adhere to a fractile

response objective, which outlines a triage-specific target waiting time and a target percentage of

patients to be seen within that time frame (Beveridge 1998, Ding et al. 2019). However, the high

volume of patients often makes it challenging for ED physicians to comply with this objective.

In order to acquire a more precise measure of physician productivity, we examine the detailed

activities ED physicians engage in during a patient’s length of stay at the EDs. As depicted in

Figure 1, a physician’s activities can be categorized into two stages.

1. Initial Assessment (IA): A physician selects a patient by scanning information in the patient

care information system. The physician needs to physically find the selected patient, talk to

the patient, make diagnostic decisions, order lab tests, and charting. After the first meeting,

the patient is put under observation, during which the physician can chart for the patient and

work on other patients.

2. Follow-up Services (FS): A physician provides follow-up assessment and consultation when a

patient’s lab test results are available or when the patient’s observation period ends. In the

former case, the physician reviews the lab results with the patient. Then the physician decides

whether to discharge or admit the patient to an inpatient unit.

The specific sequence of the aforementioned events may differ from case to case. For instance, lab

tests are occasionally ordered before the diagnosis based on the physician’s review of the patient’s

information from the patient portal prior to talking to the patient.
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Figure 1 Typical ED Care Delivery Process

In summary, physicians closely attend to patients during the IA period, which serves as a suit-

able indicator of ED physicians’ service speed. Conversely, the FS period is subject to various

disturbances, such as reentrant interruptions from previous patients or requests to review lab test

results. As a result, our study primarily investigates the impact of task switching on the duration

of the IA period.

Note that in the existing literature (e.g., Kuntz and Sülz 2013, Batt and Terwiesch 2016, Chaou

et al. 2018), the service time may refer to the pick-to-discharge (P2D) time, i.e., the interval

between when a physician selects a patient and when that patient is discharged home or admitted

to an inpatient unit. However, the P2D duration of an individual patient is far from an accurate

measure of the actual time a physician spends on the patient. This is because the majority of a

patient’s P2D duration (on average, more than three hours) is spent waiting for lab results, during

which the physician may spend most of their time treating other patients (KC 2013).

To gather firsthand evidence supporting the use of IA in our study, we conducted a time-and-

motion study by shadowing physician shifts at one of the two EDs. As external observers, we

recorded a physician’s time spent on each individual activity using a stopwatch and interviewed

several healthcare workers to gather additional information. In total, we shadowed two shifts for

four hours each and observed the treatments of 22 patients. The average IA time per patient in

our shadowing study is 13.3 minutes, and the average time for each FS is 3.6 minutes.

The time-and-motion study provided valuable insights into the care delivery process. First, using

the P2D time to measure a physician’s actual time spent on each patient would result in a significant

overestimation. This is because, during most of the P2D duration, patients are waiting for lab
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results or disposition decisions, which require minimal input from the physician. Second, the time-

and-motion study demonstrates that the service process can be best described by a single-server

reentrant queue (Yom-Tov and Mandelbaum 2014, Huang et al. 2015, He et al. 2019). After being

selected, a patient will progress through

IA→waiting→FS→waiting→FS→ . . .

until being discharged or admitted. In this process, waiting and FS may repeat multiple times.

Third, most of the actual service time is spent in the IA stage. The majority of the physician’s

work, including selecting and locating the patient, diagnosing the problem, ordering lab tests, and

charting, is completed during IA, and physicians need time to familiarize themselves with the

patient’s clinical condition. In contrast, the FS time is much shorter because the physician has

already gained an understanding of the patient’s situation.

3.2. Identifying the Clean Period

In this study, we focus on how task switching impacts physician productivity during the IA period,

for which we adopt a series of cleaning and identification strategies. To distinguish IA from the

overall P2D time, we exploit a unique lab test data set with timestamps of the request, performance,

and release of all lab tests (blood, urine, stool, ECG, X-ray, CT scan, etc.) Within each physician’s

shift, we define the earliest lab result time as the minimum lab result release time among two

patient groups: (1) patients picked by the focal ED physician at an earlier time of the day and

(2) patients picked by other ED physicians earlier in the day whose shifts have ended by the lab

result release time. The second group encompasses all patients who could potentially be handed

over to the focal physician by other physicians who have completed their shifts. By defining the

earliest lab result time in this manner, we ensure that the focal physician will not receive any lab

test results for potential reentrant patients, including those they have seen earlier and those who

might be handed over to them by other physicians who have completed their shifts. We refer to

the period between the shift start time (i.e., the time to pick the first patient in a shift) and the

earliest lab result time as the clean period. In Figure 2, we present a diagram to depict how we

obtain the clean period.

Based on our discussions with ED physician collaborators and our own extensive experiences as

patients visiting the ED, a physician generally will not meet a patient again before receiving updates

about the patient’s lab test results after ordering lab tests. In fact, even when a patient’s lab results

are out, the physician may process other jobs first before responding to the lab results. For example,

according to Figure 2, the physician may first conduct IA for patient n+ 1 before responding to

the lab results of patient 2. The above definition of the earliest lab result time guarantees that
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during the clean period, they are unlikely to spend time on reentrant patients (patients who have

already met the focal physician or other physicians). While there may be exceptional cases, such as

a physician needing to speak to a reentrant patient again due to forgetting something or a reentrant

patient’s health suddenly deteriorating, these instances are rare in daily operations. Interruptions

or multitasking could also be caused by the arrival of triage-1 patients with preemptive. However,

such interruptions can be captured in our empirical analysis using the timestamps of treatment for

the triage-1 patients. Furthermore, triage-1 patients only account for less than 0.5% of the total

patient volume, so including or excluding these cases would not change our results.

We also assess the representativeness of the refined sample. We explore the distribution of patient

demographics in the refined sample and the entire sample in Section EC.1.2. The results indicate

that the patients used in our study are representative of ED operations.

Figure 2 ED Physician Shift Structure and Clean Period

3.3. Data

Our primary dataset encompasses all patient visits to the two EDs from April 2013 to March 2016.

ED B has a distinct regular/fast track system, while ED A operates a single track where patients

of all types are pooled together. Following Ding et al. (2019), we focus on ED A and the regular

track for ED B in the main model and include the results of the ED B fast track as a robustness

check in Section EC.1.

The data set contains rich information about patient characteristics such as gender, age, home-

lessness, arriving transportation, triage acuity code, and chief complaints. A total of 163 chief

complaint categories (CCC) are identified under 15 chief complaint systems (CCS) (for example,
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cardiovascular or gastrointestinal). In the baseline analysis, we define task switching as whether the

focal and preceding picked patients of the same physician have different CCSs. The focal patient is

named switcher. In section EC.1, we also consider alternative definitions of task switching. Addi-

tionally, we define the waiting time of a patient as the difference between the arrival time and the

calling time (Dong et al. 2019, Ding et al. 2019), and we use the revisit-and-readmission (RAD)

rates in 7 or 30 days as measures of service quality (Calder et al. 2015, Wang et al. 2019).

We measure physician productivity using patients treated per hour (PPH) (Zaerpour et al. 2022,

Ouyang et al. 2021) during the clean period, in which potential noises from reentrant patients are

eliminated. As a variable at a more aggregate level, PPH is robust to physician multitasking and

batch-picking behavior at the beginning of physician shifts. It also averages out random errors.

To calculate PPH, we partition the refined clean period into multiple 30-minute blocks, with the

last block rounded upward (to include the portion beyond the earliest lab result time). The PPH

of each 30-minute block represents the number of service cycles (pick-to-pick period) contained in

that block divided by 30 minutes. Service cycles that are censored by the 30-minute cutoffs are

counted as half of a normal cycle, based on the assumption that censoring times are independent

of patient pick times. We also remove blocks during which no patient is waiting in the ED. This

ensures that PPH does not overestimate physician productivity due to potential idling times.

Table 1 summarizes the key variables in the refined sample. The sample we use for analysis

includes 3,559 and 4,879 shifts for the two EDs, and the sample period ranges from 1.08 to 1.19

hours on average. Overall, we obtain 7,845 30-minute blocks as observations for ED A and 10,521

blocks for ED B. The average numbers of patients served are 2.391 and 2.031 per 30 minutes,

equivalent to 4.783 and 4.062 patients per hour. The average 7 and 30-day RAD probabilities are

0.02 and 0.045 for ED A and 0.033 and 0.083 for ED B. Among all patients at the two EDs, 13.3%

and 26.8% of patients are admitted to an inpatient unit, respectively.

To measure task switching, we compute the switching frequency by taking the ratio of the

number of switchers among the picked patients in each block, which serves as a proxy for switching

intensity in a certain block. The average switching frequencies at the two EDs are 0.865 and 0.839,

respectively, suggesting that task switching is common in ED services. The average switching

likelihoods (which is the instrumental variable we use, refer to Section 4) at the two EDs are 0.809

and 0.758, respectively.

Regarding other ED- and patient-level variables, the average numbers of waiting patients (queue

length) at the two EDs are 4.52 and 5.15, and the average numbers of patients being served (ED

load) are 10.76 and 25.9, respectively. We use this variable to control for ED bed constraints. The

average age of patients is around 50, and the gender distribution is relatively even. Moreover, the

two EDs differ significantly in the proportion of patients arriving by ambulance. This is because
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ED B is larger and serves as a major ambulance destination. We also include the proportion of five

groups of patients with different waiting times. ED physicians see most patients within 60 minutes

of waiting time, while only about 17% of all patients are seen in 15 minutes. Most patients have

intermediate triage levels (triage codes 2, 3, and 4).

Table 1 Summary Statistics

Variables ED A ED B
Mean (S.D.) Mean (S.D.)

Patients treated in each block 2.391 (1.106) 2.031 (0.95)
PPH 4.783 (2.212) 4.062 (1.9)
7-day RAD 0.020(0.103) 0.033 (0.141)
30-day RAD 0.045 (0.152) 0.083 (0.216)
Inpatient admission 0.133 (0.256) 0.268 (0.35)
Switching frequency 0.865 (0.255) 0.839 (0.299)
Switching likelihood 0.809 (0.196) 0.758 (0.216)
Average queue length 4.520 (2.803) 5.152 (3.444)
ED load 10.76 (5.083) 25.94 (7.119)
Patient age 53.48 (15.58) 49.74 (15.14)
Female patient 0.538 (0.357) 0.447 (0.387)
Arrival by ambulance 0.125 (0.244) 0.389 (0.38)
Triage code 3.309 (0.505) 2.899 (0.522)
<15 minutes 0.170 (0.300) 0.160 (0.306)
15–30 minutes 0.369 (0.389) 0.326 (0.393)
30–60 minutes 0.333 (0.382) 0.306 (0.384)
60–120 minutes 0.156 (0.314) 0.195 (0.339)
>120 minutes 0.021 (0.121) 0.052 (0.193)

Physicians 57 60
Shifts 3,559 4,879
30-minute blocks 7,845 10,521
Average time since shift starts to earliest lab result 1.078 1.192

4. Empirical Methods

4.1. Model

Consider ED physician shifts indexed by i= 1,2, · · · , I where I is the total number of shifts (3,559

for ED A and 4,879 for ED B). Each 30-min block in shift i is indexed by t= 1,2, · · · ,Ni, until the

earliest release of lab test results. In each block, we assume the following linear model:

PPHit = δ ·SFit +x⊤
itβ+Fi +Dit +uit. (1)

The dependent variable PPHit is the extrapolated number of patients seen per hour. The key

explanatory variable SFit is the switching frequency. The parameter of interest, δ, reflects the effect

of task switching on PPH. Covariates in xit include the average queue length and ED load within

the block; the average age and triage level of treated patients; the proportion of treated patients in
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each waiting time range; the share of female, homeless, and arriving by ambulance patients; and

the share of patients in each CCS. Fi denotes physician fixed effects and day-of-week fixed effects

that do not vary within each shift i. Dit stands for the clock hour fixed effects of the start of block.

Lastly, uit is the unobserved error term.

Estimating Equation (1) using OLS yields a biased estimate of δ because the switching frequency

can be correlated with the error uit. One cause of such correlation is the physician’s endogenous

selection of patients (Heckman 2010), where the likelihood of selecting a specific patient depends on

the patient’s attributes (Ibanez et al. 2018, KC et al. 2020). In Section 7, we show that physicians

are likely aware of the switch cost and tend to avoid selecting patients with a different type.

4.2. Instrumental Variable

To correct the sample selection bias, we exploit the exogenous composition of waiting patients to

construct a variable called switching likelihood (SL) as the IV for switching frequency. Specifically,

let J (i, t) be the set of waiting patients at the starting time of block t of shift i. We define SL as

the number of unique types in J (i, t) divided by the total number of waiting patients, |J (i, t)|. As

shown in Figure 3, SL is positively correlated with switching frequency: The more unique types

among waiting patients at the beginning of the shift, the more likely the physician will switch

between types in subsequent treatment. For example, suppose J (i, t) consists of three patients and

each has a distinct type. Then the SL equals one and the physician will likely switch tasks between

every two patients. In contrast, if all patients had the same type, the switching likelihood would

be zero and the physician would hardly switch tasks.

Moreover, we argue that our IV satisfies the exclusion restriction, i.e. it affects the PPH only

through task switching. By construction, SL only depends on pre-determined composition of wait-

ing patients who arrive on average 40 minutes before the block begins. Thus, it is uncorrelated

with unobserved factors during the block that contemporaneously affects PPH. On the other hand,

waiting patients who are not selected for treatment should not affect physicians’ productivity with

respect to the patients being treated. In particular, since physicians already prioritize the most

acute patients at the beginning of the shift, we do not expect further interruptions from other

waiting patients. If anything, interruptions arise from previously treated patients or patients with

time-varying medical conditions, but both are uncorrelated with the type composition of waiting

patients at the beginning of the shift.

With the IV, we estimate the following equations using limited information maximum likelihood

(LIML), which has better finite sample properties than two-stage least squares (Hansen 2022):

PPHit = δ ·SFit +x⊤
itβ+Fi +Dt +uit, (2)

SFit = α ·SLit +x⊤
itγ+Fi +Dt + ϵit. (3)
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(a) ED A (b) ED B

Figure 3 Relationship between SL and switching frequency: OLS Fitting Line and 95% Confidence Interval

It is worth mentioning that our IV approach shares a similar spirit with Ibanez et al. (2018), who

examine discretionary task routing and estimate the impact of deviation from first-come-first-serve

(FCFS) on the image-reading speed of radiologists. Their IV for deviation is based on an indicator

of whether there is a chance to deviate from a prescribed sequence of images. Analogously, our IV

can be interpreted as the extent to which a physician may avoid task switching. If the SL is high

and most patients have distinct types, the physician has little chance to avoid task switching.

5. Results

5.1. The Effect of Task Switching on Physician Productivity

Table 2 presents estimates of Equation (2). The first row displays estimates of δ, representing the

cost of task switching on the PPH of ED physicians. For the two EDs, the estimates are -4.139

and -4.685, respectively, both of which are statistically significant. Consequently, a 10% increase in

switching frequency results in an expected PPH reduction of 4.139× 0.1 = 0.41 and 4.685× 0.1 =

0.47 for the respective EDs. These reductions correspond to 8.65% and 11.53% decreases in PPH

relative to the sample means (see Table 1). This indicates that task switching leads to substantial

efficiency losses in ED operations.

In comparison, Table EC.1 in Appendix EC.1.1 presents the OLS estimates of Equation (1).

Compared with the LIML estimates, the OLS estimates of δ are much smaller and statistically

insignificant. These results indicate that physicians’ discretionary selection of patients would bias

the OLS estimates and therefore justify our use of IV. Besides, the bottom of Table 2 shows the

Wald F statistics. At both EDs, we reject the null hypothesis that the IV is only weakly correlated

with switching frequency. This further enhances the validity of our IV.

We perform several robustness checks for the switch cost estimates. The results are reported in

Appendix EC.1.2. In particular, our estimates are robust to alternative definitions of patient types
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Table 2 Effect of Task Switching on PPH

ED A ED B
Switching frequency -4.139*** -4.685***

(1.041) (0.993)
Average queue length 0.092*** 0.031***

(0.015) (0.011)
Average ED load 0.015* 0.022***

(0.008) (0.005)
Average age -0.003 -0.001

(0.002) (0.002)
Average triage 0.423*** 0.046

(0.073) (0.055)
Female proportion -0.009 -0.046

(0.066) (0.054)
Homeless proportion 0.023 -0.099

(0.369) (0.145)
Ambulance arrival proportion -0.024 0.021

(0.097) (0.075)
Waiting time 15-30 min 0.596*** 0.711***

(0.101) (0.061)
Waiting time 30-60 min 0.760*** 1.052***

(0.135) (0.077)
Waiting time 60-120 min 0.746*** 1.156***

(0.158) (0.096)
Waiting time > 120 min 0.602* 1.375***

(0.322) (0.192)
Fixed effects:
Clock hour Included Included
Physician Included Included
Day-of-week Included Included

Observations 7,845 10,521
Kleibergen-Paap rk Wald F statistic 177.8 45.29

Notes: Estimated by LIML. All estimates control for physician fixed effects, day-of-the-week fixed effects and clock-

hour fixed effects. The results for the share of patients in each CCS are omitted from the table due to size constraint.

Robust standard errors clustered by physicians in parentheses (* p < 0.1, ** p < 0.05, *** p < 0.01).

(CCS × triage codes and CCC) and alternative levels of aggregation (by shift versus 30-minute

block). In Appendix EC.1.3, we estimate the switch cost at the fast track of ED B. Although the

patient mix differs between regular and fast tracks, both samples exhibit sizeable and statistically

significant switch cost.

5.2. Effect Heterogeneity

Besides the main effect, we also estimate heterogeneous switch costs across patients and other

environmental factors. Specifically, we examine the moderating effects of the following factors:

patient age, triage level, arrival by ambulance, and day-of-week. We modify Equation (1) with an
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additional term interacting with the switching frequency with one of the moderators once at a

time. The new regression model is given by

PPHit = δ ·SFit + δw · (SFit ×Wit)+x⊤
itβ+Fi +Dt +uit, (4)

where Wit is the moderator of interest. Other covariates and fixed effects remain the same.

Table 3 Effect Heterogeneity

Variables ED A ED B
Panel A
Switching frequency -4.157*** -4.674***

(1.050) (0.989)
Switching frequency× average age 0.025 0.011

(0.061) (0.061)
Kleibergen-Paap rk Wald F statistic 8.081 17.14
Panel B
Switching frequency -3.967*** -4.636***

(1.034) (1.020)
Switching frequency× average triage -2.578 -0.747

(2.093) (1.718)
Kleibergen-Paap rk Wald F statistic 16.97 10.98
Panel C
Switching frequency -4.364*** -4.348**

(1.145) (1.360)
Switching frequency× ambulance arrival 2.350 -0.848

(2.706) (2.360)
Kleibergen-Paap rk Wald F statistic 8.680 11.88
Panel D
Switching frequency -4.176*** -4.750***

(1.136) (1.107)
Switching frequency × visit on weekend 0.127 0.260

(1.219) (1.534)
Kleibergen-Paap rk Wald F statistic 65.45 21.28
Fixed effects:
Clock hour Included Included
Physician Included Included
Day-of-week Included Included

Observations 7,845 10,521

Notes: Estimated by LIML. All estimates control for explanatory variables xit and zit and fixed effects Fi and Dt.

The omitted ones from the table are due to size constraints. In panels A and B, we demean average age and triage

level to zero mean. In panels C and D, we explore how switch cost varies with ambulance arrival proportions and

with weekdays/weekends. Robust standard errors clustered by physician in parentheses (* p < 0.1, ** p < 0.05, ***

p < 0.01).

We estimate Equation (4) by LIML using SLit and SLit ×Wit as IVs for SFit and SFit ×Wit,

respectively. The estimated δ and δw are reported in Table 3. It is worth noting that we control
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for the main effects of other moderators in each regression. For example, when we estimate the

heterogeneous switch costs in age, other factors are controlled as unchanged. As such, the effect

heterogeneity along different moderators does not confound each other. We find that almost all

interactive terms are small and statistically insignificant at both EDs. Therefore, the switch cost

exhibits little variation across patient characteristics and the ED environment.

Furthermore, we explore the heterogeneity of switch costs across individual physicians. For this

analysis, we concentrate on the top five physicians at each ED, ranked by the total number of

patients seen. Together, these top five physicians account for 33.1% and 20.9% of the samples at the

two EDs, respectively. Figure EC.2 in Appendix EC.1.4 displays estimates of δ from Equation (2),

using the clean periods of each top five physician. The productivity of most physicians is adversely

affected by task switching, with the magnitude of this impact varying considerably among these

physicians.

5.3. Estimation by CCS Pairs: Identifying Costly Switches

Thus far, we have assumed that all switches have the same impact on PPH, and we estimate the

aggregated switch cost on physicians’ PPH in Equation (1). However, the magnitude of switch

costs may vary for different task combinations. This is in line with our observations from physician

collaborators, who have noted that certain CCS pairs are more similar than others in terms of

treatment approaches and required resources. For instance, the switch cost between Respiratory and

OB-GYN (Obstetrics/Gynecology) is larger than that between Gastrointestinal and Genitourinary,

as the latter pair requires similar equipment and treatment methods compared to the former.

To estimate such heterogeneous switch costs, we utilize the CCS of patients before and after

each switch to construct switch pairs. We allow task switching to be asymmetric, i.e., switching

from one CCS to another can be more or less costly than switching in the reverse direction. In

total, we obtain 13× 12 = 156 distinct switch pairs (permutations of 13 CCSs) at the two EDs,

respectively. Here we cluster three most scarce CCS types into one category. We then estimate the

following model:

PPHit =
∑
m,n

δm,n ·SFm,n
it +x⊤

itβ+Fi +Dt +uit, (5)

where m and n denote the CCS of the preceding and the focal patients, respectively. The variable

SFm,n
it represents the frequency of switching between pair (m,n) in block t of physician-shift i. The

parameter of interest, δm,n, represents the switch cost associated with CCS pair (m,n). A negative

δm,n represents a reduction in PPH due to task switching, and we assume δm,m = 0.

Our estimation leads to three primary conclusions. First, among the statistically significant pairs

δm,n (5% significance level), most are negative and only one to two pairs are positively significant.

Second, a considerable number of switch pairs exhibit small switch costs, as the estimates are
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not statistically distinguishable from zero. Third, among pairs that do exhibit significant switch

costs, the magnitudes vary considerably across different pairs. In Appendix EC.1.5, we report the

estimates of all significant pairs at both EDs.

6. A Data-driven Approach for Queue Management in ED
6.1. Queue Management and Max Bisection

The empirical results presented in Section 5 indicate that task switching negatively impacts physi-

cian productivity (PPH), and that this impact is heterogeneous, with the magnitude varying based

on the CCS pairs before and after each switch. These findings inspire us to redesign the queueing

system in the ED to mitigate the impact of task switching. Specifically, we explore the idea of

dividing patients in the ED into two queues and assigning each ED physician to one of the queues.

Physicians will only see patients from a different queue when their current queue is empty. Utiliz-

ing a data-driven method, we search for the optimal partition of patients into the two queues to

minimize the total cost from intra-queue switching and maximize the total cost from inter-queue

switching. This approach will substantially reduce the expected switch cost because inter-queue

task switching occurs much less frequently than intra-queue task switching, according to our pri-

ority rule.

Several EDs have adopted a two-queue system. For instance, Song et al. (2015) studied the ED of

a Kaiser Permanente Medical Center and demonstrated that patients’ length-of-stay in the ED was

significantly reduced in a two-queue system compared to a single-queue system. Our collaborating

ED B also divides the ED into a fast track and a regular track, routing patients primarily by their

triage acuity scores. Each physician is assigned to one of the tracks and prioritizes patients within

the same track. The administrator of that ED is optimistic to incorporating additional patient

attributes, such as CCS, into the criteria that are used to partition the patients into two tracks.

Consequently, the method we study here has the potential for implementation in our collaborating

ED.

We propose a data-driven method to partition patients into two queues based on their CCS, in

accordance with the findings from our empirical results in Section 5.3, which indicate that CCS

pairs are predictors for the magnitude of switch costs. This method can be easily customized to

incorporate other patient attributes, such as the combination of triage acuity scores, age, and chief

complaint categories. Furthermore, we stipulate that after partitioning, the two queues should have

equal visit volumes, aligning with the current practice wherein the total visits in the fast track and

regular track are comparable (i.e., 48% vs. 52%). The method can also be extended to partitioning

patients into subsets of varying sizes, though the procedures will become more complex.

The main idea of our method is to construct a weighted graph, where a vertex represents each

patient visit, and the switch cost from one visit to another is represented by the cost (weight) on
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the associated directed arc. In this setup, maximizing the total inter-queue switch cost is equivalent

to finding a max-bisection on the weighted graph.

We formulate a weighted undirected graph G= (V,E,ω(·, ·)), where each vertex i∈ V represents

a unit mass of patients with the same CCS (i.e., 300 patient visits with a CCS in our case). Let

m(i) denote the index of the CCS associated with vertex i. We first calculate the following value

for any unordered pair of vertices i, j based on the average switch cost for both directions:

ω′(i, j) =
1

2
(−δ̂m(i),m(j) − δ̂m(j),m(i)), (6)

where δ̂m(i),m(j) represents the reduction in PPH led by a task switching from CCS m(i) to m(j);

see Equation (5) for the interpretation of the coefficient δ̂m,n. Note that when m(i) =m(j), that

is, two vertices belong to the same CCS group, it follows from δ̂m,m that ω′(i, j) = 0. Also, if

the switch cost in both directions is not significantly different from zero, we set that ω′(i, j) = 0.

Since the significant estimates include a few positive ones (see Table EC.4) which may result in a

negative ω′(i, j), we devise the weight (cost) of the graph G, ω(i, j), such that all pairs of vertices

are equipped with non-negative costs. Concretely, we obtain ω(i, j) by shifting ω′(i, j) upward:

ω(i, j) = ω′(i, j)+
⌈
max{|all negative ω′(i, j)|}

⌉
(7)

We further note that shifting all weights by a constant does not change the optimal solution when

solving the problem. We then define the edge set as E := {{i, j}| ω(i, j)}. As an illustrative diagram,

Figure 4 presents a part of the graph with four CCS types. The dotted lines represent the edges

connecting with other CCS types.

We aim to search for a bisection of the patient population into two queues so that the expected

intra-queue switch cost is minimized. To formulate the intra-queue switch cost, we need to calculate

the frequency for each pair of patients consecutively picked by the same doctor in a shift. However,

we lack data on how patients with different CCSs would be sequenced under the newly proposed

two-queue system in the ED. For tractability, we assume that in a doctor’s shift, a sequence of

patients (with random length) will be uniformly sampled from the population, regardless of their

CCS. In other words, each patient visit is added to a sequence with an equal probability. Conse-

quently, any patient pair will appear in a sequence with equal probability. This enables us to formu-

late the problem of minimizing the expected intra-queue switch cost (or equivalently, maximizing

the inter-queue switch cost) as an integer programming (IP). See the subsequent Proposition. The

proof is attached in Section EC.1.6.

Proposition 1 Suppose the sequences of patients seen in each shift are uniformly sampled from

the population. Then the bisection that maximizes the total inter-queue switch cost is a solution to

the following IP:
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max
(i,j)∈Ẽ

1

2

∑
(1− yiyj)ω(i, j)

subject to
∑
i<j

yiyj ≤−n/2,

yi ∈ {−1,1}, ∀i.

(8)

Figure 4 Graph of Patient Types

We apply the Frize and Jerrum approach (Frieze and Jerrum 1997) to solve the max-bisection,

which is built on the SDP relaxation method (Goemans and Williamson 1995). The optimization

computation is performed through Julia (Garstka et al. 2021). The SDP relaxation of Equation (8)

is as follows.

max
1

2

∑
i<j

wij (1− vi · vj)

subject to
∑
i<j

vi · vj ≤−n/2

vj ∈ Sn, ∀j ∈ V

(9)

where V is the set of all vertices in the graph G and Sn = {x∈Rn : |x|= 1} stands for the unit

sphere in n dimensions.

We present the obtained bisection results using different colors in Figure 5 for ED A and B,

respectively. The values associated with each edge represent the eq. (6) from original estimates. For
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(a) ED A (b) ED B

Figure 5 CCS Graph Max-Bisection Results

ED A, we assign six CCS types to one queue, including mental (MEN), skin (SKI), genitourinary

(GEN), neurology (NEU), ophthalmology (OPH), gastrointestinal (GAS), and assign all else to the

other one. For ED B, we obtain six CCS types in one queue using similar method, which are: cardio-

vascular (CAR), orthopedics (ORT), neurology (NEU), general and minor (GNR), genitourinary

(GEN), substance misuse (SUB), and all other CCS types belong to the other queue.

6.2. Simulation under Two-Queue ED System

We conduct a simulation study to demonstrate how our proposed two-queue system enhances ED

efficiency. In the counterfactual scenario, we assume that doctors in each shift will be dedicated

to serving one queue and will only serve another queue when the assigned queue is empty. This

priority rule is also used in our collaborating ED B with a regular and fast track.

To mimic the actual system, we need to define the patient selection rule in the simulated scenario.

At a high level, we aim to preserve the order of patients being selected as in the original scenario

so that the difference between the simulation and the original scenarios can be solely attributed to

the patient clustering practice. This can be accomplished in most cases where physicians face the

original choice set. In the counterfactual scenario, we allow the physician to pick the same patient

as they did in the original scenario. However, due to the introduction of the two-queue system and

the modification of the PPH, the choice sets seen by the doctor may differ from the original ones.
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Consequently, we determine the choice using the revealed preference as follows. Suppose we observe

a physician selecting patient A from a choice set A,B,C, · · ·. We can infer that patient A has a

higher priority over others, i.e., A≻B, A≻C... We then obtain the closure of this partial order by

transitivity, e.g., if patient B is later selected from a new choice set B,C,D, we infer B ≻D, and

thus A≻D. For the remaining patients, their relative order is imputed by first-come-first-serve to

minimize modifications to the choice set.

Next, we reconstruct the initial assessment time for each patient according to the original data,

while factoring in the impact of task switching under the simulated patient service sequences; see

Section EC.2 for the details of the reconstruction procedure. The simulation analysis is performed

for the busy periods of ED operations, specifically from 10 am to 6 pm for ED A and from 10 am

to 10 pm for ED B. We simulate 58,531 patient visits in 4,347 shifts in ED A, and 83,149 patient

visits in 6,938 shifts in ED B.

Table 4 Two-Queue Simulation Results

Variables ED A ED B

Panel A. Actual Scenario

PPH 3.381 2.898

Waiting time 44.10 43.78

Waiting census 4.682 4.471

Panel B. Simulated Scenario

PPH 3.491 3.077

Waiting time 27.27 26.42

Waiting census 3.275 3.075

Panel C. Differences

∆ PPH 0.110*** 0.179***

∆ Waiting time -16.83*** -17.36***

∆ Waiting census -1.407*** -1.397***

Patient visits 58,531 83,149

Physician shifts 4,347 6,938

Notes: Panel A reports the average PPH, waiting time, and waiting census in the actual scenario, and Panel B

reports the counterfactual scenario values. Panel C summarizes the mean differences and reports the two-sample

t-tests significance (* p < 0.1, ** p < 0.05, *** p < 0.01).

Table 4 presents the results of the simulation study. As the baseline, panel A displays the average

PPH, patient waiting time, and waiting census (number of patients counted every 10 minutes) in

the actual scenario. Panel B shows the same metrics in the simulated scenario, and panel C reports
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the mean differences between panels A and B, along with the significance under two-sample t-tests.

We find significant efficiency gains from clustering patients into two queues. Across the two EDs,

the average PPH is increased by 0.11 and 0.179, which equal 3.25% and 6.19% of the original levels

and are statistically significant. Furthermore, the average waiting time is reduced by 16.83 and

17.36 minutes (38.16% and 39.66%), and the average waiting census by 1.407 and 1.397 (30.04%

and 31.23%), respectively. All these differences are statistically significant. Additionally, we also

find that the proportion of patients affected by task switching will further decrease from 85% to

76.7% - 78.7%. As a result, we conclude that the impact of task switching on the ED system, as

measured by waiting time and the waiting census, is roughly seven times greater than that on the

physician level measured by PPH. This is because any faster (or slower) treatment will have a

ripple effect on multiple subsequent patients waiting to be treated.

In summary, our simulation study demonstrates the performance improvement achieved by

implementing a two-queue system in the studied EDs. Under our data-driven queue management

method, we are able to alleviate the switch cost on physician productivity. Although the improve-

ment in individual physicians’ productivity is moderate, the ripple effect on the ED system is seven

times larger. Therefore, mitigating the impact of task switches will significantly reduce patient

waiting time and ED congestion.

7. Effects of Task Switching on Quality and Routing
7.1. Quality of Care

We have uncovered a significant switch cost on the efficiency of ED physicians. Consequently, it is

natural to consider that task switching could also impact the quality of their work. We utilize 7/30-

day RAD rates and inpatient admissions as proxies for this. Therefore, we consider the following

linear model

rit = δ · sit +x⊤
itβ1 + z⊤itβ2 +Fi +Dt +uit, (10)

where rit represents the share of revisit and readmission in 7 and 30 days, and the share of inpa-

tient admission upon the focal visit among patients selected in block (i, t). We still include the

explanatory variables xit and zit, and fixed effects Fi and Dt, as in Equation (1).

As demonstrated in Panels A and B of Table 5, task switching has minimal and statistically

insignificant impacts on both RAD shares. Furthermore, we find little connection between inpatient

admission and switcher proportion (Panel C).

Nonetheless, we must exercise caution when interpreting the aforementioned estimates. If physi-

cians are aware of the switch cost, they may counteract the adverse effects on quality by exerting

additional effort and allocating extra time for diagnosis and other remedial procedures. As such,

our estimates are better understood as the outcome of physicians’ trade-off between efficiency and

quality in the presence of the switch cost.
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Table 5 Effect of Task Switching on Quality of Care

ED A ED B

Panel A. RAD in 7 days

Switching frequency -0.0011 -0.0031

(0.0060) (0.0044)

Panel B. RAD in 30 days

Switching frequency -0.0095 0.0075

(0.0075) (0.0071)

Panel C. Inpatient admission

Switching frequency 0.0079 -0.0087

(0.0112) (0.0119)

Fixed effects:

Clock hour Included Included

Physician Included Included

Day-of-week Included Included

Observations 7,845 10,521

Notes: Estimated by fixed effects OLS. Estimates of other regressors in Equation (10) are omitted from the table due

to size constraint. Robust standard errors clustered by physicians reported in parentheses (* p < 0.1, ** p < 0.05, ***

p < 0.01).

7.2. Patient Routing

We explore whether physicians consider the switch cost when selecting patients. Ding et al. (2019)

have demonstrated that physicians’ routing decisions exhibit an effort to minimize the average

waiting cost of patients, specifically by prioritizing patients with more severe clinical conditions and

longer waiting times. Furthermore, KC et al. (2020) find that physicians tend to choose patients

with shorter expected processing times. Given that task switching reduces PPH and negatively

impacts physician productivity, physicians might also prioritize patients of the same type as their

preceding patients.

To explore physicians’ choice patterns, we adopt a conditional logistic model. Instead of using 30-

min blocks, we focus on the individual patient selection process. Suppose the physician’s utility from

selecting patient j is given by Uj =Z⊤
j ζ+Djπ+vj, which depends on the patient’s characteristics,

Zj, whether task switching is required, Dj, and an unobserved error vj following the type-I extreme

value distribution (McFadden 1973). As such, the probability of choosing patient j from the choice

set J (i, t) is given by

Pr{selecting j}=
exp

(
Z⊤

j ζ +Djπ
)∑

k∈J (i,t)

exp (Z⊤
k ζ +Dkπ)

. (11)

The coefficient of interest, π captures the impact of task switching on the choice probability. If

π < 0, patients with a switched type will be selected with lower priority. Following Ding et al.
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(2019), we let Zj include a triage-specific, piecewise linear function of waiting time. The intuition

is that the marginal waiting cost differs by triage levels and whether the waiting time has exceeded

the target physicians want to achieve.

Table 6 Effect of Task Switching on Patient Routing

Variables ED A ED B

Different type 0.871*** 0.974*

(0.018) (0.015)

Triage 2 0.031*** 0.009***

(0.018) (0.001)

Triage 3 0.024*** 0.007***

(0.014) (0.001)

Triage 4 0.054*** 0.018***

(0.028) (0.002)

Triage 5 0.140*** 0.090***

(0.076) (0.015)

Waiting time × triage 1 1.127** 0.997

(0.061) (0.002)

Waiting time × triage 2 1.398*** 1.352***

(0.014) (0.010)

Waiting time × triage 3 1.148*** 1.143***

(0.003) (0.002)

Waiting time × triage 4 1.077*** 1.062***

(0.002) (0.002)

Waiting time × triage 5 1.039*** 1.023***

(0.002) (0.002)

Observations 340,258 406,521

Pseudo R2 0.25 0.23

Notes: Conditional logit models estimated by maximum likelihood. Dependent variable: indicator of selected patients.

The estimates of age, gender, homeless, arrival mode, and patient CCS are omitted from the table due to size

constraint. Coefficients converted to odds ratios. Robust standard errors clustered by physicians in parentheses (*

p < 0.1, ** p < 0.05, *** p < 0.01).

We estimate coefficients in Equation (11) using maximum likelihood and cluster standard errors

by physicians. Table 6 presents the estimates converted to odds ratios (exponential of the original

estimates). We discover that the effects of task switching on choice probability are negative and

statistically significant at both EDs, corresponding to odds ratios between 0.871 and 0.974. Holding

everything else constant, the odds of selecting a patient of a different type are 87.1% – 97.4%

of the odds of selecting a patient of the same type. The results suggest that physicians exhibit
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switch-aversion when choosing patients. During the selection process, they prefer patients with the

same characteristics as the previously picked patient. This finding also supports our use of IV, as

physicians’ strategic patient selection contributes to sample selection bias.

8. Managerial Implications

We summarize the managerial insights from our study to assist ED managers and healthcare

practitioners in enhancing operational efficiency.

First, our study examines task switching as a prevalent phenomenon in emergency departments

and identifies a substantial switch cost on the efficiency of ED physicians. We find that at different

EDs, a 10% increase in switching frequency across patient CCS types reduces the average PPH by

8.65% - 11.53%. However, we do not find evidence that task switching affects the quality of care,

which might be due to the limited methods of measuring care quality. While efforts to reduce task

switching may offer significant value, researchers and ED managers should remain aware of the

potential risk of compromised care quality. Further research is necessary to explore the impact of

task switching on care quality.

In reality, it is impossible to eliminate task switching due to the complexity of ED activities and

the diversity of ED patients. However, several strategies can be employed to mitigate the impact

of task switching. In addition to the proposed data-driven method of partitioning patients into

different queues, we can introduce the pod system to ED workers (Valentine and Edmondson 2015,

Gavin and Peterson 2017). This arrangement can enhance inter-professional communication effi-

ciency and alleviate potential delays caused by task switching. For instance, if physicians encounter

a new patient type and require information, they will have quick access to nearby information

resources. Furthermore, the computer system can highlight waiting patients of the same type as

the focal patient to help physicians avoid task switching. Ultimately, physicians must carefully

balance the switch cost against other factors (e.g., acuteness, waiting time) when making patient

prioritization decisions.

Moreover, our empirical evidence reveals that ED physicians exhibit switch aversion. Holding

everything else constant, the odds of selecting a same-type patient can be twice as high as that of

selecting a different-type patient. According to our discussions with ED physicians, such switch-

averse behavior is typically subconscious. If ED managers could increase physicians’ awareness of

the task switching problem, physicians could make better trade-offs in patient routing and enhance

their service efficiency.

9. Conclusions and Future Research

Although experimental research on task switching is abundant, less is known about the impact

of task switching in real workplaces. In this paper, we investigate the task switching behavior of
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ED physicians to bridge this gap. Emergency departments are well-known for being extremely

busy and heavily loaded most of the time. ED patients also present with heterogeneous clinical

conditions. Consequently, physicians must provide a variety of medical care at a fast pace and

suffer from productivity loss due to task switching. Our analysis reveals that a 10% increase in

switching frequency leads to an 8.65% and 11.53% decrease in PPH on average, and physicians

try to avoid task switching when selecting patients. On the flip side, task switching does not have

significant impact on treatment quality.

By investigating the heterogeneity among different CCS pairs, we propose a data-driven queue

management method to mitigate the switch costs in EDs. We use the classical max-bisection algo-

rithm to partition patients into two queues based on their CCSs, minimizing the total intra-queue

switch costs. The subsequent simulation shows that under the two-queue system, ED physician pro-

ductivity can be improved, and as a result, the average waiting time of ED patients can be reduced

by about 40%. This improvement can be achieved without adding substantial extra resources.

Our study has broad implications for occupations and industries beyond healthcare. Task switch-

ing is prevalent in both the service and production sectors of the economy, and it is ubiquitous

in human lives. It is anticipated that people’s work will become more complex, more flexible, and

less specialized in specific tasks in the future. However, human brains may still not be prepared

for intensive task switching, multitasking, or interrupted working environments (Autor et al. 2003,

Acemoglu and Autor 2011, Acemoglu and Restrepo 2018). As such, the cost of task switching may

become an increasingly important factor impeding workplace productivity. The negative impact of

task switching also underscores the importance of managerial practices to counteract it, including

alternative work arrangements, organizational structures, and technological assistance to enhance

the productivity of future jobs (Bloom and Van Reenen 2011).

We conclude our paper by suggesting several directions for future research. Our paper focuses

on ED physicians’ task switches across patient types and the consequences on productivity. Future

studies can investigate task switching within a patient’s treatment but across different activities,

develop alternative measures for task switching, or examine the switch cost on physicians’ mental

stress, work sustainability, patient satisfaction, and treatment quality. Additionally, since we do

not observe physician characteristics in our data, future research could study determinants of the

switch cost at the physician level. As task switching leads to fewer patients treated and reduced

fee-for-service earnings in a time unit, it is crucial to quantify the monetary value of the switch cost.

Future research may compare task switching, multitasking, and work interruptions in a unified

setting and investigate how workers respond. Since task switching is costly, jobs requiring frequent

task switching may have to pay a wage premium to compensate for the resulting disutility. As such,

a hedonic price framework (Rosen 1974) will help researchers recover the monetary equivalent cost

of task switching.
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Online Appendix

EC.1. Additional Tables and Figures

EC.1.1. OLS Estimates

Table EC.1 reports the OLS estimates of Equation (1). We find that the OLS estimates from two

EDs both underestimate the true switch cost.

Table EC.1 Effect of Task Switching on PPH: OLS Estimates

ED A ED B
Switching frequency -0.162 0.073

(0.102) (0.056)
Average queue length 0.088*** 0.032***

(0.015) (0.011)
Average ED load 0.013* 0.026***

(0.007) (0.004)
Average age -0.002 -0.002

(0.001) (0.001)
Average triage 0.435*** 0.096**

(0.063) (0.041)
Female proportion 0.028 -0.021

(0.060) (0.043)
Homeless proportion 0.216 -0.020

(0.290) (0.118)
Ambulance arrival proportion -0.032 -0.013

(0.088) (0.052)
Waiting time 15-30 min 0.583*** 0.661***

(0.082) (0.044)
Waiting time 30-60 min 0.844*** 0.972***

(0.117) (0.063)
Waiting time 60-120 min 0.846*** 1.114***

(0.165) (0.083)
Waiting time > 120 min 0.859** 1.216***

(0.323) (0.167)
Fixed effects:
Clock hour Included Included
Physician Included Included
Day-of-week Included Included

Observations 7,845 10,521
R2 0.196 0.142

Notes: Estimated by OLS. All estimates control for physician fixed effects, day-of-the-week fixed effects, clock-hour fixed effects.
We also control for the share of patients in each CCS which is omitted from the table due to size constraint. Robust standard
errors clustered by physicians in parentheses (* p < 0.1, ** p < 0.05, *** p < 0.01).
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EC.1.2. Robustness Checks

We first examine the distribution of triage codes, CCS, gender and age in the final sample and

the entire sample (for ED B it is the regular track), respectively. We find that the distribution is

similar to that of the entire sample as reflected in Figure EC.1. There is a slight difference in the

triage distribution, as physicians tend to pick more acute patients during the first hours. However,

since our patient type is defined based on CCS, the distribution among the patients picked in the

clean period is almost identical to that of the entire patient population. Consequently, the patients

used in our study are representative of ED operations.

To check the representativeness of our refined sample for ED operations, we examine the distri-

bution of patient demographics, including triage, CCS, gender, and age, in both the refined sample

and the entire sample. We present their distribution histograms in Figure EC.1. Our analysis

reveals that the distribution of patient demographics is similar between the two samples. There is

a slight difference in the triage distribution, as physicians tend to select more acute patients during

the first hours. However, since our patient type is now defined based on CCS, the distribution

among the patients picked during the clean period is almost identical to that of the entire patient

population. As a result, the patients used in our study are representative of ED operations.

Next, we examine the robustness of the switch cost to alternative definitions of patient types

and an integrated sample period format (instead of 30-min blocks). The results are presented in

Table EC.2.

In the preferred specification, patient types are defined based on their CCS. Alternatively, we

define patient types as (i) both distinct CCSs and triage levels, and (ii) distinct chief complaint

categories (CCC). Both definitions are more granular, as there are 15 unique CC systems, 68 unique

CCS-triage combinations, and 163 unique CC categories. With more granular classification, the

switching frequency and switch likelihood of physician service also increases. In panel A and panel

B of Table 3, we find that the LIML estimates of the switch cost δ remain negatively significant. The

effect magnitudes are very similar to those from the main model. The results show the robustness

of the switch cost under different patient type definitions.

In addition, we calculate PPH for each physician-shift over the entire clean period, i.e., from the

beginning of the shift until when the first lab test comes out. As before, we construct the switch

likelihood at the beginning of the shift. The sample size is then reduced to 2,754 for ED A and

4,141 for ED B. In Table EC.2, panel C, we find that switching frequency is still negative and

significant. The results support our strategy of restricting the sample period using the earliest lab

result time.
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(a) Triage Distribution (b) CCS Distribution

(c) Gender Distribution (d) Age Distribution

Figure EC.1 Distribution of Patient Demographics in the Refined Sample vs. Entire Sample
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Table EC.2 Alternative Patient Type Definition and Integrated Sample Method

Variables ED A ED B
Panel A. Patient type by CCS × triage
Switching frequency -3.050*** -2.443***

(0.841) (0.670)
Average queue length 0.087*** 0.033**

(0.013) (0.010)
Average ED load 0.013 0.025***

(0.007) (0.004)
Average age -0.002 -0.002

(0.002) (0.001)
Average triage 0.399*** 0.097*

(0.066) (0.041)
Observation 7,845 10,521
Kleibergen-Paap rk Wald F statistic 145.5 83.06
Panel B. Patient type by CC category
Switching frequency -3.387*** -3.814***

(0.922) (0.785)
Average queue length 0.103*** 0.048***

(0.013) (0.008)
Average ED load 0.027*** 0.024***

(0.007) (0.004)
Average age -0.002 -0.001

(0.001) (0.001)
Average triage 0.469*** 0.175***

(0.066) (0.036)
Observation 7,845 10,521
Kleibergen-Paap rk Wald F statistic 174.4 102.6
Panel C. Integrated sample period
Switching frequency -3.074*** -7.442***

(0.819) (2.127)
Average queue length 0.114*** 0.024

(0.020) (0.016)
Average ED load -0.003 0.023**

(0.010) (0.007)
Average age -0.009** 0.002

(0.003) (0.004)
Average triage 0.820*** -0.047

(0.137) (0.129)
Observation 2,754 4,141
Kleibergen-Paap rk Wald F statistic 121.4 20.07
Fixed effects:
Clock hour Included Included
Physician Included Included
Day-of-week Included Included

Notes: Estimated by LIML. All estimates control for explanatory variables xit and zit and fixed effects Fi and Dt. Other
regressors are omitted from the table due to size constraints. Robust standard errors clustered by physician in parentheses (*
p < 0.1, ** p < 0.05, *** p < 0.01).
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EC.1.3. Switch Cost in the Fast Track

For ED B operating both regular and fast tracks, we also explore the effect of task switching in

the fast track using the same empirical strategy. As before, we focus on the clean period obtained

by the same process of each fast-track shift and exclude potential idle periods. Consistent with the

previous findings, the estimated switch cost at the fast track remains negative and significant. The

results are presented in Table EC.3.

Table EC.3 Effect of Task Switching on PPH in Fast-track of ED B

Variable Estimates
Switching frequency -10.15***

(1.691)
Average queue length 0.083***

(0.014)
Average ED load -0.009

(0.020)
Average age -0.003

(0.003)
Average triage 0.313***

(0.094)
Female proportion 0.034

(0.133)
Homeless proportion -0.309

(0.293)
Ambulance arrival proportion 0.114

(0.214)
Waiting time 15-30 min 0.344

(0.283)
Waiting time 30-60 min 0.413

(0.272)
Waiting time 60-120 min 0.178

(0.281)
Waiting time > 120 min 0.252

(0.371)
Fixed effects:
Clock hour Included
Physician Included
Day-of-week Included

Observations 5,604
Kleibergen-Paap rk Wald F statistic 46.84

Notes: Estimated by LIML. All estimates control for physician fixed effects, day-of-the-week fixed effects and clock-hour fixed
effects. The results for the share of patients in each CCS are omitted from the table due to size constraint. Robust standard
errors clustered by physicians in parentheses (* p < 0.1, ** p < 0.05, *** p < 0.01).
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EC.1.4. Effect Heterogeneity across Physicians

In this appendix, we investigate the switch cost heterogeneity across individual physicians. To

obtain physician-specific estimates of the switch cost δ, we split the sample by physician ID and

estimate Equation (2) separately on each subsample. We focus on top 10 physicians at each ED to

ensure there are enough observations to identify the regression parameters.

Figure EC.2 plots the resulting estimates at both EDs, with physicians ranked by the number

treated of patients. Almost all physicians’ productivity is negatively impacted by task switching,

and the effect magnitudes differ significantly across physicians.

Figure EC.2 Switch Cost Coefficients Across Top Five ED Physicians
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EC.1.5. Effect Heterogeneity across CCS Pairs

As discussed in Section 5.3, we estimate the coefficients δm,n in Equation (5) to explore the het-

erogeneity among 156 different switch pairs. Based on these estimates we further compute eq. (7)

and obtain ω(i, j) as the weight of edges. Here we present the significant (at 5% level) estimates.

Table EC.4 Significant CCS Pairs Estimates

Pair δ Pair δ Pair δ Pair δ

Panel A. ED A Significant CCS Pair Estimates

gas - neu -0.657** gen - gnr -0.893* gnr - neu -0.591** gas - car -0.637**
(0.218) (0.375) (0.214) (0.217)

ent - gas -0.849*** ort - ent 0.672* ent - car -0.924** gas - res -0.528*
(0.227) (0.305) (0.344) (0.215)

neu - res -1.056*** res - car -0.592** oth - gas 1.051* gen - oth -1.785***
(0.244) (0.16) (0.48) (0.424)

gas - men -1.291** gen - men 1.908* men - neu -1.1** oph - ski -0.841*
(0.394) (0.717) (0.375) (0.418)

oph - gnr -1.261*** oph - ort -1.077** oph - car -1.038* oph - res -1.475**
(0.309) (0.369) (0.42) (0.47)

gas - obg -1.167** obg - gas 1.542** obg - neu -1.294* res - obg -1.557***
(0.352) (0.56) (0.64) (0.341)

obg - oth -1.354** men - obg -2.355** oph - obg -3.94***
( 0.402) (0.809) (1.004)

Panel B. ED B Significant CCS Pair Estimates

neu - gnr -0.576* gas - gnr -0.379** gas - ent -1.022** ent - gnr -1.538**
(0.253) (0.125) (0.278) (0.573)

car - ent -1.109*** neu - ort -0.889** ort - neu 1.691* gas - ort -0.479*
(0.287) (0.308) (0.7) (0.231)

gnr - ort -0.987*** car - ort -0.551* ent - ort -1.576* oth - neu -0.775*
(0.226) (0.253) (0.761) (0.339)

gnr - oth -0.946** oth - gnr -0.724* gas - ski -0.715* gnr - ski -1.636***
(0.286) (0.326) (0.279) (0.301)

ski - gnr -1.158** car - ski -0.92*** ent - ski -0.965*** ort - ski -0.901*
(0.392) (0.227) (0.098) (0.415)

ski - ort -2.036*** neu - men -0.488** men - gnr -0.659** car - men -0.299*
(0.39) (0.151) (0.194) (0.139)

men - ort -0.948** men - oth -0.717** sub - oth -1.189*** car - res -0.385**
(0.281) (0.244) (0.308) (0.136)

res - ort -0.659* oth - res -0.816** res - ski -0.812* obg - car -0.579*
(0.309) (0.244) (0.332) (0.251)

oth - obg -0.916* obg - res -1.162*** gas - gen -0.512* gen - ort -1.261**
(0.42) (0.294) (0.196) (0.38)

oth - gen -0.797* gen - ski -1.995*** sub - gen -0.941**
(0.331) (0.3) (0.321)

Notes: ED A sample comprises 7,845 observations and R2 is equal to 0.375. ED B sample comprises 10,521 observations and
R2 is equal to 0.398. Robust standard errors clustered by physicians in parentheses (* p < 0.05, ** p < 0.01, *** p < 0.001).
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EC.1.6. Proof of Proposition 1

Proof. Suppose all patient visits have been partitioned into two queues S and SC , with |S|= |SC |.

If two patients i and j are in the same queue, then they will be picked consecutively by the same

doctor with probability C. This probability C does not depend on i and j by our assumption that

each sequence is uniformly sampled from the population. Thus, the total intra-queue switch cost

is given by

C ·
∑

i̸=j, i,j∈S

ω(i, j)+C ·
∑

i ̸=j, i,j∈SC

ω(i, j)

which equals

C ·
∑

i ̸=j,i,j∈V

ω(i, j)−C ·
∑

i∈S,j∈SC

ω(i, j).

Since C ·
∑

i ̸=j,i,j∈V ω(i, j) is a constant, minimizing the above difference is equivalent to maximizing

the second term

C ·
∑

i∈S,j∈SC

ω(i, j)

which is equivalent to

max
(i,j)∈Ẽ

1

2

∑
(1− yiyj)ω(i, j)

by letting yi = 1 if i∈ S and yi =−1 if i∈ SC .

The additional constraint
∑

i<j yiyj ≤ −n/2 is equivalent to
∑

m ym = 0, which requires the

sought-for partition to be a bisection. Q.E.D.
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EC.2. Computation Steps in Simulation

In the simulation study, we simulate each patient visit to the ED and reconstruct the activity path

accordingly. Specifically, we compute the waiting time and pick-to-pick (P2P) duration of each

patient under the simulated scenario. Moreover, we need to consider the impact of switch cost on

physician productivity under the new patient clustering and physician shift scheme. To achieve

this, we consider the following approximation procedures regarding the translation between PPH

and P2P.

Consider the picking moment of a patient i in a physician j’s shift. We want to obtain the

associated modified P2P duration until the next available time to select another patient. As a

heuristic, we consider the time period starting from 40 minutes prior to the selection of patient i to

the selection moment of the next patient after i by the focal physician as the PPH “surrounding”

patient i. For the first 30-minute interval of a physician’s shift, we compute the PPH and switching

frequency associated with each CCS pair in Table EC.4. We then use these values for all patients

picked in the interval.

Now we take into account the switch cost impact using the estimates δ̂l from Table EC.4. In

the simulation, we may obtain different patient selection results, which result in modified task

switching frequency in this period of time. Compared with the switching frequency in the real

data, we obtain the difference between the switching frequency denoted by di and we obtain the

modified PPH denoted by P̃PHi as:

P̃PHi =PPHi + δ̂⊤di

where PPHi represents the original PPH level in the data. We then obtain the proportional relation

as
P̃PHi

PPHi

= 1+
δ̂⊤di

PPHi

To translate the impact into P2P duration, we need the reciprocal of that. Therefore, the modified

average P2P duration P̃2Pi for each patient i in the simulated paths is:

P̃2Pi =
P2Pi

1+ δ̂⊤di
PPHi

where both P2Pi and PPHi are known based on original data. The above equations show that, as

the switching frequency decreases, PPH should increase and the average P2P duration will decrease

and vice versa.
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