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A central decision maker (CDM), who seeks an efficient allocation of scarce resources among a finite number
of players, often has to incorporate fairness criteria to avoid unfair outcomes. Indeed, the Price of Fairness
(POF), a term coined in Bertsimas et al. (2011), refers to the efficiency loss due to the incorporation of
fairness criteria into the allocation method. Quantifying the POF would help the CDM strike an appropriate
balance between efficiency and fairness. In this paper we improve upon existing results in the literature, by
providing tight bounds for the POF for the proportional fairness criterion for any n, when the maximum
achievable utilities of the players are equal or are not equal. Further, while Bertsimas et al. (2011) have
already derived a tight bound for the max-min fairness criterion for the case that all players have equal
maximum achievable utilities, we also provide a tight bound in scenarios where these utilities are not equal.
Finally, we investigate the sensitivity of our bounds and bounds of Bertsimas et al. (2011) for the POF to
the variability of the maximum achievable utilities.
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1. Introduction
In this paper, we consider a problem facing a central decision maker (CDM) who needs to allocate
scarce resources among finitely many players. There are many real-life applications wherein the CDM
cannot use the most efficient allocation due to a fairness constraint. Instead, the CDM often has to
allocate resources while recognizing the tradeoffs between efficiency and fairness (Zenios et al. 2000,
Bertsimas et al. 2012). In the literature, two fairness notions have been widely used: Proportional
Fairness (PF) and Max-Min Fairness (MMF). Our goal is to measure the relative system efficiency
loss resulting from the implementation of these fairness criteria.

An illustrative example of the efficiency-fairness trade-off is the allocation of deceased-donor kid-
neys. Kidney transplantation is a desired treatment for individuals with end-stage renal disease
(ESRD). However, the reality is that the demand for kidneys far exceeds the available supply. To
illustrate, in 2021, 43,617 new patients registered to the kidney waiting list, while only 25,490 trans-
plants were performed that year1. This significant discrepancy between the number of patients in
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need and the available transplants highlights the significance of allocating deceased-donor kidneys in
an efficient and fair manner. Efficiency, in this context, refers to maximizing the overall utility, usu-
ally measured by the total quality-adjusted life-years (QALY). The problem of maximizing the sum
of the utilities among all candidates on the waitlist has been extensively studied in the operations
research literature; see, e.g., Derman et al. (1972), Righter (1989) and David and Yechiali (1995).
However, a policy solely focused on maximizing total QALYs may inadvertently disadvantage patient
groups with lower expected QALYs gained from transplant. If the policy maker seeks to minimize
such inequities, they must contend with the trade-off of potentially reducing the overall number of
life-years saved, e.g., Ata et al. (2021), Su and Zenios (2006), Bertsimas et al. (2013).

Similar trade-offs between efficiency and fairness naturally emerge in many other applications.
For example, in air traffic flow management, the CDM needs to fairly allocate limited air space to
different airlines (e.g., Barnhart et al. 2012, Vossen et al. 2003, Jiang et al. 2022, Nguyen et al.
2021). In congested airports, the CDM has to fairly allocate runways and aprons to different air-
lines (Fairbrother et al. 2020). Other equitable resource allocation problems arise in finance, where
simultaneous trading with multiple accounts is carried out and the CDM’s goal is to treat all clients
fairly while maximizing collective interests (O’Cinneide et al. 2006), water allocation, where a CDM
attempts to balance unsatisfied demand of all consumers (Udías et al. 2012), medical funds allo-
cation, where equity across different regions and populations is a major concern (Earnshaw et al.
2007), spectrum allocation in a communication system where a common frequency band is shared by
multiple users (Ye 2014), and kanban allocation in production systems, where both minimizing the
rate of lost sales and balancing lost sales across product types are under consideration (Ryan and
Vorasayan 2005). In addition to resource allocation problems, efficiency-fairness tradeoffs can arise
in classical optimization problems such as location, vehicle routing, transportation and scheduling,
as elaborated in the excellent survey papers by Karsu and Morton (2015) and Luss (1999).

Naturally, quantifying the efficiency loss resulting from the incorporation of different fairness cri-
teria is essential for the CDM when facing resource allocation challenges. Bertsimas, Farias, and
Trichakis (2011) (BFT (2011)) introduced the notion of the price of fairness (POF), which is defined
as the relative efficiency loss, compared to the utility-maximization solution (i.e., utilitarian solution),
of a fair solution. They quantified the POF for two different fairness notions, PF and MMF. That is,
they provided upper bounds of the POF for both the PF and the MMF cases, which we refer to as
the BFT bounds. When all players have equal maximum achievable utilities, the BFT bound for the
PF criterion is tight when the number of players, n, is a square of an integer, and the BFT bound
for the MMF criterion is tight for an arbitrary number of players.

The assumption that players have equal maximum achievable utilities is appropriate in settings in
which the utility functions merely represent the players’ preferences among the various resource allo-
cation options. These preferences are invariant to positive affine transformations of the corresponding
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utility functions, and thus, permit the assumption that in such settings, the maximum achievable
utilities of all players are equal. However, there are many applications in which the utility functions
have some intrinsic values, which facilitates interpersonal comparisons of utilities. For instance, in
the context of organ transplantation, as previously discussed, the utility of each patient is commonly
quantified by QALYs (Su and Zenios 2005, Zenios et al. 2000). In air traffic flow management, the
disutility of an airline is measured by the total time delays (Barnhart et al. 2012), and in most
business applications, a firm’s utility can be measured by a monetary value. In all such examples, the
utilities of players cannot be normalized and the assumption of equal maximum achievable utilities
cannot be made without loss of generality. Indeed, BFT (2011) have investigated resource allocation
problems without the assumption of equal maximum achievable utilities, and have derived bounds
for the POF both for the PF and MMF criteria. However, both bounds are not tight2. By contrast,
in this paper we derive tight bounds for the POF both for the PF and MMF criteria, when the
maximum achievable utilities are not necessarily equal.

We investigate the gap between our bound and the BFT bound for the proportional POF when
the maximum achievable utilities are equal. Clearly, this gap is always non-negative, and we prove
that it achieves a local maximum when n is a product of two consecutive integers, e.g., n= 2,6,12,
etc. Both bounds increase as a function of n, and as noted by BFT (2011), for a small number of
players, the price of proportional fairness is small. Indeed, for example, for n= 2, which corresponds
to Nash original two-players bargaining problem, the price of fairness according to our bound is at
most 6.7%. By comparison, we note that according to the BFT bound, the price of proportional
fairness for n= 2 is at most 8.6%. We further show that for a fixed number of players, both for PF
and MMF, our bounds and the BFT bounds increase when the variability of the maximum achievable
utilities increases. However, the BFT bounds increase at a faster rate. The tighter bounds and the
additional insights we derive into the price of fairness should assist a CDM to better evaluate the
tradeoff between efficiency and fairness.

Our paper makes the following contributions:
1. We are the first to derive tight upper bounds for the POF applicable to both PF and MMF

criteria under general conditions, that is, for an arbitrary number of players and when the
players’ maximum achievable utilities are possibly unequal. Our results complement those by
BFT (2011) by tightening their bounds for the POF, particularly in the unequal maximum
achievable utilities case.

2. The tight bounds provide robust insights that should assist a CDM to more effectively evaluate
the tradeoff between efficiency and fairness. Our bounds confirm and improve upon results
derived by BFT (2011) that the POF is likely to be small for a small number of players.
When players have different maximum achievable utilities, the POF is relatively larger when the
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distribution of the maximum achievable utilities has a larger variance. In fact, the POF is at
its peak when this distribution is such that one player has a large maximum achievable utility,
while all others have a very small maximum achievable utilities.

3. A growing body of research, exemplified by studies such as (Hasankhani and Khademi 2022,
Ma et al. 2023, Agnetis et al. 2019), has been concerned with calculating the POF for special
problem instances. Our tight bounds for the POF in general settings could serve not only as
a cap but also as a benchmark for the POF estimates in settings previously studied in the
literature. This underscores the broader applicability and relevance of our findings within the
literature on POF across various operational frameworks.

2. Fairness

2.1. Related Literature
There are two stream of literature closely related to our study of the POF. The first stream is
concerned with the various fairness criteria. It is generally understood that different equity/fairness
criteria may be required in different contexts/applications (see, e.g., Sen 1997, Young 1995), and that
no universal criterion of fairness can be applied in all settings. Nevertheless, there are several widely
accepted criteria for fairness.

A simple and common fairness criterion, based on the Rawlsian principle (Rawls 2004), is the
MMF criterion. According to this criterion we seek a solution which is the lexicographically largest
vector, whose elements are either the allocations to the different players or the performance function
values corresponding to the different activities, which are arranged in a non-increasing order.

Some studies handle fairness using an inequality index, which is a function that maps a resource
allocation instance to a scalar value representing the level of inequality. For example, Kozanidis (2009)
uses the difference between the upper bound and the lower bound of outcomes as the inequality
index, and Turkcan et al. (2011) uses variance to measure fairness.

Another approach to achieve fairness optimizes an objective function which is some aggregation
of the allocations to the different players. Indeed, proportional fairness (PF), which we study in this
paper, is achieved by maximizing the sum of the logarithms of the utility outcomes corresponding
to the allocations to the players. It is a generalization of the Nash bargaining solution, see, e.g.,
Nash Jr (1950), which has an axiomatic basis as we further elaborate in the sequel. Finally for a
classification of the extensive literature concerned with fairness in terms of the fairness criteria they
employ, such the Rawlsian principle, its lexicographic extension or an aggregation function, see the
survey by Karsu and Morton (2015).

The second stream of literature related to our study of the POF focuses on the assessment of
the POF in particular contexts. Recent papers in this stream include, for example, Hasankhani and
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Khademi (2022), who studied the US heart transplant system and, using a fluid model, have quantified
the POF for both the PF and MMF fairness criteria. They have shown, for example, that consistent
with known theoretical results the price of PF is smaller than that of MMF. Liu and Salari (2022)
calculated the POF for a facility location problem, considering disutility as an aggregate of transit
time and queueing delays. Agnetis et al. (2019) were the first to investigate the POF in scheduling
problems, providing tight bounds within their defined context. Zhang et al. (2020) extended this
exploration to a two-agent scheduling game variant, specifically examining scenarios where one of
the two players has exactly two jobs. As noted above, our tight bounds for the POF for the PF and
MMF criteria, and our related investigation about the sensitivity of the POF to the distribution of
the maximum achievable utilities could be helpful in future investigations into the POF in different
contexts and application areas.

2.2. Fairness Notions
We quantify the price of fairness for two fairness criteria - PF and MMF.

2.2.1. Proportional fairness Under PF, the preferred allocation, uPF (U) =

(uPF
1 (U), uPF

2 (U), · · · , uPF
n (U)), from a utility set U , is such that for any other feasible allocation of

utilities u, the aggregate of proportional changes is zero or negative, i.e.,

n∑
i=1

ui −uPF
i (U)

uPF
i (U)

≤ 0, for any u∈U. (1)

For a convex utility set U , uPF (U) is a generalization on the Nash bargaining solution for n players,
and can be obtained by maximizing the product of the players’ utilities, i.e.,

uPF (U) := argmax
(u1,u2,···,un)∈U

n∏
i=1

ui.

Equivalently, uPF (U) can be derived by maximizing the logarithmic transformation of the above
objective function, i.e.,

uPF (U) := argmax
(u1,u2,···,un)∈U

n∑
i=1

logui. (2)

Note that (1) is the necessary and sufficient condition for the optimality of uPF (U) for the opti-
mization problem associated with (2). As mentioned above, such a solution is a generalization of
the Nash bargaining solution. It satisfies four axioms: Pareto optimality, symmetry, affine invariance
and independence of irrelevant alternatives. Pareto optimality avoids a waste of resources. Symmetry
guarantees that the solution does not distinguish between the players if the model does not distin-
guish between them. By the third axiom, the allocation is invariant to scaling of utilities, and thus
would not be affected if different measurement units of utility are used by players. The fourth axiom
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implies that the preferred allocation remains unchanged when inferior allocations are removed, see,
e.g., Nash Jr (1950) and Roth (1979a).

The first application of PF was in the telecommunications field (Mazumdar et al. 1991), and the
term PF was first coined by Kelly et al. (1998).

2.2.2. Max-min fairness MMF is motivated by the Kalai-Smorodinsky (KS) solution for two-
person bargaining problems, axiomatically characterized by Kalai and Smorodinsky (1975). The KS
solution is the unique solution satisfying the axioms of Pareto optimality, symmetry, invariance with
respect to affine transformations of utility, and monotonicity. According to the KS solution, the
players obtain the largest possible equal fraction of their respective maximum achievable utilities.
However, Roth (1979b) has shown that in n-person bargaining problems, such a solution may not
satisfy Pareto optimality and that there does not exist a solution satisfying all the above axioms.
Imai (1983) has modified the KS solution to n-person bargaining problems by proposing a weaker set
of axioms. Namely, he proposes a solution which satisfies Pareto optimality, symmetry and invariance
under linear utility transformation. But, instead of the monotonicity axiom, originally proposed by
Kalai and Smorodinsky (1975), he requires the axioms of independence of irrelevant alternatives
other than ideal point and individual monotonicity.

The axiom of independence of irrelevant alternatives other than ideal point is a less stringent
requirement compared to the axiom of independence of irrelevant alternatives, which is satisfied by
the Nash bargaining solution. It stipulates that the solution remains unchanged if the alternatives
that have been removed do not alter the maximum achievable utilities by all players. The other
axiom, individual monotonicity, requires that if the utility set expands in a manner which keeps the
projection of the utility set onto the N\{i}-dimensional space unchanged, then the utility of the i-th
player must increase.

Imai (1983) has proven that when all players have equal maximum achievable utility, his solution
coincides with the MMF solution (referred to as lex-max-min in his paper), which, according to
BFT (2011), maximizes the ratios of players’ utilities to their maximum achievable utilities in a
lexicographical manner. That means, the CDM first maximizes the minimum ratio of the players’
utilities to their respective maximum achievable utilities. Subsequently, the CDM maximizes the
second smallest ratio, the third smallest ratio, and so on. Thus, for two-person problems, the MMF
solution coincides with the KS solution.

2.3. The Price of Fairness
The utilitarian solution, which maximizes the the sum of the utilities to all the players, is viewed as a
measure for system efficiency. Naturally, implementing a fair solution, instead of a utilitarian solution,
will reduce system efficiency. To quantify the relative loss incurred by adopting a fair solution over
the utilitarian solution, we employ the concept of the POF as introduced by BFT (2011).
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Formally, consider a resource allocation problem with n players, and let U :⊆Rn denote the set
of all possible utility vectors of the players. Let ui denote the utility of player i. We assume U to
be convex and compact, which is a common assumption in the literature (See BFT (2011)). We also
assume that U is monotone, that is:

Definition 1. A set U is monotone if for any u∈U and 0≤ v≤ u, we have v ∈U .

2.3.1. Utilitarian Solution A utilitarian solution is an allocation based on classical utilitari-
anism, which maximizes the sum of utilities of all players. Thus, the utilitarian solution, denoted by
u∗(U) := (u∗

1(U), . . . , u∗
n(U)), is an optimal solution to the following problem:

max
n∑

i=1

ui,

s.t. (u1, u2, · · · , un)∈U.

(3)

The sum of utilities to the players is often used as a measure of system efficiency. Thus, if the
social planner aims to maximize efficiency without fairness considerations, the utilitarian solution
should be used.

2.3.2. Fairness Solution As previously mentioned, in many applications it would be inappro-
priate to implement solutions based exclusively on system efficiency. In these circumstances, the
central decision maker will choose an allocation scheme based on some fairness criteria, trying to
balance both efficiency and fairness.

There is a large literature concerned with various fairness notions. We consider two notions in this
paper, PF and MMF. We will explain them in detail in the next section. We denote the allocation
scheme with a set function ufair : 2R

+
n →R+

n , where the superscript, fair, could be PF or MMF to
indicate whether we use PF or MMF.

2.3.3. The Price of Fairness We use the notion of the price of fairness, introduced by BFT
(2011) and denoted POF (U ;fair), to measure the relative loss resulting from an implementation of
a fair solution rather than the utilitarian solution, i.e.,

POF (U ;fair) =

∑n

i=1 u
∗
i −

∑n

i=1 u
fair
i∑n

i=1 u
∗
i

= 1−
∑n

i=1 u
fair
i∑n

i=1 u
∗
i

, (4)

where u∗
i , resp., ufair

i , i= 1, . . . , n, denotes the utilitarian, respectively, the fair solution which is being
used.

BFT (2011) have derived upper bounds for the POF (U ;fair) for the cases where the fair solution
is either the PF solution or the MMF solution, and for the cases when the maximum achievable
utilities of the players are either equal or not equal. As will be clarified in the sequel, we improve upon
the bounds derived by BFT (2011), by providing tight bounds for the price of proportional fairness
when the maximum achievable utilities by the players are either equal or not necessarily equal, and
for the price of MMF when the maximum achievable utilities by the players are not necessarily equal.
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3. Upper Bounds for The Price of Proportional Fairness

3.1. Equal Maximum Achievable Utilities
We begin by considering the case where all players have equal maximum achievable utilities in the
utility set U . For simplicity and without loss of generality, we set this maximum achievable utility to
one, and denote by N := {1,2, . . . , n}, the set of players. Consequently, max{ui|u∈U}= 1 for i∈N .

To derive an upper bound for the price of fairness (POF) in U , we employ a utility set U ′, U ′ ⊇U ,
such that the PF solutions in U and U ′ coincide. Consequently, since U ⊆U ′, the POF with respect
to U is bounded by the POF with respect to U ′. Formally,

Proposition 1. Suppose U ⊆ {u := (u1, u2, . . . , un) | 0 ≤ ui ≤ 1, i ∈ N} is a convex, compact,
and monotone utility set, and max{ui|u ∈ U} = 1 for i ∈ N . Then there exist ci ∈ [1/n,1] (i ∈

N) such that U ⊆ U ′ = {u |
∑n

i=1 ciui ≤ 1,0 ≤ ui ≤ 1, i ∈ N}, and max{
∑n

i=1 log(ui)|u ∈ U} =

max{
∑n

i=1 log(ui)|u∈U ′}. Consequently, POF (U ;PF )≤ POF (U ′;PF ).

Proof. Let v denote the optimal solution to max{
∑n

i=1 log(ui)|u ∈ U}. Define ν(u) :=∑n

i=1 log(ui) and denote by ∇(ν(v)) the gradient of this function ν(·) at v. Since U is convex and
compact, and the objective function ν(·) is concave, the necessary and sufficient optimality condition
is

(u− v)T∇(ν(v)) =
n∑

i=1

(
ui

vi
− 1)≤ 0⇔

n∑
i=1

ciui ≤ 1, ∀ u∈U, (5)

where ci := 1/(nvi). Therefore, the optimality condition implies that U ⊆U ′ := {u |
∑n

i=1 ciui ≤ 1,0≤

ui ≤ 1, i∈N}, for ci = 1/(nvi).
We claim that v is also the optimal solution to the optimization problem to derive the PF solution

with respect to U ′, i.e., max{
∑n

i=1 log(ui)|u ∈ U ′}. Indeed, since v ∈ U ⊆ U ′, v is feasible to this
optimization problem. Further, for all u∈U ′, we have

∑n

i=1 ciui =
∑n

i=1 ui/(nvi)≤ 1. Thus, v satisfies
the necessary and sufficient optimality condition (5). Therefore, v is also the PF solution with respect
to U ′. We thus have uPF (U) = uPF (U ′).

Given that U ⊆ U ′, we have
∑

i u
∗
i (U) ≤

∑
i u

∗
i (U

′), where u∗
i (U) and u∗

i (U
′) denote player i’s

utility at the utilitarian solution with respect to U and U ′, respectively. Therefore, by the definition
of the POF, i.e., (4), we have POF (U ;PF )≤ POF (U ′;PF ).

Finally, since 0≤ vi ≤ 1, we have ci = 1/(nvi)≥ 1/n. Let ei denote a vector with the i-th element
as one and all other elements as zero. By assumptions of U , ei ∈U and thus ei ∈U ′ for i∈N . Then∑n

i=1 ciui ≤ 1⇒ ci ≤ 1. ■

By Proposition 1, we can derive an upper bound for the price of proportional fairness (PF) with
respect to U , by finding this bound with respect to U ′, U ′ = {(u1, u2, . . . , un)|

∑n

i=1 ciui ≤ 1, 0≤ ui ≤
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1, i∈N}. To that end, we need to find the utilitarian solution u∗(U ′), which is an optimal solution
to the following Problem (6):

max
n∑

i=1

ui, (6a)

s.t. 0≤ ui ≤ 1, ∀i∈N, (6b)
n∑

i=1

ciui ≤ 1. (6c)

Without loss of generality, we assume that

c1 ≤ c2 ≤ · · · ≤ cn. (7)

Following BFT (2011), we define

l(c) :=max{j |
j∑

i=1

ci ≤ 1}, δ(c) :=
1−

∑l(c)

i=1 ci
cl(c)+1

∈ [0,1). (8)

Then, the optimal solution, u∗, to Problem (6) is u∗
1 = u∗

2 = · · · = u∗
l(c) = 1, u∗

l(c)+1 = δ(c), u∗
l(c)+2 =

u∗
l(c)+3 = · · ·= u∗

n = 0, and the optimal value of Problem (6) is l(c)+ δ(c).
On the other hand, the PF solution can be obtained by solving the following optimization Problem

(9):

max
n∑

i=1

log(ui), (9a)

s.t. 0≤ ui ≤ 1, ∀i∈N, (9b)
n∑

i=1

ciui ≤ 1. (9c)

Problem (9) has a unique optimal solution, uPF , which has the following explicit form:

Proposition 2. uPF (U ′) := (1/nc1,1/nc2, · · · ,1/ncn) is the unique optimal solution to the opti-
mization Problem (9).

Proof. Since ci ≥ 1/n, we have uPF
i (U ′)≤ 1. So uPF (U ′) is a feasible solution to (9). For any

feasible u∈U ′, (u−uPF (U ′))T∇(ν(uPF (U ′))) =
∑n

i=1(ui−uPF
i (U ′))/uPF

i (U ′) =
∑n

i=1 nciui−n≤ 0,
which implies the optimality of uPF (U ′). Finally, since in (9), we maximize a strictly concave function
over a convex compact domain, the maximizer must be unique. ■

The utilitarian solution, u∗, and the PF solution, uPF , we have derived with respect to U ′, can be
used to find an upper bound for the price of proportional fairness by minimizing 1−POF (U ′;PF ) =
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i=1 u
PF
i (U ′)/

∑n

i=1 u
∗
i (U

′) := f1(c), which is equivalent to the following optimization Problem (10):

min
c

(f1(c) :=)

∑n

i=1
1

nci

l(c)+
1−

∑l(c)
i=1 ci

cl(c)+1

, (10a)

s.t. 1

n
≤ c1 ≤ c2 ≤ · · · ≤ cn ≤ 1, (10b)

l(c)∑
i=1

ci ≤ 1, (10c)

l(c)+1∑
i=1

ci > 1, (10d)

where Constraints (10c), (10d) follow from the definitions of l(c) and δ(c), as given in the Expression

(8).

A key step towards the main result is the characterization of c∗, the optimal solution to Problem

(10), which is provided by Proposition 3 below.

Proposition 3. (1) When n= 2, c∗1 =
√
3− 1, c∗2 = 1.

(2) When n≥ 3, c∗1 = · · ·= c∗m = 1/m, c∗m+1 = · · ·= c∗n = 1, and δ(c∗) = 0.

Proof.
The proof follows from the following claims, whose proofs are provided in Appendix EC.1.

Claim 1. Define m := l(c∗). Then, c∗i = 1 for i=m+2, · · · , n.

Claim 2. c∗1 = c∗2 = · · ·= c∗m.

Claim 3. c∗m+1 = 1.

Claim 4. When m≥ 2, we have d∗(:= c∗1 = c∗2 = · · ·= c∗m) = 1/m.

Claim 5. When n≥ 3, m ̸= 1.

Claim 6. When n= 2, m= 1, c∗1 =
√
3− 1.

When n= 2, Proposition 3 is implied by Claim 3 and 6. When n≥ 3, we have m ̸= 1 by Claim 5,

thus m≥ 2. Then by Claim 4, d∗ = 1/m. Thus by Claims 1-3, the optimal solution to Problem (10)

is c∗1 = · · ·= c∗m = 1/m, c∗m+1 = · · ·= c∗n = 1, which implies δ(c∗) = 0. ■

Proposition 3 provides a complete characterization of the optimal solution to Problem (10), which

leads to the first main result on the upper found of the POF for the proportional fairness case.
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Theorem 1. Consider a resource allocation problem with n players, n≥ 2, for which the utility

set U ⊆ [0,1]n is compact and convex, and the maximum achievable utilities of all players are equal.

Let
√
n= k+ ϵ, where k ∈N is the integral part of

√
n and ϵ ∈ [0,1) is the fractional part. Then,

the tight bound of the price of proportional fairness solution is:

(a) For n= 2,

POF (U ;PF )≤ 2−
√
3

4
.

(b) For n≥ 3 :

(1) For 0≤ ϵ≤ (1+2
√
n−

√
1+4n)/2,

POF (U ;PF )≤ 1−
2
√
n− 1+ ϵ2

k

n
.

(2) For (1+2
√
n−

√
1+4n)/2< ϵ< 1,

POF (U ;PF )≤ 1−
2
√
n− 1+ (1−ϵ)2

k+1

n
.

Proof. (a) For n= 2, we have f1(c
∗) = (2+

√
3)/4 by Proposition 3, and

POF (U ;PF )≤ 1− f1(c
∗) = 1− 2+

√
3

4
=

2−
√
3

4
.

(b) For n≥ 3, by Proposition 3, the objective function in (10a) can be reformulated as

f1(c
∗) =

∑m

i=1
1

nc∗i
+ n−m

n

m
=

1

n
(m+

n

m
− 1). (11)

Since this function decreases and then increases as m increases, the necessary and sufficient con-

ditions for the optimality of m are:

m+
n

m
− 1≤m+1+

n

m+1
− 1⇔ n≤m(m+1)

m+
n

m
− 1≤m− 1+

n

m− 1
− 1⇔ n≥m(m− 1)


⇔

√
1+4n− 1

2
≤m≤

√
1+4n+1

2
.

Since (
√
1+4n+1)/2− (

√
1+4n− 1)/2 = 1, m is contained in an interval of length 1. Also,

√
n

lies in this interval. Thus, since k=
√
n− ϵ, m can take only two possible values, k or k+1.

Thus, if (
√
1+4n− 1)/2≤ k ≤ (

√
1+4n+1)/2⇒ 0≤ ϵ≤ (1+ 2

√
n−

√
1+4n)/2, then f1(c

∗) =

(n+ k(k− 1))/nk= (2
√
n− 1+ ϵ2/k)/n, and

POF (U ;PF )≤ 1−
2
√
n− 1+ ϵ2

k

n
.



Authors’ names blinded for peer review
12 Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!)

Figure 1 Upper bound of the Proportional POF as a function of the number of players.

If (
√
1+4n− 1)/2 < k + 1 < (

√
1+4n+ 1)/2 ⇒ (1 + 2

√
n−

√
1+4n)/2 < ϵ < 1, then f1(c

∗) =

(n+ k(k+1))/(n(k+1)) = (2
√
n− 1+ (1− ϵ)2/(k+1))/n, and

POF (U ;PF )≤ 1−
2
√
n− 1+ (1−ϵ)2

k+1

n
.

The above bounds are tight, as we have explicitly derived in Proposition 2 and Proposition 3 the

optimal solution to Problem (10).

■

Figure 1 plots the BFT bound as well as our bound for the price of proportional fairness,

POF (U ;PF ), as a function of the number of players, n. The two bounds are quite similar which

reveals that the BFT bound, in general, performs relatively well when players have equal maximum

achievable utilities.

Let us further study the difference between our bound and the BFT bound, and note that for
√
n∈

N, i.e., ϵ= 0, the BFT bound coincides with our bound. Let us consider the relative improvement,

∆(n), of our bound over the BFT bound:

∆(n) :=
BFT bound− our bound

BFT bound =

{
ϵ2

k(n−2
√
n+1)

, 0≤ ϵ≤ 1+2
√
n−

√
1+4n

2
;

(1−ϵ)2

(k+1)(n−2
√
n+1)

, 1+2
√
n−

√
1+4n

2
< ϵ< 1.
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Figure 2 The relative improvement of our upper bound of the proportional POF over the BFT bound.

Figure 2 plots the relative improvement, ∆(n). It shows that ∆(n) reaches a local maximum when

the number of players, n, is a product of two adjacent integers, that is, when n= l(l+1) for some

l ∈N, as in the cases when n= 6,12, . . ., etc. In Lemma 1 below, whose proof is in Appendix EC.2,

we formally prove this result.

Lemma 1. For any a ∈N+ and n≥ 2, when n ∈ [a2, a(a+1)], ∆(n) increases with respect to n;
when n∈ [a(a+1), (a+1)2), ∆(n) decreases with respect to n. Thus, ∆(n) reaches a local maximum
when n= a(a+1).

Finally, as BFT (2011) have noticed, the price of proportional fairness is relatively small when n

is small. In particular, for n= 2, which corresponds to the Nash Bargaining two-player game setting,

the BFT bound is 8.6%. In that regard, we note that for n = 2, our bound for POF is 6.7%, an

improvement of 22% over the BFT bound, as shown in Figure 2.

3.2. Unequal Maximum Achievable Utilities
We next consider the case where players have unequal maximum achievable utilities. Denote the

maximum achievable utility for player i by Li. Thus, 0≤ ui ≤Li for all u∈U .

Proposition 4. Suppose U ⊆ {u |0≤ ui ≤Li, i∈N} is a convex, compact, and monotone utility
set, and maxu∈U ui = Li for i ∈N . Then there exist ci ∈ [1/nLi,1/Li], i ∈N , such that U ⊆ U ′ =
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{u |
∑n

i=1 ciui ≤ 1, 0≤ ui ≤Li, i ∈N}, and max{
∑n

i=1 log(ui) |u ∈U}=max{
∑n

i=1 log(ui) |u ∈U ′}.
Consequently, POF (U ;PF )≤ POF (U ′;PF ).

Proof. The utility set U is a subset of a polyhedron with constraints 0≤ ui ≤Li, i∈N . Let K

denote a transformation of U such that K = {(k1, k2, . . . , kn)|(k1L1, k2L2, . . . , knLn) ∈ U}. Then K

is a subset of the unit cubic, i.e., K ⊆ [0,1]n.
By Proposition 1, there exist ai ∈ [1/n,1], i ∈ N , such that K ⊆ K ′ = {k :=

(k1, k2, . . . , kn) |
∑n

i=1 aiki ≤ 1,0 ≤ ki ≤ 1, i ∈ N}, and max{
∑n

i=1 log(ki)|k ∈ K} =

max{
∑n

i=1 log(ki)|k ∈K ′}.
Finally, we derive the expression of U ′ corresponding to K ′. Let ci = ai/Li ∈ [1/nLi,1/Li], i∈N .

That is, U ′ = {u|(u1/L1, u2/L2, . . . , un/Ln) ∈ K ′} = {u|
∑n

i=1 ciui ≤ 1,0 ≤ ui ≤ Li, i ∈ N}. Then,
max{

∑n

i=1 log(ui)|u∈U}=max{
∑n

i=1 log(ki)|k ∈K}+
∑n

i=1 log(Li) =max{
∑n

i=1 log(ki)|k ∈K ′}+∑n

i=1 log(Li) =max{
∑n

i=1 log(ui)|u∈U ′}.
■

3.2.1. Proportional Fairness To find the PF solution in the unequal maximum achievable
utilities case we solve the following optimization Problem (12):

max
(u1,u2,···,un)

n∑
i=1

log(ui), (12a)

s.t. 0≤ ui ≤Li, ∀i∈N, (12b)
n∑

i=1

ciui ≤ 1. (12c)

Let ki = ui/Li, then Problem (12) can be written as Problem (13):

max
(k1,k2,···,kn)

n∑
i=1

log(ki)+
n∑

i=1

log(Li), (13a)

s.t. 0≤ ki ≤ 1, ∀i∈N, (13b)
n∑

i=1

ciLiki ≤ 1. (13c)

The PF solution in the unequal maximum achievable utilities case is provided in the next propo-
sition. Its proof is essentially identical to the proof of Proposition 2 and is therefore omitted.

Proposition 5. The unique optimal solutions to Problems (12) and (13) are kPF =

(1/(nc1L1),1/(nc2L2), . . . ,1/(ncnLn)) and uPF = (1/(nc1),1/(nc2), . . . ,1/(ncn)), respectively.
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3.2.2. Utilitarian Solution By Proposition 4, the utilitarian solution in the unequal maximum
achievable utilities case is the optimal solution to

max
(u1,u2,···,un)

n∑
i=1

ui, (14a)

s.t. 0≤ ui ≤Li, ∀i∈N, (14b)
n∑

i=1

ciui ≤ 1. (14c)

Let ki = ui/Li, then the above optimization problem can be written as Problem (15):

max
(k1,k2,···,kn)

n∑
i=1

Liki, (15a)

s.t. 0≤ ki ≤ 1, ∀i∈N, (15b)
n∑

i=1

ciLiki ≤ 1. (15c)

Problem (15) is a linear relaxation of the 0-1 knapsack problem with rewards Li and costs ciLi.
Thus, its optimal solution is

kσ(i) =


1 i= 1, . . . , l(c)

δ(c) i= l(c)+ 1

0 i= l(c)+ 2, . . . , n,

where

l(c) :=max{j |
j∑

i=1

cσ(i)Lσ(i) ≤ 1}, δ(c) :=
1−

∑l(c)

i=1 cσ(i)Lσ(i)

cσ(l(c)+1)Lσ(l(c)+1)

, (16)

and σ(i) is the index of the ith smallest element in vector c.
Without loss of generality, we assume that the Li’s are decreasing, i.e. L1 ≥ L2 ≥ · · · ≥ Ln. Then

let us consider the following Problem (17),

max
(k1,k2,···,kn)

n∑
i=1

Liki, (17a)

s.t. 0≤ ki ≤ 1, i∈N, (17b)
n∑

i=1

cσ(i)Liki ≤ 1. (17c)

Problem (17) is a knapsack problem with rewards Li and costs cσ(i)Li. Compared to problem (15),
in Problem (17), items with larger rewards, Li, have smaller costs, cσ(i)Li. Thus, the optimal value
of Problem (17) exceeds that on Problem (15). Note further that replacing all ci with cσ(i) does not
affect the total sum of the players’ utilities in the PF solution. Thus, optimality would be achieved
when c1 ≤ c2 ≤ · · · ≤ cn, and we can therefore assume in the sequel that c1 ≤ c2 ≤ · · · ≤ cn.
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3.2.3. The Price of Proportional Fairness Similar to our analysis of the equal maximum
achievable utilities case, to calculate the upper bound of the price of proportional fairness, we solve
the following optimization Problem (18):

min
c

(

∑n

i=1 u
PF
i∑n

i=1 u
∗
i

=)

∑n

i=1
1

nci∑l

i=1Li +
1−

∑l
i=1 ciLi

cl+1

, (18a)

s.t. 1

nL1

≤ c1 ≤ c2 ≤ · · · ≤ cn ≤
1

Ln

, (18b)

1

n
≤ ciLi ≤ 1, i∈N, (18c)
l∑

i=1

ciLi ≤ 1, (18d)

l+1∑
i=1

ciLi > 1. (18e)

Let c∗ := (c∗1, c
∗
2, . . . , c

∗
n) denote an optimal solution for (18). By characterizing c∗, we can derive

a tight bound of the POF for the proportional fairness case when players have unequal maximum
achievable utilities. Let l denote l(c). Then, Constraints (18d) and (18e) ensure that l satisfies the
definition of l(c), given in Expression (16).

Theorem 2. Consider a resource allocation problem with n players, n≥ 2, defined over a utility
set U which is assumed to be compact, convex and monotone. Denote by Li the maximum achievable
utility of player i, and assume, without loss of generality, that L1 ≥ L2 ≥ · · · ≥ Ln. Then, the upper
bound of the price of proportional fairness, POF (U ;PF ), is:

(1) If
∑n

i=1Li ·L2 ≤L2
1,

POF (U ;PF )≤ 1−min
l∈N

(
∑l

i=1

√
Li)

2 +
∑n

i=l+1Li

n
∑l

i=1Li

;

(2) If
∑n

i=1Li ·L2 >L2
1,

POF (U ;PF )≤ 1−min

{
min
l∈N

(
∑l

i=1

√
Li)

2 +
∑n

i=l+1Li

n
∑l

i=1Li

,

(
√
L2

2 +2L1L2 +(L1 +L2)
∑n

i=3Li +
√
L1L2)

2

n(L1 +L2)2

}
.

Moreover, for any given L, the above bounds are tight in the sense that there exists utility set U for
which equality hold in the above inequalities.

Proof.
We first characterize the optimal solution, c∗, to Problem (18), which is using the following claims,

whose proofs are provided in Appendix EC.3. Let l := l(c∗) and x := cl+1.
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Claim 7. c∗i = 1/Li, for i= l+2, · · · , n.

Claim 8. c∗1
√
L1 = c∗2

√
L2 = · · ·= c∗l

√
Ll.

As a result of Claim 8, we may denote y := ci
√
Li for i= 1,2, · · · , l. Then, Problem (18) can be

written as follow,

min
x,y,l

1
y

∑l

i=1

√
Li +

1
x
+
∑n

i=l+2Li∑l

i=1Li +
1−y

∑l
i=1

√
Li

x

, (19a)

s.t. y√
Ll

≤ x≤ 1

Ll+1

, (19b)

x≥ 1

nLl+1

, (19c)

1

n
√
Ll

≤ y≤ 1∑l

i=1

√
Li

, (19d)

y
l∑

i=1

√
Li +xLl+1 > 1. (19e)

For convenience, we let A(l) denote
∑l

i=1

√
Li, B(l) denote

∑n

i=l+2Li, and M(l) denote
∑l

i=1Li.
Problem (20) is a relaxation of Problem (19), derived therefrom by removing the left-hand-side
constraints of (19b) and (19d).

min
x,y,l

f2(x, y, l) :=
1
y
A(l)+ 1

x
+B(l)

M(l)+ 1−yA(l)

x

, (20a)

s.t. 1

nLl+1

≤ x≤ 1

Ll+1

, (20b)

y≤ 1

A(l)
, (20c)

yA(l)+xLl+1 > 1. (20d)

We next characterize an optimal solution, (x∗, y∗, l∗), to Problem (20). We start by characterizing
x∗ and y∗ in the next two claims. The proofs of these claims, as well as the proofs of the other claims
used to prove Theorem 2 are provided in Appendix EC.3.

Claim 9. x∗ = 1/Ll∗+1.

Claim 10. (1) When l∗ = 1 with (B(0)+L1)L2 ≤L2
1, or when l∗ ≥ 2, y∗ = 1/A(l∗).

(2) When l∗ = 1 with (B(0)+L1)L2 >L2
1, y∗ = ỹ := (−

√
L1 +

√
B(0)+L1 +B(0)L1/L2)/B(0).

Finally, we are left to characterize l∗. If (B(0)+L1)L2 ≤L2
1, then, by Claim 9 and 10 the objective

function attains the minimum at x∗ = 1/Ll∗+1, y
∗ = 1/A(l∗), regardless of whether l∗ = 1 or l∗ ≥ 2.

Let
h(l) := f2(

1

Ll+1

,
1

A(l)
, l) =

(A(l))2 +Ll+1 +B(l)

M(l)
=

(A(l))2 +B(l− 1)

M(l)
.
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In Claim 11 below we prove that h(l) is decreasing for l ∈ [1, l∗] and increasing for l ∈ [l∗, n−1]. Thus,
we can find l∗ by comparing h(l) for successive values of l. If (B(0) + L1)L2 > L2

1, then x= 1/L2,
y = ỹ, l = 1, as well as x= 1/Ll+1, y = 1/A(l), l = 2,3, . . . , n− 1, are all candidates for an optimal
solution. So we need to compare the values of f2(1/L2, ỹ,1) with h(l), l= 2, · · · , n− 1 as well. Such
comparison admits a concise characterization as proved in the following claim.

Claim 11. h(l) is decreasing when l ∈ [1, l∗], increasing when l ∈ [l∗, n− 1], and l∗ = argminl h(l)

satisfies the following two inequalities if l∗ ∈ {2,3, · · · , n− 2}:

{√
Ll∗+1[(A(l

∗))2 +B(l∗ − 1)]≤ 2A(l∗)M(l∗), (21)√
Ll∗ [(A(l

∗))2 +B(l∗ − 1)]≥ 2M(l∗)A(l∗ − 1), (22)

where if l∗ = 1, only (21) is satisfied, and if l∗ = n− 1, only (22) is satisfied.

So far we have characterized an optimal solution (x∗, y∗, l∗) to (20). However, since (20) is a
relaxation of the original Problem (19), we have to show that (x∗, y∗, l∗) is feasible to the original
optimization Problem (19). It would then follow that (x∗, y∗, l∗) is also an optimal solution to (19).
By explicitly constructing a solution to (19), we have also proven the tightness of the upper bound
for the POF.

Claim 12. (x∗, y∗, l∗), as characterized in Claims 7-9, is feasible and thus optimal to Problem
(19).

■

Theorem 2 reduces Theorem 1 when players have equal maximum achievable utilities. To see that,
let Li ≡ 1, for i∈N . In this case,

∑n

i=1Li ·L2 −L2
1 = n− 1> 0. Then, by Theorem 2, we have

POF (U ;PF )≤ 1−min

{
min
l∈N

(
∑l

i=1

√
Li)

2 +
∑n

i=l+1Li

n
∑l

i=1Li

,

(
√
L2

2 +2L1L2 +(L1 +L2)
∑n

i=3Li +
√
L1L2)

2

n(L1 +L2)2

}
= 1− 1

n
min

{
min
l∈N

l2 +n− l

l
,

√
2n− 1+n

2

}
≤ 1−min

l∈N

1

n
(l+

n

l
− 1),

(23)

where the last inequality follows from Lemma 2, whose proof is provided in Appendix EC.4.

Lemma 2. For n≥ 3,
min
l∈N

l2 +n− l

l
≤

√
2n− 1+n

2
. (24)
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Since the negative term in the last line of (23) coincides with the right hand side term in (11), we

conclude that the upper bound for proportional POF when the maximum achievable utilities by the

players are not necessarily equal, given by Theorem 2, reduces to the bound given by Theorem 1

when the maximum achievable utilities of all players are equal.

3.2.4. The worst case of maximum achievable utilities Theorem 2 provides a tight upper

bound for the price of PF for a given set of maximum achievable utilities by the players. We next

provide an upper bound for the price of PF when the maximum achievable utilities for any of the

players can assume any positive finite value in (0,1].

Let UB(L;n,PF ) denote an upper bound for the price of PF for a fixed number of players, n, and

for a given maximum achievable utility vector L.

Proposition 6. Let Li ∈ (0,1] denote the maximum achievable utility of player i, and assume,

without loss of generality, that L1 ≥L2 ≥ · · · ≥Ln. Then,

sup
L:Li∈(0,1],L1≥...≥Ln

UB(L;n,PF ) = 1− 1

n
.

Proof.

From Theorem 2, UB(L;n,PF ) has the following two possible expressions:

UB(L;n,PF ) = 1−min
l∈N

(
∑l

i=1

√
Li)

2 +
∑n

i=l+1Li

n
∑l

i=1Li

; (25a)

UB(L;n,PF ) = 1−
(
√
L2

2 +2L1L2 +(L1 +L2)
∑n

i=3Li +
√
L1L2)

2

n(L1 +L2)2
(Only possible when (25b)

n∑
i=1

Li ·L2 >L2
1).

(1) If UB(L;n,PF ) has the Expression (25a), then

UB(L;n,PF ) = 1−min
l∈N

(
∑l

i=1

√
Li)

2 +
∑n

i=l+1Li

n
∑l

i=1Li

≤ 1−min
l∈N

∑l

i=1Li +
∑n

i=l+1Li

n
∑l

i=1Li

= 1− 1

n
−min

l∈N

∑n

i=l+1Li

n
∑l

i=1Li

< 1− 1

n
.

(26)
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(2) If UB(L;n,PF ) has the Expression (25b), then

UB(L;n,PF ) = 1−
(
√

L2
2 +2L1L2 +(L1 +L2)

∑n

i=3Li +
√
L1L2)

2

n(L1 +L2)2

= 1−
(
√

(L1 +L2)
∑n

i=1Li −L2
1 +

√
L1L2)

2

n(L1 +L2)2

< 1−
(
√
(L1 +L2)

L2
1

L2
−L2

1 +
√
L1L2)

2

n(L1 +L2)2
(By

n∑
i=1

Li ·L2 >L2
1)

= 1−
(L1

√
L1
L2

+
√
L1L2)

2

n(L1 +L2)2

< 1− (L1 +L2)
2

n(L1 +L2)2
= 1− 1

n
.

(27)

Thus, for any vector L of maximum achievable utilities, UB(L;n,PF )< 1− 1/n. We next prove
that supUB(L;n,PF ) = 1− 1/n.

Indeed, we will show that for any positive δ and a number smaller than 1− 1/n− δ, there exists
a vector of maximum achievable utilities L∗, for which UB(L∗;n,PF ) > 1− 1/n− δ. Specifically,
let L∗

1 = 1, and let L∗
i = ϵ, i = 2,3..., n, such that ϵ is small so that

∑n

i=1L
∗
i · L∗

2 ≤ L∗2
1 . Clearly,

for ϵ small enough, i.e., ϵ ≤ (
√
4n− 3 − 1)/(2(n − 1)), this inequality is satisfied. Then, let ϵ =

min{nδ/(2(n− 1)), (
√
4n− 3− 1)/(2(n− 1))},

UB(L∗;n,PF ) = 1−min
l∈N

(
√
L+(l− 1)

√
ϵ)2 +(n− l)ϵ

n(L+(l− 1)ϵ)

≥ 1− L+(n− 1)ϵ

nL
= 1− 1

n
− δ

2
> 1− 1

n
− δ.

■

Remark 1. We note that one can also easily show that for a fixed number of players, n, the
supremum of the BFT bound for the price of proportional fairness over all maximum achievable
utilities is also 1− 1/n.

3.2.5. Sensitivity of the bounds to the variability of the maximum achievable utilities
We next investigate the sensitivity of the bounds for the price of PF to the variability of the maximum
achievable utilities, L = (L1, . . . ,Ln). Figure 3 displays the case of n = 2, wherein the maximum
attainable utility of player 1, L1, is set at 1, and L2 varies within the interval (0,1]. When L2 = 1, the
sample variance is 0, corresponding to the case of equal maximum achievable utilities. In this case,
the BFT bound is 8.6%, and our bound is 6.7%, consistent with the results presented in BFT (2011)
and Theorem 1, respectively. As L2 approaches 0, the sample variance approaches its maximum
value of 0.25, at which point both bounds converge to 0.5, which is consistent with Proposition 6
and Remark 1. Figure 4 also clearly illustrates that the improvement of our bound over the BFT
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Figure 3 The two upper bounds of the price of proportional fairness as a function of sample variance for case
of n= 2.

bound for the price of PF is relatively substantial when the maximum achievable utilities have an

intermediate sample variance.

We have also compared the sensitivity of the two bounds to the variability of the maximum

achievable utilities for the case with n= 9 players. We have generated 100 groups of players’ max-

imum achievable utilities L = (L1, . . . ,Ln). In the tth group, each element of L is generated from

an independent truncated normal distribution with mean 1 and standard deviation σt = 0.01(t− 1),

t= 1, . . . ,100. The normal distribution was truncated to ensure that all elements of L are positive.

The two bounds are displayed in Figure 4 as a function of the sample variance. When the sample

variance is zero, both bounds coincide, since when
√
n is integer the BFT bound is tight when the

maximum achievable utilities are equal. But as Figure 4 clearly demonstrates, the quality of the BFT

bound deteriorates at a higher rate than our bound when the variability of the maximum achievable

utilities increases. Indeed, the difference between the two bounds in the unequal maximum achievable

utilities case is more significant than in the case of equal maximum achievable utilities, as it was

displayed in Figure 1.

4. Upper Bounds for The Price of Max-Min Fairness
BFT (2011) have derived a tight bound for the price of max-min fairness when the maximum achiev-

able utilities by all players are equal. In this section we improve upon the BFT bound for the price of

max-min fairness when the players maximum achievable utilities are not necessarily equal. We prove
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Figure 4 The two upper bounds of the price of proportional fairness as a function of sample variance.

that our bound is tight and investigate the difference between our bound and the BFT bound for
the unequal case.

4.1. The Max-Min Fairness Solution
Similar to the PF case, we first utilize a super set U ′ of the utility set U , to derive an upper bound
for the price of MMF in a tractable form.

Proposition 7. Suppose U ⊆ {u |0≤ ui ≤Li, i∈N} is a convex, compact, and monotone utility
set, and max{ui |u ∈ U} = Li for i ∈ N . Then there exist ci ∈ R for i ∈ N , such that U ⊆ U ′ :=

{u |
∑n

i=1 ciui ≤ 1,0 ≤ ui ≤ Li, i ∈ N}, and max{mini∈N(ui/Li)|u ∈ U} = max{mini∈N(ui/Li)|u ∈

U ′}. Consequently,
POF (U ;MMF )≤ 1−

∑n

i=1Li∑n

i=1 ciLi

∑n

i=1 u
∗(U ′)i

.

Proof. The MMF solution first maximizes the minimum among the ratios of the players’ utilities
to their respective maximum achievable utilities, and so on. We define ki as the ratio of player i’s util-
ity to their maximum achievable utility, i.e., ki := uMMF

i (U)/Li, then uMMF (U) = (k1L1, . . . , knLn).
Let ϕ denote the maximum ratio of a player’s utility to their respective maximum achievable

utility that all players can derive simultaneously. Then ki ≥ ϕ for all i ∈N . Since every player can
achieve in U their maximum achievable utility, (0, . . . ,Li, . . . ,0)∈U for all i∈N . Then, by convexity,
(L1/n, . . . ,Ln/n)∈U , so ϕ is at least 1/n. Further, since players cannot achieve a utility that exceed
their respective maximum achievable utility, ϕ∈ [1/n,1].
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Then, uMMF (U)≥ (ϕL1, . . . , ϕLn), and we have

POF (U ;MMF ) = 1−
∑n

i=1 u
MMF
i (U)∑n

i=1 u
∗
i (U)

≤ 1−
ϕ
∑n

i=1Li∑n

i=1 u
∗
i (U)

.

Since u := (ϕL1, . . . , ϕLn) is a boundary point in U , by the supporting hyperplane theorem, there
exists a vector v ̸= 0, such that

vTu≤ vTu,∀u∈U. (28)

Since 0∈U , we have vTu≤ 0. We claim that vTu< 0. Indeed, suppose, on the contrary, that vTu= 0,
i.e.,

∑n

i=1 viLi = 0. Then, since (0, . . . ,Li, . . . ,0)∈U for all i, by (28), we have viLi ≥ 0 for all i, which
implies that viLi = 0 for all i. However, since Li > 0, we must have that vi = 0 for all i, contradicting
the fact that v ̸= 0.

Let ci := vi/
∑n

i=1 viui = vi/
∑n

i=1 viLiϕ. Then, the supporting hyperplane can be written as∑n

i=1 ciui ≤ 1 for all u∈U , and
∑n

i=1 ciLi = 1/ϕ, implies that ϕ= 1/
∑n

i=1 ciLi.
Let U ′ = {(u1, u2, . . . , un) |

∑n

i=1 ciui ≤ 1, 0≤ ui ≤ Li, i= 1, . . . , n}. Then, U ⊆ U ′,
∑n

i=1 u
∗
i (U)≤∑n

i=1 u
∗
i (U

′), and

POF (U ;MMF )≤ 1−
ϕ
∑n

i=1Li∑n

i=1 u
∗
i (U)

≤ 1−
ϕ
∑n

i=1Li∑n

i=1 u
∗
i (U

′)
= 1−

∑n

i=1Li∑n

i=1 ciLi

∑n

i=1 u
∗
i (U

′)
. (29)

■

4.2. The Utilitarian Solution
The approach to find the utilitarian solution for U ′ is similar to that used to derive the price of
proportional fairness, which involves solving the following optimization Problem (30):

max
(u1,u2,···,un)

n∑
i=1

ui, (30a)

s.t. 0≤ ui ≤Li, ∀i∈N, (30b)
n∑

i=1

ciui ≤ 1. (30c)

Let ki = ui/Li for all i. Then Problem (30) can be formulated as Problem (31):

max
(k1,k2,···,kn)

n∑
i=1

Liki, (31a)

s.t. 0≤ ki ≤ 1, ∀i∈N, (31b)
n∑

i=1

ciLiki ≤ 1. (31c)
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Problem (31) is a linear relaxation of the knapsack problem with rewards Li and costs ciLi.
Without loss of generality, we assume that ci is increasing in i, i.e.,

c1 ≤ c2 ≤ · · · ≤ cn. (32)

As before, we define

l(c) :=max{j |
j∑

i=1

ciLi ≤ 1}, δ(c) :=
1−

∑l(c)

i=1 ciLi

cl(c)+1Ll(c)+1

∈ [0,1). (33)

Then the optimal solution to Problem (31) is given by

ki =


1 i= 1, . . . , l(c)

δ(c) i= l(c)+ 1

0 i= l(c)+ 2, . . . , n,

and the optimal value is
∑l(c)

i=1Li + δ(c)Ll(c)+1.

4.3. The Price of MMF
In order to calculate the upper bound of the price of max-min fairness, it suffices to minimize the
negative term in the last expression in (29), by incorporating the optimal solution to Problem (31)
derived above. Let l denote l(c), and consider the optimization Problem (34):

min
c,l

(f3(c, l;L) :=)
cl+1

∑n

i=1Li

(
∑n

i=1 ciLi) ·
(
cl+1

∑l

i=1Li +1−
∑l

i=1 ciLi

) , (34a)

s.t. c1 ≤ c2 ≤ · · · ≤ cn, (34b)

ciLi ≤ 1, i∈N, (34c)
l∑

i=1

ciLi ≤ 1, (34d)

l+1∑
i=1

ciLi > 1. (34e)

The first Constraint, (34b), is from (32). Since (0, . . . ,Li, . . . ,0)∈U for all i and U ⊆U ′, we have
(0, . . . ,Li, . . . ,0) ∈ U ′, which implies Constraint (34c). Constraints (34d) and (34e) ensure that l

satisfies the definition of l(c), given in Expression (33).

Theorem 3. Consider a resource allocation problem with n players, where n ≥ 2, and assume
the utility set U is compact and convex. Let Li denote the maximum achievable utility of player i,
and assume, without loss of generality, that L1 ≥L2 ≥ · · · ≥Ln. Let S1 := {l ∈N+ : (n− l− 1)Ll+1 <
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i=1Li ≤ (n− l+1)Ll+1}, and let S2 := {l ∈N+ :
∑l

i=1Li > (n− l+1)Ll+1}. Then, the upper bound
of the price of MMF is:

(1) If S1 ̸= ∅,

POF (U ;MMF )≤ 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
, where l∗ =max{S1}; (35)

(2) If S1 = ∅,

POF (U ;MMF )≤ 1−
∑n

i=1Li∑l∗

i=1Li(n− l∗ +1)
, where l∗ =min{S2}, (36)

where S1 := {l ∈N+ : (n− l− 1)Ll+1 <
∑l

i=1Li ≤ (n− l+1)Ll+1}, S2 := {l ∈N+ :
∑l

i=1Li > (n− l+

1)Ll+1}.

Moreover, the above bounds are tight in the sense that there exists a utility set U for which equality
holds in the above inequalities.

Proof.
The proofs of all claims used to prove Theorem 3 are in Appendix EC.5.
Let c∗ := (c∗i , i = 1,2, · · · , n) denote the optimal solution of Problem (34). As before, we first

characterize c∗i for i≥ l+2.

Claim 13. c∗i = 1/Li for i= l+2, · · · , n.

To simplify the notation, we define

x := cl+1, y :=
l∑

i=1

ciLi, and A :=
l∑

i=1

Li.

According to Claim 13, Problem (34) can be reformulated as Problem (37):

min
y,x,l

x
∑n

i=1Li

(y+n− l− 1+xLl+1)(Ax+1− y)
, (37a)

s.t. y≤Ax, (37b)

0≤ xLl+1 ≤ 1, (37c)

0≤ y≤ 1, (37d)

y+xLl+1 > 1. (37e)

In Problem (37), we will first fix the value of l, l ∈ [1, n− 1] and characterize the optimal values
of y,x. Note that if l= n, then

∑n

i=1 ciLi ≤ 1 and thus L := (L1,L2, . . . ,Ln) ∈ U . In this case, both
the utilitarian solution and the MMF solution are L, with a corresponding POF = 0, which is not
an interesting case to explore.



Authors’ names blinded for peer review
26 Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!)

Let g(x, y; l) denote the objective function without the constant
∑n

i=1Li in (37a), i.e.,

g(x, y; l) :=
x

(y+n− l− 1+xLl+1)(Ax+1− y)
.

For a given l, we have the following characterization of x∗, y∗, and g∗(x∗, y∗; l).

Claim 14. If A≤ (n− l− 1)Ll+1,

x∗ ∈ [
1

A+Ll+1

,
1

Ll+1

], y∗ = 1−x∗Ll+1, g(x∗, y∗; l) =
1

(n− l)(A+Ll+1)
;

If (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ =
1

2
(

A

Ll+1

−n+ l+1), g(x∗, y∗; l) =
4Ll+1

(A+(n− l+1)Ll+1)2
;

If A> (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ = 1, g(x∗, y∗; l) =
1

A(n− l+1)
.

We next characterize the order of the L′
is at optimality. For convenience, we introduce p(A,Ll+1; l),

defined as follows:

p(A,Ll+1; l)(:= g(x∗, y∗, l)) =


1

(n−l)(A+Ll+1)
, A≤ (n− l− 1)Ll+1,

4Ll+1

(A+(n−l+1)Ll+1)
2 , (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1,

1
A(n−l+1)

, A> (n− l+1)Ll+1.

(38)

Claim 15. p(A,Ll+1; l) is decreasing both in A and Ll+1.

Since A is the sum of L1 to Ll, the internal order of L1 to Ll does not affect the value of A and
thus, does not affect the objective function value. Therefore, without loss of generality, we assume
that L1 to Ll are arranged in a descending order. Then, according to Claim 15, the permutation of
the L′

is that would minimize p(A,Ll+1; l) should satisfy: L1 ≥L2 ≥ · · · ≥Ll ≥Ll+2, Ll+1 ≥Ll+2 and
Ll+2 ≥ Ll+3 ≥ · · · ≥ Ln. In fact, in Claim 16 below we prove that the L′

is should be in descending
order overall, i.e., L1 ≥L2 ≥ · · · ≥Ln.

Claim 16. The value of p(A,Ll+1; l) is minimized with respect to the Li, i= 1, . . . , n, if they are
arranged in a descending order.

Next we discuss the value of l at optimality. For convenience, we define

S0 := {l ∈N+ :
l∑

i=1

Li ≤ (n− l− 1)Ll+1},

S1 := {l ∈N+ : (n− l− 1)Ll+1 <
l∑

i=1

Li ≤ (n− l+1)Ll+1},

S2 := {l ∈N+ :
l∑

i=1

Li > (n− l+1)Ll+1}.
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Claim 17. Let l∗ denote an optimal value of l. If S1 ̸= ∅, l∗ =max{S1}, otherwise l∗ =min{S2}.

Now, l∗ =max{S1}, corresponds to the second case in Claim 14. Thus, g(x∗, y∗; l∗) = 4Ll∗+1/(A+

(n − l∗ + 1)Ll∗+1)
2 and 1 − POF (U ;MMF ), which is the objective function of (37), is given by

4Ll∗+1

∑n

i=1Li/(A+ (n − l∗ + 1)Ll∗+1)
2. Similarly, l∗ = min{S2} corresponds to the third case of

Claim 14. Thus, g(x∗, y∗; l∗) = 1/A(n− l∗ + 1) and 1− POF (U ;MMF ) =
∑n

i=1Li/A(n− l∗ + 1),
and we have derived the expressions for the upper bound for the price of MMF given in Theorem 3.

Finally, we provide an instance of U to illustrate that the above valuations of l∗, x∗, and y∗

(or c∗) can be achieved, which implies that the upper bound in Theorem 3 is tight. For a given
L= (L1,L2, · · · ,Ln), we can derive the corresponding S1, S2, and l∗, and define:

Y :=

{
1
2
(
∑l∗

i=1 Li

Ll∗+1
−n+ l∗ +1), if l∗ =max{S1},

1 if l∗ =min{S2}.

If l∗ =max{S1}, (n− l∗ − 1)Ll∗+1 <
∑l∗

i=1Li, and thus Y is always positive. We then construct a
utility set U = {u |0≤ ui ≤Li,

∑n

i=1 ciui ≤ 1}, where

ci =

{
Y

l∗Li
i= 1, · · · , l∗,

1
Li

i= l∗ +1, · · · , n.

Now, recall that to obtain the MMF solution, we initially maximize the minimum ratio of play-
ers’ utilities to their corresponding maximum achievable utilities, i.e., maxu∈U mini∈N ui/Li. In the
above specific example, the solution to this max-min optimization problem can be shown to be
ū := {L1/(Y + n − l∗),L2/(Y + n − l∗), · · · ,Ln/(Y + n − l∗)}, at which, obviously, all the ratios
of the players utilities to their maximum achievable utilities are equal. Since at ū, the constraint∑l

i=1 ciui ≤ 1 in U is satisfied as equality, and since all c′is are positive, any increase in the utility of
any of the players will violate this constraint. Therefore, ū must be the MMF solution.

Furthermore, since the utilitarian solution, u∗, for this example is u∗ = {L1, · · · ,Ll∗ , (1 −

Y )Ll∗+1,0, · · · ,0}, the price of MMF for this example is

POF (U ;MMF ) = 1−
∑n

i=1 u
MMF
i∑n

i=1 u
∗
i

= 1−

∑n
i=1 Li

Y+n−l∗∑l∗

i=1Li +(1−Y )Ll∗+1

=

 1− 4Ll∗+1
∑n

i=1 Li

(
∑l∗

i=1 Li+(n−l∗+1)Ll∗+1)
2

l∗ ∈ S1,

1−
∑n

i=1 Li∑l∗
i=1 Li(n−l∗+1)

l∗ ∈ S2.

■

4.4. The worst case of maximum achievable utilities
Similar to proportional fairness, let UB(L;n,MMF ) denote the set of all possible upper bounds
with given number of players, n.
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Proposition 8. Denote by Li ∈ (0,1] the maximum achievable utility of player i, and assume,
without loss of generality, that L1 ≥ L2 ≥ · · · ≥ Ln. For all possible values of maximum achievable
utilities, the supremum of the upper bound of the price of max-min fairness is:

sup
L:Li∈(0,1],L1≥···≥Ln

UB(L;n,MMF ) = 1− 1

n
.

Proof.
(1) If S1 ̸= ∅,

POF (U ;MMF )≤ 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
, where l∗ =max{S1};

(2) If S1 = ∅,

POF (U ;MMF )≤ 1−
∑n

i=1Li∑l∗

i=1Li(n− l∗ +1)
, where l∗ =min{S2},

where S1 := {l ∈ N+ : (n − l − 1)Ll+1 <
∑l

i=1Li ≤ (n − l + 1)Ll+1}, S2 := {l ∈ N+ :
∑l

i=1Li >

(n− l+1)Ll+1}.

From Theorem 3, UB(L;n,MMF ) has the following two possible expressions:

UB(L;n,MMF ) = 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
, (39a)

If (n− l∗ − 1)Ll∗+1 <
l∗∑
i=1

Li ≤ (n− l∗ +1)Ll∗+1;

UB(L;n,MMF ) = 1−
∑n

i=1Li∑l∗

i=1Li(n− l∗ +1)
, (39b)

If
l∗∑
i=1

Li > (n− l∗ +1)Ll∗+1.

(1) If (n− l∗ − 1)Ll∗+1 <
∑l∗

i=1Li ≤ (n− l∗ +1)Ll∗+1, it follows from (39a) that

UB(L;n,MMF ) = 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
≤ 1−

4Ll∗+1(
∑l∗

i=1Li +Ll∗+1)

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
.

(40)
For convenience, let

q(x) =
4Ll∗+1(x+Ll∗+1)

(x+(n− l∗ +1)Ll∗+1)2
.

The derivative of q(x) is:

q′(x) =
4Ll∗+1((n− l∗ − 1)Ll∗+1 −x)

(x+(n− l∗ +1)Ll∗+1)3
< 0. (By the condition of (39a))

Thus,
q(x)≥

4L2
l∗+1(n− l∗ +2)

4(n− l∗ +1)2L2
l∗+1

=
(n− l∗ +2)

(n− l∗ +1)2
≥ n+1

n2
>

1

n
,
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where the second-to-last inequality follows since (n− l+2)/(n− l+1) is increasing with l ∈ [1, n−1].
Thus,

UB(L;n,MMF )≤ 1− q(x)< 1− 1

n
.

(2) If
∑l∗

i=1Li > (n− l∗ +1)Ll∗+1, it follows from (39b) that

UB(L;n,MMF ) = 1−
∑n

i=1Li∑l∗

i=1Li(n− l∗ +1)
< 1−

∑l∗

i=1Li∑l∗

i=1Li(n− l∗ +1)

= 1− 1

n− l∗ +1
≤ 1− 1

n
.

(41)

Thus, we have UB(L;n,MMF )< 1− 1/n.
We next prove that supUB(L;n,PF ) = 1− 1/n. Indeed, if there exists a strictly smaller upper

bound 1− 1/n− δ, where δ > 0, let L∗
1 = L> 0,L∗

i = ϵ for i= 2,3, . . . , n. Then, there exists a small
ϵ= nLδ/(2(n−1)) such that the upper bound of the price of MMF with the given L∗ is greater than
1− 1/n− δ. The condition

∑l

i=1L
∗
i > (n− l∗ +1)L∗

l+1 is satisfied for all possible l when ϵ is close to
0, thus, S1 = ∅, l∗ = 1, and

UB(L∗;n,MMF ) = 1− L+(n− 1)ϵ∑l∗

i=1Li(n− l∗ +1)
≥ 1− L+(n− 1)ϵ

nL
= 1− 1

n
− δ

2
> 1− 1

n
− δ.

■

Remark 2. We note that one can also easily show that for a fixed number of players, n, the
supremum of the BFT bound for the price of max-min fairness over all maximum achievable utilities
is 1− 4/(n+1)2, which is strictly larger than our bound for all n≥ 2.

4.5. The improvement on the upper bound
The BFT bound for the price of max-min fairness was proven to be tight when all players have equal
maximum achievable utilities. We claim that if L1 =L2 = · · ·=Ln, then our upper bound, given by
Theorem 3, reduces to the BFT bound.

To show that, denote L :=L1 =L2 = · · ·=Ln. We have S1 = {l ∈N+ : (n− l− 1)Ll+1 <
∑l

i=1Li ≤

(n− l+1)Ll+1}= {l ∈N+ : (n− 1)/2< l≤ (n+1)/2} ̸= ∅.
If n is odd, then (n+ 1)/2 is an integer and l∗ =max{S1} = (n+ 1)/2. Then the upper bound

(35) is

1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
= 1− 4nL

2

(n+1)2L
2 = 1− 4n

(n+1)2
.

If n is even, then n/2 is an integer and l∗ =max{S1}= n/2. Then the upper bound (35) is

1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
= 1− 4nL

2

(n+1)2L
2 = 1− 4n

(n+1)2
,
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which is equal to the BFT bound for the price of max-min fairness when all maximum achievable
utilities are equal (BFT 2011).

When players have unequal maximum achievable utilities, our bound strictly improves upon the
BFT bound. To explore the extent of improvement, as in the PF case, we have considered a resource
allocation problem with 9 players, and we have generated randomly 100 sets of maximum achievable
utility vectors L. Specifically, in the tth group, each element of the vector L is randomly generated
from an independent truncated normal distribution with mean of 1, and standard deviations σt =

0.01(t− 1), t= 1,2, . . . ,100. The normal distribution is truncated to ensure all values generated are
positive. We then use the data sets to compute the BFT bound and our bound. The results are
presented in Figure 5. Note that for a sample variance of zero, both bounds coincide and are equal to
0.64, which is equal to the bound derived by BFT (2011) for the equal maximum achievable utilities
case. But, as is evident from Figure 5, as the sample variance increases, the BFT bound increases
at a significantly faster rate than our bound, especially when the sample variance of the maximum
achievable utilities is not too small.

Figure 5 The two upper bounds of the price of MMF.

5. Conclusion
We have derived tight bounds for the price of proportional fairness for all postive integers n and for
both the equal and the unequal maximum achievable utilities cases. As such, we improved on the
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bounds derived by BFT (2011). Specifically, their bounds for the price of proportional fairness are
tight only when

√
n is an integer and all players have equal maximum achievable utilities.

We have also studied the MMF criterion, which is in the spirit of Rawlsian justice and is motivated
by the Kalai-Smorodinsky solution for the two-player case (see BFT 2011). For this fairness criterion,
BFT (2011) have derived a tight bound for the price of MMF only when the maximum achievable
utilities for all players are equal. By contrast, we have derived a tight bound for the price of MMF
for the unequal maximum utilities case, which reduces to the tight bound in BFT (2011) for the case
of equal maximum achievable utilities.

For both fairness notions, we have also studied the sensitivity of our bounds and BFT bounds to
the variabilities of the maximum achievable utilities. Both bounds increase with the variability of
the maximum achievable utilities, but the BFT bounds increase at a faster rate. In addition, in the
worst case of maximum achievable utilities, we have proven that our bounds for both the PF and
MMF criteria are 1− 1/n. By comparison, as we have noted, the BFT bound in the worst case for
the PF criterion is also 1− 1/n, but for the MMF criterion it is 1− 4/(n+1)2.
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Endnotes
1. See https://optn.transplant.hrsa.gov/data/
2. The bound for the POF for the PF criterion is tight when the maximum achievable utilities have

a special structure.
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EC.1. Proof of Claims 1 - 6

Claim 1 Define m := l(c∗). Then, c∗i = 1 for i=m+2, · · · , n.

Proof. Suppose, on the contrary, that there exists k ∈ {m+ 2, · · · , n} such that c∗k < 1. Then
let c′i = c∗i for i≤ k− 1 and c′i = 1 for i≥ k. By construction, c′ satisfies (10b). Since the first m+1

terms of c′ and c∗ coincide, c′ also satisfies (10c) and (10d), and we conclude that c′ is feasible for
problem (10).

Since the objective function (10a) is a decreasing function of the coefficients ck for all k ≥m+2,
c′ attains a strictly lower objective value than c∗, which contradicts the optimality of c∗. ■

Claim 2 c∗1 = c∗2 = · · ·= c∗m.

Proof. Suppose, on the contrary, Claim 2 does not hold. Let c′′i = (
∑m

i=1 c
∗
i )/m for all i≤m,

and let c′′i = c∗i for all i≥m+1. Since
∑m

i=1 c
∗
i =

∑m

i=1 c
′′
i , c′′ is feasible to (10).

With Claim 1, the objective function in problem (10) can be reformulated as

f̃1(c1, . . . , cm+1) :=

∑m+1

i=1
1
ci
+n−m− 1

m+
1−

∑m
i=1 ci

cm+1

.

As the harmonic mean is always not larger than the arithmetic mean, we have

f̃1(c
∗
1, . . . , c

∗
m+1) =

∑m

i=1
1
c∗i
+ 1

c∗m+1
+n−m− 1

m+
1−

∑m
i=1 c∗i

c∗m+1

≥
m2∑m
i=1 c∗i

+ 1
c′′m+1

+n−m− 1

m+
1−

∑m
i=1 c′′i

c′′m+1

=

∑m

i=1
1
c′′i

+ 1
c′′m+1

+n−m− 1

m+
1−

∑m
i=1 c′′i

c′′m+1

= f̃1(c
′′
1 , . . . , c

′′
m+1),

where equality holds only when c∗ = c′′. Therefore, if c∗ ̸= c′′, c′′ yields a strictly lower objective value
than c∗, which contradicts the optimality of c∗. ■

Claim 3 c∗m+1 = 1.

Proof. With Claims 1 and 2, the objective function in (10) can be reformulated as

g(d, cm+1) :=

m
d
+ 1

cm+1
+n−m− 1

m+ 1−md
cm+1

.

The partial derivative of g(d, cm+1) with respect to cm+1 is given by

∂g(d, cm+1)

∂cm+1

=
1

(mcm+1 +1−md)2

(
(n−m− 1+

m

d
)(1−md)−m

)
,
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and note that its value is independent of cm+1. That is, ∂g(d, cm+1)/∂cm+1 is either always positive,
or always negative for all cm+1 ∈ [max{1−md,d},1]. Thus, g(d, cm+1) attains its minimum at one
of the two end points of the feasible interval for cm+1. To figure out which end point it attains a
minimum, consider the following three cases.

Case 1. If ∂g(d, cm+1)/∂cm+1 ≤ 0, then g(d, cm+1) reaches its minimum when cm+1 = 1.
Case 2a. If ∂g(d, cm+1)/∂cm+1 ≥ 0 and d≤ 1/(m+1), then 1−md≥ d. Recall that m= l(c∗),
thus c∗m+1 ∈ (1−md,1] due to (10d), and g(d, c∗m+1)> g(d,1−md). However, in this case, for
a feasible coefficient vector c, whose first m components coincide with the first m components
of c∗ and cm+1 = 1−md, we have that f1(c

∗) = g(d, c∗m+1)> g(d,1−md) = f1(c), contradicting
the optimality of c∗. So this case would never happen.
Case 2b. If ∂g(d, cm+1)/∂cm+1 ≥ 0 and d> 1/(m+1), then 1−md< d. Now c∗m+1 ∈ [d,1] due to
(10b). However, similar to Case 2a, for a feasible coefficient vector c with c1 = c2 = · · ·= cm+1 =

1/(m+ 1), we have f1(c
∗) = g(d, c∗m+1) ≥ g(d, d) =m+ 1+ (n−m− 1)d > m+ 1+ (n−m−

1)/(m+1) = f1(c), again, contradicting the optimality of c∗. So Case 2b would never happen.
From the above analysis, we conclude that the only viable case is Case 1, at which c∗m+1 = 1 and

∂g(d, cm+1)/∂cm+1 ≤ 0. ■

Claim 4 When m≥ 2, we have d∗ = 1/m.

Proof. Since c∗m+1 = 1, we let h(d) = g(d,1) = (m/d+n−m)/(m+1−md). The derivative of
h(d) is given by

h′(d) =
m(n−m)

(m+1−md)2d2

(
d2 +

2m

n−m
d− m+1

n−m

)
.

Note that the sign of h′(d) depends on the expression in the last bracket, denoted by h′
0(d). Clearly,

h′
0(d) increases with d. Now, we want to show that h′

0(1/m)≤ 0. Indeed, if it is true, then h′
0(d)≤ 0

for all d≤ 1/m, and thus h(d) reaches its minimum at d= 1/m.
Suppose, on the contrary, that h′

0(1/m)> 0, which implies that

m2 +n−m>m3. (EC.1)

Let d∗ denote the positive root of h′
0(d) = 0. Then, the objective function, h(d), reaches its minimum

at d∗, and we know that d∗ < 1/m.
By optimality of d∗ and m, the value of f(c) at c1 = · · ·= cm = d∗, cm+1 = · · ·= cn = 1 is smaller

than that at c1 = · · ·= cm+1 = 1/(m+1), cm+2 = · · ·= cn = 1, i.e.,
m
d∗ +n−m

m+1−md∗
≤ (m+1)2 +n−m− 1

m+1
,
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which implies that
(m2 +m+n)d∗2 − (m+2)(m+1)d∗ +m+1≤ 0. (EC.2)

By (EC.1), we have

0≥ (m2 +m+n)d∗2 − (m+2)(m+1)d∗ +m+1

> (m3 +2m)d∗2 − (m+2)(m+1)d∗ +m+1

= (md∗ − 1)((m2 +2)d∗ −m− 1)+m(m− 2).

(EC.3)

Since d∗ < 1/m and m≥ 2, we have md∗−1< 0, (m2+2)d∗−m−1< 2/m−1≤ 0 and m(m−2)≥
0, which contradicts (EC.3).

Thus, h0(1/m)≤ 0 and thus d∗ = 1/m. ■

Claim 5 When n≥ 3, m ̸= 1.

Proof. Suppose m= 1, and assume the objective function value reaches its minimum at d. Then,
d≤ 1 by Constraint (10b). Then the objective function value at c1 = d, c2 = · · ·= cn = 1 should be
smaller than or equal to that at c1 = c2 = 1/2, c3 = · · ·= cn = 1, in which case, m= 2 and d= 1/2.
Thus, we should have

1

d
+n− 1

2− d
≤ 2+n

2

⇒
1

d
+n− 1

2− d
− 2+n

2
=

2

d
+n− 4

2(2− d)
≤ 0. (EC.4)

However, since d≤ 1 and n≥ 3, we have 2/d+n− 4≥ 1 and 2(2−d)> 0, which contradicts (EC.4).
Thus, m ̸= 1 when n≥ 3. ■

Claim 6 When n= 2, m= 1, c∗1 =
√
3− 1.

Proof. By Claim 3, c∗2 = 1. Then the objective function is

f1(c) = f1((c1, c
∗
2)) =

1+ c1
c1(2− c1)

,

whose partial derivative with respect to c1 is:

df1((c1, c
∗
2))

dc1
=

c21 +2c1 − 2

2(2c1 − c21)
2

{
≤ 0, c1 ∈ [ 1

2
,
√
3− 1];

> 0, c1 ∈ (
√
3− 1,1].

Thus, c∗1 =
√
3− 1 and f1(c

∗) = f1((c
∗
1, c

∗
2)) = (2+

√
3)/4.

■
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EC.2. Proof of Lemma 1
Lemma 1 For any a ∈ N+ and n≥ 2, when n ∈ [a2, a(a+ 1)], ∆(n) increases with respect to n;

when n∈ [a(a+1), (a+1)2), ∆(n) decreases with respect to n. Thus, ∆(n) reaches a local maximum
when n= a(a+1).

Proof.
(1) When n ∈ [a2, a(a+1)]⇔ a ∈ [(

√
1+4n− 1)/2,

√
n], k = ⌊

√
n⌋= a, ϵ=

√
n− a ∈ [0, (1+ 2

√
n−

√
1+4n)/2]. Thus ∆(n) = (

√
n− a)2/(a(n− 2

√
n+1)), whose derivative is:

∆′(n) =
(
√
n− a)(a− 1)

a
√
n(
√
n− 1)3

≥ 0.

(2) When n ∈ [a(a + 1), (a + 1)2) ⇔ a ∈ (
√
n − 1, (

√
1+4n − 1)/2], k = ⌊

√
n⌋ = a, ϵ =

√
n − a ∈

[(1+2
√
n−

√
1+4n)/2,1). Thus ∆(n) = (1−

√
n+a)2/((a+1)(

√
n−1)2), whose derivative is:

∆′(n) =− (1−
√
n+ a)a

(a+1)
√
n(
√
n− 1)3

< 0.

■

EC.3. Proof of Claims 7 - 12
Claim 7 c∗i = 1/Li, for i= l+2, · · · , n.

Proof.
Recall that the objective function (18a) is ∑n

i=1
1

nci∑l

i=1Li +
1−

∑l
i=1 ciLi

cl+1

.

Note that c∗i = 1/Li, i= l+2, . . . , n, is feasible for problem (18), and since ci, i= l+2, · · · , n only
appear in the nominator of the objective function, (18a), which is to be minimized, at optimality,
they should attain their upper bounds.

■

Claim 8 c∗1
√
L1 = c∗2

√
L2 = · · ·= c∗l

√
Ll.

Proof.
By Cauchy–Schwarz inequality, we have

l∑
i=1

1

ci
≥

(
∑l

i=1

√
Li)

2∑l

i=1 ciLi

, (EC.5)

where equality holds when c21L1 = c22L2 = · · · = c2lLl. When adjusting the values of ci where i =

1,2, . . . , l, while keeping
∑l

i=1 ciLi constant, the denominator of the objective function (18a) remains
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invariant, and the numerator of the objective function (18a) reaches its minimum when the equality
in (EC.5) is satisfied. So, at optimality, c∗1

√
L1 = c∗2

√
L2 = · · ·= c∗l

√
Ll.

■

Claim 9 x∗ = 1/Ll∗+1.

Proof. Recall that

f2(x, y, l) =
1
y
A(l)+ 1

x
+B(l)

M(l)+ 1−yA(l)

x

, A(l) =
l∑

i=1

√
Li, B(l) =

n∑
i=l+2

Li, M(l) =
l∑

i=1

Li.

Then, the partial derivative of f2(x, y, l) with respect to x, is:

∂f2(x, y, l)

∂x
=

1
y
A(l)− yA(l)B(l)−M(l)+B(l)− (A(l))2

(xM(l)+ 1− yA(l))2
.

Note that since, by definition, A(l) and B(l) are positive, the numerator of ∂f2(x, y, l)/∂x,
which is independent of x, strictly decreases with y. Moreover, ∂f2(x, y, l)/∂x > 0 when y = 0+

and ∂f2(x, y, l)/∂x < 0 when y = 1/A(l). As a result, there exists y(l) ∈ (0,1/A(l)) at which
∂f2(x, y, l)/∂x = 0. Thus, ∂f2(x, y, l)/∂x > 0 when y ∈ (0, y(l)), and ∂f2(x, y, l)/∂x ≤ 0 when y ∈

[y(l),1/A(l)]. Next we prove that at optimality, y∗ ∈ [y(l∗),1/A(l∗)]. Therefore, the objective function
is minimized when x reaches its upper limit, 1/Ll∗+1, which proves the claim.

We prove that y∗ ∈ [y(l∗),1/A(l∗)] by contradiction. Suppose, on the contrary, that y∗ ∈ (0, y(l∗)),
and let us focus on y ∈ (0, y(l∗)), for which we have that ∂f2(x, y, l

∗)/∂x > 0. Since, by (20d),
x> (1− yA(l∗))/Ll∗+1, we have

f2(x, y, l
∗)> f2(

1− yA(l∗)

Ll∗+1

, y, l∗) =
B(l∗)+ A(l∗)

y
+

Ll∗+1

1−yA(l∗)

M(l∗ +1)
.

The partial derivative of f2((1− yA(l∗))/Ll∗+1, y, l
∗) with respect to y has the following form,

∂f2(
1−yA(l∗)
Ll∗+1

, y, l∗)

∂y
=

A(l∗) · ((Ll∗+1 −A(l∗))y2 +2A(l∗) · y− 1)

M(l∗ +1) · y2 · (A(l∗) · y− 1)2
,

and it is negative when y ∈ (0,1/A(l∗+1)), and it is positive when y ∈ (1/A(l∗+1),1/A(l∗)], implying
that f2((1− yA(l∗))/Ll∗+1, y, l

∗) is minimized at y= 1/A(l∗ +1). Thus, for all feasible y, we have

f2(
1−yA(l∗)
Ll∗+1

, y, l∗) ≥ f2(
1− A(l∗)

A(l∗+1)

Ll∗+1
, 1
A(l∗+1)

, l∗) = B(l∗)+(A(l∗+1))2

M(l∗+1)

=
(A(l∗+1))2+Ll∗+2+B(l∗+1)

M(l∗+1)
= f2(

1
Ll∗+2

, 1
A(l∗+1)

, l∗ +1).

Thus, as long as y∗ ∈ (0, y(l∗)), for all feasible x, we have f2(x, y, l∗)> f2((1−yA(l∗))/Ll∗+1, y, l
∗)≥

f2(1/Ll∗+2,1/A(l
∗ + 1), l∗ + 1). Therefore, any l∗ ≤ n− 2 is sub-optimal as a smaller objective can

be attained by replacing l∗ with l∗+1, contradicting the optimality of l∗. We conclude that the only
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possible case for y∗ ∈ (0, y(l∗)) is l∗ = n− 1, since, in this case, replacing l∗ with l∗ +1, would lead
to l∗ = n, which is infeasible.

Next, we prove that when l∗ = n−1, y∗ ∈ (0, y(l∗)) is also impossible, and x∗ = 1/Ln, y
∗ = 1/A(n−

1).
Since B(l) =

∑n

l+2Li, we have B(n− 1) = 0, and ∂f2(x, y,n− 1)/∂x= (A(n− 1)/y−M(n− 1)−

(A(n−1))2)/(xM(n−1)+1−yA(n−1))2. Thus, y(n−1), as the solution to ∂f2(x, y,n−1)/∂x= 0,
has the following expression,

y(n− 1) =
A(n− 1)

(A(n− 1))2 +M(n− 1)
.

From the previous analysis, f2((1− yA(l∗))/Ll∗+1, y, l
∗) decreases in y when y ∈ [0,1/A(l∗+1)] =

[0,1/A(n)]. We observe that

y(n− 1) =
A(n− 1)

(A(n− 1))2 +M(n− 1)
≤ A(n− 1)

(A(n− 1))2 +A(n− 1)
√
Ln

=
1

A(n− 1)+
√
Ln

=
1

A(n)
.

Thus, f2((1− yA(n− 1))/Ln, y,n− 1) decreases over [0, y(n− 1)]. Consequently,

f2(x, y,n− 1)> f2((1− yA(n− 1))/Ln, y,n− 1)≥ f2((1− y(n− 1) ·A(n− 1))/Ln, y(n− 1), n− 1)

=
(A(n− 1))2 +M(n− 1)

M(n− 1)
≥ (A(n− 1))2 +Ln

M(n− 1)
= f2(1/Ln,1/A(n− 1), n− 1),

and we conclude that, given that l∗ = n− 1, x∗ = 1/Ln, y∗ = 1/A(n− 1) is optimal. However, we
reached a contradiction, since y∗ ≤ y(n− 1)≤ 1/(A(n− 1)+

√
Ln)< 1/A(n− 1), which implies that

y∗ ≥ y(l∗) and thus x∗ = 1/Ll∗+1. ■

Claim 10 (1) When l∗ = 1 with (B(0)+L1)L2 ≤L2
1, or when l∗ ≥ 2, y∗ = 1/A(l∗).

(2) When l∗ = 1 with (B(0)+L1)L2 >L2
1, y∗ = ỹ := (−

√
L1 +

√
B(0)+L1 +B(0)L1/L2)/B(0).

Proof.
According to Claim 9, x∗ = 1/Ll∗+1, and thus, the objective function of (20) can be written as:

g(y, l) =

A(l)

y
+B(l− 1)

M(l+1)− yA(l)Ll+1

.

The partial derivative of g(y, l) with respect to y has the following form:

∂g(y, l)

∂y
=

A(l)

y2(M(l+1)−A(l)Ll+1y)2
(
(B(l)Ll+1 +L2

l+1)y
2 +2A(l)Ll+1y−M(l+1)

)
.

Let ỹ denote the positive root of ∂g(y, l)/∂y= 0. Then by the quadratic formula,

ỹ=
−A(l)Ll+1 +

√
(A(l))2L2

l+1 +Ll+1M(l+1)B(l− 1)

B(l− 1)Ll+1

,
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and the above partial derivative ∂g(y, l)/∂y is negative when y < ỹ, and it is positive when y > ỹ.
Thus, if ỹ ≥ 1/A(l), then, since by (20c), for all feasible y, y ≤ 1/A(l), we have that ∂g(y, l)/∂y ≤
0, and thus g(y, l) attains the minimum at y = 1/A(l). If, on the other hand, ỹ < 1/A(l), then
∂g(y, l)/∂y≤ 0 for y ∈ (0, ỹ], and ∂g(y, l)/∂y > 0 for y ∈ (ỹ,1/A(l)], implying that the objective value
attains the minimum at y= ỹ. Thus, we have y∗ =min{ỹ,1/A(l∗)}.

Recall that A(l) =
∑l

i=1

√
Li,M(l) =

∑l

i=1Li,B(l) =
∑n

i=l+2Li.
If l∗ = 1 with ỹ < 1/A(1)⇔ (B(0)+L1)L2 >L2

1, which proves Case (2) of the claim.
If l∗ = 1 with ỹ≥ 1/A(1)⇔ (B(0)+L1)L2 ≤L2

1, which proves Case (1) of the claim for l∗ = 1.
When l∗ ≥ 2, ỹ ≥ 1/A(l∗)⇔ (A(l∗))2 ·M(l∗) ≥ [(A(l∗))2 +B(l∗ − 1)] · Ll∗+1. We next prove this

inequality by contradiction, which would imply that y∗ = 1/A(l∗) when l∗ ≥ 2.
So, suppose, on the contrary, that

(A(l∗))2 ·M(l∗)< [(A(l∗))2 +B(l∗ − 1)] ·Ll∗+1, (EC.6)

then ỹ < 1/A(l∗), and we have y∗ = ỹ.
Since, by definition, the objective function, g(y, l), attains its minimum at x= 1/Ll∗+1, y= y∗, l=

l∗, its value at this point is smaller than or equal to its value at x= 1/Ll∗+2, y= 1/A(l∗+1), l= l∗+1,
i.e.,

A(l∗)
y∗ +B(l∗ − 1)

M(l∗ +1)− y∗A(l∗)Ll∗+1

≤ (A(l∗ +1))2 +B(l∗)

M(l∗ +1)

⇒ [(A(l∗))2 +2A(l∗)
√

Ll∗+1 +B(l∗ − 1)]Ll∗+1y
∗2 − (A(l∗)+ 2

√
Ll∗+1) ·M(l∗ +1) · y∗

+M(l∗ +1)≤ 0.

By (EC.6), we have

0≥[(A(l∗))2 +2A(l∗)
√
Ll∗+1 +B(l∗ − 1)]Ll∗+1y

∗2 − (A(l∗)+ 2
√

Ll∗+1) ·M(l∗ +1) · y∗

+M(l∗ +1)

>[(A(l∗))2M(l∗)+ 2A(l∗)Ll∗+1

√
Ll∗+1]y

∗2 − (A(l∗)+ 2
√

Ll∗+1)M(l∗ +1) · y∗ +M(l∗ +1)

=(A(l∗)y∗ − 1)[(A(l∗)M(l∗)+ 2Ll∗+1

√
Ll∗+1)y

∗ −M(l∗ +1)]+ (A(l∗)− 2
√

Ll∗+1)M(l∗).
(EC.7)

We will next show that the bottom expression in (EC.7), denoted by Q, is positive, which reveals
that (EC.7) does not hold. Consider the first term in Q, which consists of the product of two terms,
say P1 and P2. By supposition, we know ỹ= y∗ < 1/A(l∗). Thus, P1 =A(l∗)y∗−1< 0. Next, consider
the term P2. We have P2 = (A(l∗)M(l∗) + 2Ll∗+1

√
Ll∗+1)y

∗ −M(l∗ + 1) < (A(l∗)y∗ − 1)M(l∗) +

2Ll∗+1

√
Ll∗+1y

∗ −Ll∗+1 < 2Ll∗+1

√
Ll∗+1/A(l

∗)−Ll∗+1 =Ll∗+1(2
√

Ll∗+1 −A(l∗))/A(l∗).
When l∗ ≥ 2, 2

√
Ll∗+1 − A(l∗) ≤ 0. Thus, the first product in the right-hand side of Equation

(EC.7) is positive. Also the second product is non-negative, which means (EC.7) does not hold. We
conclude that, (EC.6) does not hold, i.e., (A(l∗))2 ·M(l∗)≥ [(A(l∗))2 +B(l∗ − 1)] ·Ll∗+1.
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■

Recall that

h(l) := f2(
1

Ll+1

,
1

A(l)
, l) =

(A(l))2 +Ll+1 +B(l)

M(l)
=

(A(l))2 +B(l− 1)

M(l)
.

Claim 11 h(l) is decreasing when l ∈ [1, l∗], increasing when l ∈ [l∗, n− 1], and l∗ = argminl h(l)

satisfies the following two inequalities if l∗ ∈ {2,3, · · · , n− 2}:{√
Ll∗+1[(A(l

∗))2 +B(l∗ − 1)]≤ 2A(l∗)M(l∗), (EC.8)√
Ll∗ [(A(l

∗))2 +B(l∗ − 1)]≥ 2M(l∗)A(l∗ − 1), (EC.9)

where if l∗ = 1, only (EC.8) is satisfied, and if l∗ = n− 1, only (EC.9) is satisfied.

Proof. Since l ∈ {1,2, · · · , n− 1}, there exists a l∗ minimizing h(l). Thus, for the l∗, we have{
h(l∗)≤ h(l∗ +1), (EC.10)

h(l∗)≤ h(l∗ − 1). (EC.11)

From (EC.10), we have

(A(l∗))2 +B(l∗ − 1)

M(l∗)
≤ (A(l∗ +1))2 +B(l∗)

M(l∗ +1)
,

⇒ (M(l∗)+Ll∗+1)[(A(l
∗))2 +B(l∗ − 1)]≤M(l∗)[(A(l∗)+

√
Ll∗+1)

2 +B(l∗ − 1)−Ll∗+1],

⇒
√

Ll∗+1[(A(l
∗))2 +B(l∗ − 1)]≤ 2A(l∗)M(l∗),

which coincides with (EC.8).
Then we have

h(l∗ +2)−h(l∗ +1) =

√
Ll∗+2

M(l∗ +1) ·M(l∗ +2)

{2A(l∗)M(l∗)+ 2A(l∗)Ll∗+1 +2M(l∗ +1)
√

Ll∗+1

− [(A(l∗))2 +2A(l∗)
√
Ll∗+1 +B(l∗ − 1)]

√
Ll∗+2}

≥
√
Ll∗+2

M(l∗ +1) ·M(l∗ +2)
{[(A(l∗))2 +B(l∗ − 1)+2A(l∗)

√
Ll∗+1]·

(
√

Ll∗+1 −
√
Ll∗+2)+ 2M(l∗ +1)

√
Ll∗+1}

≥ 0.

Similarly, from (EC.11), we have

(A(l∗))2 +B(l∗ − 1)

M(l∗)
≤ (A(l∗ − 1))2 +B(l∗ − 2)

M(l∗ − 1)
,

⇒ (M(l∗)−Ll∗)[(A(l
∗))2 +B(l∗ − 1)]≤M(l∗)[(A(l∗)−

√
Ll∗)

2 +B(l∗ − 1)+Ll∗ ],

⇒
√

Ll∗ [(A(l
∗))2 +B(l∗ − 1)]≥ 2M(l∗)A(l∗ − 1),

which coincides with (EC.9).
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Then we have

h(l∗ − 2)−h(l∗ − 1) =

√
Ll∗−1

M(l∗ − 1) ·M(l∗ − 2)

(2
√
Ll∗−1 − 2A(l∗ − 1))M(l∗ − 1)+√

Ll∗−1[(A(l
∗))2 − 2A(l∗)

√
Ll∗ +2Ll∗ +B(l∗ − 1)]

≥
√
Ll∗−1

M(l∗ − 1) ·M(l∗ − 2)
[2
√

Ll∗−1 ·M(l∗ − 1)

+2A(l∗ − 1) · (
√

Ll∗−1 −
√
Ll∗) ·

M(l∗ − 1)√
Ll∗

]

≥ 0.

■

Claim 12 (x∗, y∗, l∗), as characterized in Claims 7-9, is feasible and thus optimal to Problem (19).

Proof. It suffices to show that the optimal solution (x∗, y∗, l∗) to (20) satisfies the two constraints
in (19) that were removed from (20), that is,

y∗
√
Ll∗

≤ x∗, (EC.12a)

1

n
√
Ll∗

≤ y∗. (EC.12b)

When l∗ = 1 with (B(0) +L1)L2 ≤ L2
1, or when l∗ ≥ 2, by Claims 9 and 10, the optimal solution

for (20) is x∗ = 1/Ll∗+1, y
∗ = 1/A(l∗). Since A(l∗)

√
Ll∗ ≥Ll∗ ≥Ll∗+1, (EC.12a) holds.

Let us consider (EC.12b). Then, we have A2(l∗) =M(l∗)+ 2
∑

1≤i<j≤l∗
√

LiLj ≤ l∗M(l∗), and by
(EC.9),

A(l∗ − 1)√
Ll∗

≤ A2(l∗)+B(l∗ − 1)

2M(l∗)
≤

l∗M(l∗)+ n−l∗

l∗ M(l∗)

2M(l∗)
≤ 1

2
(l∗ +

n

l∗
− 1)≤ n− 1,

⇒A(l∗)≤ n
√
Ll∗ , ⇒ 1

n
√
Ll∗

≤ y∗.

Thus, (EC.12b) holds.
When l∗ = 1 with (B(0) + L1)L2 > L2

1, by Claims 9 and 10, the optimal solution for (20) is
x∗ = 1/L2, y

∗ = (−
√
L1 +

√
B(0)+L1 +B(0)L1/L2)/B(0). Since y∗ ≤ 1/

√
L1 ≤

√
L1/L2, (EC.12a)

holds. For (EC.12b), since B(0)≤ (n− 1)L2, we have

y∗ =
−
√
L1 +

√
B(0)+L1 +B(0)L1

L2

B(0)
=

1+ L1
L2√

B(0)+L1 +B(0)L1
L2

+
√
L1

≥
1+ L1

L2√
(n− 1)L2 +nL1 +

√
L1

=
1√
L1

·
1+ L1

L2√
(n− 1)L2

L1
+n+1

≥ 1

n
√
L1

,

so (EC.12b) holds. ■
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EC.4. Proof of Lemma 2
Lemma 2 For n≥ 3,

min
l∈N

l2 +n− l

l
≤

√
2n− 1+n

2
. (EC.13)

Proof. First consider the case where n≥ 5, and let f(l) = (l2 + n− l)/l. Then, f(l) decreases
monotonically when l ∈ [1,

√
n] and increases monotonically when l ∈ [

√
n,n− 1]. Recall that l is

restricted to be integer and note that there must be an integer between
√
n and

√
n+1. So we have

min
l∈N

l2 +n− l

l
≤ f(

√
n+1) =

√
n+

n√
n+1

.

Let
g(n) =

√
2n− 1+n

2
−
√
n− n√

n+1
.

We first show that for n≥ 5, g(n)≥ 0, which implies that (EC.13) holds for this case. Now, the
derivative of g(n) is:

g′(n) =
(n− 3)

√
n− 1√

n(1+
√
n)2

+
1√

2n− 1
,

which is positive for n≥ 5. Thus, g(n)≥ g(5) = (21− 9
√
5)/4> 0 for n≥ 5.

It remains to consider the cases when n= 3,4.
When n= 3,minl∈N(l

2 +n− l)/l= 2.5, (
√
2n− 1+n)/2 = (3+

√
5)/2≈ 2.62, thus (EC.13) holds.

When n= 4,minl∈N(l
2 +n− l)/l= 3, (

√
2n− 1+n)/2 = (4+

√
7)/2≈ 3.32, thus (EC.13) holds.

■

EC.5. Proof of Claims 13-17
Claim 13 c∗i = 1/Li for i= l+2, . . . , n.

Proof. Note first that ci, i= l+2, . . . , n, solely appear in the first term of the denominator of
the objective function (34a). Therefore, to minimize (34a), they should be assigned their maximum
values within the feasible domain.

Next, we show that we can assume, without loss of generality, that Ll+2 ≥ Ll+3 ≥ · · · ≥ Ln.
Indeed, suppose, on the contrary, that this assumption is not satisfied, and that Lj <Lj+1, for some
j ∈ [l + 2, n − 1]. Then Constraints (34b) and (34c) imply that cj ≤ cj+1 ≤ 1/Lj+1 < 1/Lj . Thus,∑n

i=l+2 ciLi < n− l− 1. On the other hand, let L′
i = Li, i= 1, . . . , l+ 1, and let L′

i, i= l+ 2, . . . , n,
denote the partial vector derived from the partial vector (Li), i = l + 2, . . . , n, after rearranging
the components of the latter in a descending order. That is, L′

l+2 ≥ L′
l+3 ≥ · · · ≥ L′

n. Similarly, let
c′i = ci, i = 1, . . . , l + 1, and let c′i = 1/L′

i, i = l + 2, . . . , n, which denotes a feasible solution to the
optimization Problem (34) corresponding to the parameters L′

i, i = 1, . . . , n. Thus,
∑n

i=l+2 c
′
iL

′
i =

n− l− 1 >
∑n

i=l+2 ciLi, while the other terms in the objective function remain invariant for these
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two sets of parameters and variables. Consequently, we have f3(c
′, l;L′) ≤ f3(c, l;L). Thus, we can

assume Ll+2 ≥Ll+3 ≥ · · · ≥Ln.
This assumption ensures that ci = 1/Li, i = l + 2, · · · , n satisfies Constraint (34b) and hence is

feasible. Incorporating the above analysis that ci, i = l + 2, · · · , n should take the maximum value
within the feasible domain, we have c∗i = 1/Li, i= l+2, · · · , n.

■

Claim 14 If A≤ (n− l− 1)Ll+1,

x∗ = any value in [
1

A+Ll+1

,
1

Ll+1

], y∗ = 1−x∗Ll+1, g(x∗, y∗; l) =
1

(n− l)(A+Ll+1)
;

If (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ =
1

2

(
A

Ll+1

−n+ l+1

)
, g(x∗, y∗; l) =

4Ll+1

(A+(n− l+1)Ll+1)2
;

If A> (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ = 1, g(x∗, y∗; l) =
1

A(n− l+1)
.

Proof. If A ≤ (n− l− 1)Ll+1, let x∗ be any value in [1/(A+ Ll+1),1/Ll+1], y∗ = 1− x∗Ll+1,
then

g(x∗, y∗; l) =
x∗

(y∗ +n− l− 1+x∗Ll+1)(Ax∗ +1− y∗)
=

1

(n− l)(A+Ll+1)
.

For any feasible x, y, we have
g(x, y; l)−g(x∗, y∗; l)

=
(1− y−xLl+1)x ·A+(n− l− 1+ y)(y+xLl+1 − 1)

(n− l)(A+Ll+1)(y+n− l− 1+xLl+1)(Ax+1− y)

≥ (1− y−xLl+1)(n− l− 1)xLl+1 +(n− l− 1+ y)(y+xLl+1 − 1)

(n− l)(A+Ll+1)(y+n− l− 1+xLl+1)(Ax+1− y)

(since, by (34e), 1− y−xLl+1 < 0)

=
(y+xLl+1 − 1)((n− l− 1)(1−xLl+1)+ y)

(n− l)(A+Ll+1)(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 0.

If (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1, let x∗ = 1/Ll+1, y∗ = (A/Ll+1 −n+ l+1)/2, then

g(x∗, y∗; l) =
1/Ll+1

(A/Ll+1 +n− l+1)2/4
=

4Ll+1

(A+(n− l+1)Ll+1)2
.

For any feasible x, y, we have
g(x, y; l)−g(x∗, y∗; l)

=
x(A−L(−3− l+n+2xLl+1 +2y))2 +4Ll+1(1−xLl+1)(xLl+1 + y− 1)

(A+(n− l+1)Ll+1)2(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 4Ll+1(1−xLl+1)(xLl+1 + y− 1)

(A+(n− l+1)Ll+1)2(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 0.
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If A> (n− l+1)Ll+1, let x∗ = 1/Ll+1, y∗ = 1, then

g(x∗, y∗; l) =
x∗

(y∗ +n− l− 1+x∗Ll+1)(Ax∗ +1− y∗)
=

1

A(n− l+1)
.

For any feasible x, y, we have
g(x, y; l)−g(x∗, y∗; l)

=
(2− y−Ll+1x)Ax− (y+xLl+1 +n− l− 1)(1− y)

A(n− l+1)(y+n− l− 1+xLl+1)(Ax+1− y)

>
(2− y−Ll+1x)(n− l+1)xLl+1 − (y+xLl+1 +n− l− 1)(1− y)

A(n− l+1)(y+n− l− 1+xLl+1)(Ax+1− y)

=
(1− y)2 +(1−xLl+1)(xLl+1 +(n− l)(xLl+1 + y− 1))

A(n− l+1)(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 0.

The last inequality holds due to 1− xLl+1 ≥ 0 by (37c), xLl+1 + y− 1≥ 0 by (37e), n≥ l+1 by
definition and 1− y≥ 0 by (37d).

■

Claim 15 p(A,Ll+1; l) is decreasing in both A and Ll+1.

Proof. We first show that p(A,Ll+1; l) decreases in A. Recall that p(A,Ll+1; l) is defined in
(38), and A=

∑l

i=1Li. Now, note that A only appears in the denominator of p(A,Ll+1; l), and in
all three ranges for which p is defined, an increase in A increases the denominator of p(A,Ll+1; l).
Thus, in each of these three ranges, p is decreasing in A.

Further, note that if A= (n− l−1)Ll+1, then 1/((n− l)(A+Ll+1)) = 4Ll+1/(A+(n− l+1)Ll+1)
2;

and if A= (n− l+1)Ll+1, then 4Ll+1/(A+(n− l+1)Ll+1)
2 = 1/(A(n− l+1)). Thus, p(A,Ll+1; l)

is continuous in A over the entire region, and we conclude that p(A,Ll+1; l) is decreasing in A.
To prove that p(A,Ll+1; l) decreases in Ll+1, we rewrite p(A,Ll+1; l) as follows:

p(A,Ll+1; l) :=


1

A(n−l+1)
, Ll+1 <

A
n−l+1

;
4Ll+1

(A+(n−l+1)Ll+1)
2 ,

A
n−l+1

≤Ll+1 <
A

n−l−1
;

1
(n−l)(A+Ll+1)

, Ll+1 ≥ A
n−l−1

.

Clearly, if Ll+1 < A/(n− l+ 1) or Ll+1 ≥ A/(n− l− 1), then p(A,Ll+1; l) is decreasing in Ll+1.
For the region where A/(n− l + 1) ≤ Ll+1 < A/(n− l − 1), we calculate the partial derivative of
p(A,Ll+1; l) with respect to Ll+1,

∂p

∂Ll+1

=
4(A− (n− l+1)Ll+1)

(A+(n− l+1)Ll+1)3
,

which is obviously negative in this region. Thus, p(A,Ll+1; l) is decreasing in Ll+1 in this region
as well. Finally, it is easy to verify that p(A,Ll+1; l) is continuous in Ll+1, and thus p(A,Ll+1; l) is
decreasing in Ll+1. ■
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Claim 16 The value of p(A,Ll+1; l) is minimized with respect to the Li, i= 1, . . . , n, if they are

arranged in a descending order.

Proof. We have previously shown that the permutation of the L′
is that would minimize

p(A,Ll+1; l) should satisfy: L1 ≥L2 ≥ · · · ≥Ll ≥Ll+2, Ll+1 ≥Ll+2 and Ll+2 ≥Ll+3 ≥ · · · ≥Ln. Thus,

what remains to show is Ll+1 ≤ Ll. Suppose it is not true, then we can construct L′ which is in

descending order and for which p attains a smaller value.

Let ∆= Ll+1 − Ll > 0,L′
l+1 = Ll+1 −∆,A′ = A+ Ll+1 − L′

l+1 = A+∆. The relationship among

A′, (n − l − 1)L′
l+1 and (n − l + 1)L′

l+1, as well as the relationship among A, (n − l − 1)Ll+1 and

(n− l+ 1)Ll+1, affect which segments of the piecewise functions p(A′,L′
l+1; l) and p(A,Ll+1; l) are

valid.

The following two diagrams present the valid expressions for p(A′,L′
l+1; l) and p(A,Ll+1; l) in seven

possible different cases.

(1) If (n − l − 1)Ll+1 ≤ (n − l + 1)Ll+1 − (n − l − 2)∆, then the following five different cases,

depending on the range of A, are possible:

(n− l− 1)Ll+1 − (n− l)∆ (n− l+1)Ll+1 − (n− l− 2)∆

(n− l− 1)Ll+1 (n− l+1)Ll+1

1
(n−l)(A+Ll+1)

4Ll+1

(A+(n−l+1)Ll+1)
2

1
A(n−l+1)

1
(n−l)(A′+L′

l+1
)

4L′
l+1

(A′+(n−l+1)L′
l+1

)2
1

A′(n−l+1)

A

p(A,Ll+1; l) =

p(A′,L′
l+1; l) =

Index 1⃝ 2⃝ 3⃝ 4⃝ 5⃝

(2) If (n − l − 1)Ll+1 > (n − l + 1)Ll+1 − (n − l − 2)∆, then the following five different cases,

depending on the range of A, are possible:

(n− l− 1)Ll+1 − (n− l)∆ (n− l− 1)Ll+1

(n− l+1)Ll+1 − (n− l− 2)∆ (n− l+1)Ll+1

1
(n−l)(A+Ll+1)

4Ll+1

(A+(n−l+1)Ll+1)
2

1
A(n−l+1)

1
(n−l)(A′+L′

l+1
)

4L′
l+1

(A′+(n−l+1)L′
l+1

)2
1

A′(n−l+1)

A

p(A,Ll+1; l) =

p(A′,L′
l+1; l) =

Index 1⃝ 2⃝ 6⃝ 7⃝ 5⃝

Next, we proceed to analyze the seven cases identified above:
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1⃝A≤ (n− l− 1)Ll+1 − (n− l)∆.

p(A′,L′
l+1; l) =

1

(n− l)(A′ +L′
l+1)

=
1

(n− l)(A+∆+Ll+1 −∆)

=
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l).

2⃝(n− l− 1)Ll+1 − (n− l)∆<A≤min{(n− l− 1)Ll+1, (n− l+1)Ll+1 − (n− l− 2)∆}.

p(A′,L′
l+1; l) =

4L′
l+1

(A′ +(n− l+1)L′
l+1)

2
=

4(Ll+1 −∆)

(A+Ll+1 +(n− l)(Ll+1 −∆))2

≤ 4(Ll+1 −∆)

4(A+Ll+1)(n− l)(Ll+1 −∆)
=

1

(A+Ll+1)(n− l)
= p(A,Ll+1; l).

3⃝(n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1 − (n− l− 2)∆.

p(A′,L′
l+1; l) =

4L′
l+1

(A′ +(n− l+1)L′
l+1)

2
=

4(Ll+1 −∆)

(A+(n− l+1)Ll+1 − (n− l)∆)2
.

(A+(n− l+1)Ll+1 − (n− l)∆)2Ll+1

=(A+(n− l+1)Ll+1)
2Ll+1 +(n− l)2∆2Ll+1 − 2∆(A+(n− l+1)Ll+1)(n− l)Ll+1

+∆(A+(n− l+1)Ll+1)
2 +(n− l)2L2

l+1∆−∆(A+(n− l+1)Ll+1)
2 − (n− l)2L2

l+1∆

=∆(A+Ll+1)
2 − (n− l)2∆Ll+1(Ll+1 −∆)+ (A+(n− l+1)Ll+1)

2(Ll+1 −∆)

≥∆2(n− l)2Ll+1 +(A+(n− l+1)Ll+1)
2(Ll+1 −∆)

≥(A+(n− l+1)Ll+1)
2(Ll+1 −∆).

Then

p(A′,L′
l+1; l)≤

4(Ll+1 −∆)Ll+1

(A+(n− l+1)Ll+1)2(Ll+1 −∆)
=

4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l).

4⃝(n− l+ 1)Ll+1 − (n− l− 2)∆ < A ≤ (n− l+ 1)Ll+1. From the corresponding diagram of this

case, we can observe (n− l− 1)Ll+1 ≤ (n− l+1)Ll+1 − (n− l− 2)∆⇒ (n− l− 2)∆≤ 2Ll+1.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
=

1

(A+∆)(n− l+1)

=
1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

.

According to the range of A in this case, we have

(A− (n− l+1)Ll+1)
2

4Ll+1

<
(n− l− 2)2∆2

4Ll+1

≤ (n− l− 2)∆

2
,

⇒∆(n− l+1)− (A− (n− l+1)Ll+1)
2

4Ll+1

>∆(n− l+1)− (n− l− 2)∆

2
=

∆

2
(n− l+4)≥ 0.
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p(A′,L′
l+1; l) =

1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

<
1

(A+(n−l+1)Ll+1)
2

4Ll+1

=
4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l).

5⃝A> (n− l+1)Ll+1.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
<

1

A(n− l+1)
= p(A,Ll+1; l).

6⃝(n− l+1)Ll+1 − (n− l− 2)∆<A≤ (n− l− 1)Ll+1.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
=

1

(A+∆)(n− l+1)

=
1

(A+Ll+1)(n− l)+A+Ll+1 − (n− l+1)(Ll+1 −∆)

<
1

(A+Ll+1)(n− l)+ (n− l+2)Ll+1 − (n− l− 2)∆− (n− l+1)(Ll+1 −∆)

=
1

(A+Ll+1)(n− l)+Ll+1 +3∆

<
1

(A+Ll+1)(n− l)
= p(A,Ll+1; l).

7⃝(n − l − 1)Ll+1 < A ≤ (n − l + 1)Ll+1. From the corresponding diagram of this case, we can
observe (n− l+1)Ll+1 − (n− l− 2)∆< (n− l− 1)Ll+1 ⇒ 2Ll+1 < (n− l− 2)∆.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
=

1

(A+∆)(n− l+1)

=
1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

.

According to the range of A in this case, we have

(A− (n− l+1)Ll+1)
2

4Ll+1

<
(2Ll+1)

2

4Ll+1

=Ll+1 <
(n− l− 2)∆

2
,

⇒∆(n− l+1)− (A− (n− l+1)Ll+1)
2

4Ll+1

>∆(n− l+1)− (n− l− 2)∆

2
=

∆

2
(n− l+4)≥ 0.

p(A′,L′
l+1; l) =

1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

<
1

(A+(n−l+1)Ll+1)
2

4Ll+1

=
4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l).

Thus, in each of the cases, we have p(A′,L′
l+1; l)≤ p(A,Ll+1; l), and, actually, in four of the cases,

p(A′,L′
l+1; l)< p(A,Ll+1; l), and the proof of Claim 16 is complete. ■

Claim 17 Let l∗ denote an optimal value of l. If S1 ̸= ∅, l∗ =max{S1}, otherwise l∗ =min{S2}.
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Proof. By Claim 16, L1 ≥ L2 ≥ · · · ≥ Ln, and recall that S0 = {l ∈ N+ :
∑l

i=1Li ≤ (n − l −

1)Ll+1}, S1 = {l ∈ N+ : (n− l− 1)Ll+1 <
∑l

i=1Li ≤ (n− l+ 1)Ll+1}, S2 = {l ∈ N+ :
∑l

i=1Li > (n−

l+1)Ll+1}. Thus, the values of the boundary points defining S0, S1, S2, i.e., (n− l− 1)Ll+1, (n− l+

1)Ll+1, decrease as l increases, while
∑l

i=1Li increases as l increases. We conclude that if l ∈ S0,

then l+1 could belong to S0, S1 or S2; if l ∈ S1, then l+1 could belong to S1 or S2, and if l ∈ S2,

then l+1 must belong to S2. Furthermore, for any l0 ∈ S0, l1 ∈ S1, l2 ∈ S2, we have l0 < l1 < l2.

To prove Claim 17, we consider the following cases:

Case 1: If l ∈ S0, then we show that p(
∑l

i=1Li,Ll+1; l)≥ p(
∑l+1

i=1Li,Ll+2; l+1), regardless of which

set l+1 belongs to.

Case 2: If l ∈ S1, then we show that p(
∑l

i=1Li,Ll+1; l)> p(
∑l+1

i=1Li,Ll+2; l+ 1) when l+ 1 ∈ S1,

and p(
∑l

i=1Li,Ll+1; l)≤ p(
∑l+1

i=1Li,Ll+2; l+1) when l+1∈ S2.

Case 3: If l ∈ S2, then l+1∈ S2, and we show that p(
∑l

i=1Li,Ll+1; l)< p(
∑l+1

i=1Li,Ll+2; l+1).

Clearly, if we prove the assertions in the above three cases, then l∗ =max{S1}, if S1 exists, and

l∗ =min{S2}, otherwise.

Case 1: l ∈ S0.

If l+1∈ S0, we have A+Ll+1 ≤ (n− l− 2)Ll+2,

p(A+Ll+1,Ll+2; l+1) =
1

(n− l− 1)(A+Ll+1 +Ll+2)

=
1

(n− l)(A+Ll+1)+ (n− l− 1)Ll+2 −A−Ll+1

<
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l);

if l+1∈ S1,

p(A+Ll+1,Ll+2; l+1) =
4Ll+2

(A+Ll+1 +(n− l)Ll+2)2

≤ 4Ll+2

4(A+Ll+1)(n− l)Ll+2

=
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l);

if l+1∈ S2,

p(A+Ll+1,Ll+2; l+1) =
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l).

Case 2: l ∈ S1. Then, we have (n− l)Ll+1 <A+Ll+1 ≤ (n− l+2)Ll+1.

If l+1∈ S1,

p(A+Ll+1,Ll+2; l+1) =
4Ll+2

(A+Ll+1 +(n− l)Ll+2)2
=

4Ll+2Ll+1

Ll+1(A+Ll+1 +(n− l)Ll+2)2
,
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Ll+1(A+Ll+1 +(n− l)Ll+2)
2 =Ll+1((A+Ll+1)

2 +2(n− l)Ll+2(A+Ll+1)+ (n− l)2L2
l+2)

=Ll+1((A+Ll+1)
2 +(n− l)2L2

l+1)+ 2(n− l)Ll+2Ll+1(A+Ll+1)

+Ll+2((A+Ll+1)
2 +(n− l)2L2

l+1)−Ll+2((A+Ll+1)
2 +(n− l)2L2

l+1)

=Ll+2((A+Ll+1)
2 +(n− l)2L2

l+1)+ 2(n− l)Ll+2Ll+1(A+Ll+1)

+ (Ll+1 −Ll+2)((A+Ll+1)
2 − (n− l)2Ll+1Ll+2)

>Ll+2(A+(n− l+1)Ll+1)
2 +(Ll+1 −Ll+2)((n− l)2L2

l+1 − (n− l)2Ll+1Ll+2)

=Ll+2(A+(n− l+1)Ll+1)
2 +(Ll+1 −Ll+2)

2(n− l)2Ll+1

≥Ll+2(A+(n− l+1)Ll+1)
2,

p(A+Ll+1,Ll+2; l+1) =
4Ll+2Ll+1

Ll+1(A+Ll+1 +(n− l)Ll+2)2

<
4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l);

if l+1∈ S2,

p(A+Ll+1,Ll+2; l+1) =
1

(n− l)(A+Ll+1)
=

4Ll+1

4Ll+1(A+Ll+1)(n− l)

≥ 4Ll+1

(A+Ll+1 +(n− l)Ll+1)2
= p(A,Ll+1; l).

Case 3: l ∈ S2. Then, l+1∈ S2,A> (n− l+1)Ll+1, and we have,

p(A+Ll+1,Ll+2; l+1) =
1

(A+Ll+1)(n− l)
=

1

A(n− l+1)+Ll+1(n− l)−A

>
1

A(n− l+1)
= p(A,Ll+1; l).

■
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