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We study a parallel-queue system where each queue is served by a dedicated server at different locations
or facilities. Upon arrival, customers observe real-time queue lengths at each facility and choose to join one
or balk, whichever that maximizes their expected utility, defined as the service value minus the waiting
cost. Our model acknowledges heterogeneity in customer preferences for services at different facilities and
their varying waiting time tolerances. We derive fluid and diffusion limit processes to approximate the
asymptotic behaviour of the queueing system, exploiting the distinctive features of the arrival rate functions
dictated by the discrete choice model and sidestepping the traditional reliance on the Lipschitz-continuity
assumption. We prove the uniqueness of the fluid limit process and its converges to a unique equilibrium.
At the equilibrium, our analysis under the conditional logit assumption indicates that the social welfare is
maximized as long as all service providers are operating at their capacity. Furthermore, we characterize the
diffusion limit for the centered process as a reflected multi-dimensional Ornstein-Uhlenbeck process. Analysis
of the diffusion model reveals that publicizing real-time wait times does not change the social welfare.
Applications of our theoretical results are illustrated through a case study of vehicle queues at U.S.-Canada
border-crossing ports.
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1. Introduction

The discrete choice model has widely explored in the literature to model consumer behavior. As
a typical scenario studied in the literature, a consumer chooses from an assortment of products
with different features and prices to maximize her utility. A customer’s net utility of choosing a
product is the difference between the reward and cost of obtaining the product. In this paper,
we apply the discrete-choice model to a parallel queue system, unveiling the intricate dynamics
between consumer choice behavior and queueing processes. This application necessitates novel
methodologies and yields unique insights into system management.
We study a service system consisting of service providers (SP) operating at different locations.

Although the services offered by different SPs are fundamentally similar – implying a customer
requires service from only one SP – differences in SP characteristics may influence customer prefer-
ences. Consequently, customers might value the service from each SP differently. To model customer
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Figure 1 The parallel queue system studied in this paper

decision-making, we assume that all customers are fully informed about both the service utility and
the expected waiting time at each SP, allowing them to assess the expected net utility of joining
any given queue. Alternatively, a customer may choose to forgo service by not joining any queue,
thereby accruing zero utility. If we apply the classical “discrete choice model” to this system, then
a customer’s decision hinges on selecting the SP that maximizes her expected utility. Figure 1
provides a graphical illustration of such a system.
To broaden the applicability of our model, we study a discrete choice model with random coef-

ficients (Berry et al., 1995; Nevo, 2000),which covers the case with deterministic coefficients as
a special case. This model assumes that the coefficients in a customer’s utility function, that is,
the service value at each SP and the waiting cost per unit time, are randomly distributed. When
real-time waiting time estimates are available to customers, under mild regulation assumptions on
the parameter distribution, we can show that the mean arrival rate for each queue is an absolutely
continuous function of the waiting time estimates at each different SPs. Furthermore, when the
customer’s choice is formally modelled, the arrival rate function satisfies the following waiting-
aversion property: as a queue becomes longer, some customers will be discouraged to join that
queue and will instead join other queues or balk. Consequently, the mean arrival rate of a queue
decreases with its own length due to waiting-aversion; but is non-decreasing with the lengths of
other queues. A formal mathematical description of these properties will be provided in Section 3.
Such characteristics of the arrival rate function stem from the underlying discrete choice model. The
main objective of this paper is to provide asymptotic characterization of discrete-choice (driven)
parallel queues, or briefly, DCPQ.
Our study is motivated by several practical instances that fit the DCPQ model that are both

widely observed and are areas of research in the Operations Research literature. One example is the
kidney transplant waitlist for patients with end-stage renal disease. Kidneys from deceased donors
are allocated to patients who have registered on the transplant list according to a given policy. One
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allocation policy proposed and tested by Su and Zenios (2006) partitions kidneys into M types
by their quality. Arriving patients choose a certain type of kidney and wait in the corresponding
queue. Thus, the waitlist virtually consists of M parallel queues, each corresponding to a unique
type of service (organs). The stylized models analyzed by Su and Zenios (2006) and Ata et al.
(2021) are a simplified version of the DCPQ, by assuming that the patient uses the steady-state
queue-lengths to calculate the corresponding waiting times.
The second example is related to an impetus in some health care systems in North America where

real time emergency room wait times in specific geographic areas are available online. For example,
the web-site edwaittimes.ca, announces real-time waiting time estimates for major hospitals with
emergency rooms in the Metro Vancouver area. Recent studies (Dong et al., 2019; Park et al., 2023)
have provided empirical evidence supporting the idea that waiting time announcements influence
the emergency department choices of some patients.
The third example is the international border crossing facilities located between the U.S. and

Canada. In the Pacific northwest, there are four border crossing facilities. Almost real-time wait
time at each one of these facilities is available. Travellers have preferences for location and the
amenities available at each facility and make their choice based on the wait time and the char-
acteristics of each facility. Using a novel data from the Canada-US border crossing in the Pacific
Northwest, we calibrate our model and illustrate the managerial implications of our theoretical
results.
There is rich literature on queueing systems with customer choice. A number of assumptions

about the number of queues (usually a single queue) or congestion information (usually non-real-
time) or consumer types (usually single class and homogeneous) or server types (usually homoge-
neous) have to be made in the literature. However, many of these assumptions may not apply to
stochastic service systems in practice. The DCPQ model does not impose any of these restrictive
assumptions. Thus, not surprisingly, an exact analysis of DCPQ is challenging. For this reason, we
study the queue-length process of DCPQ using fluid and diffusion approximations. Even under such
approximations, however, few results are known for parallel queues with general state-dependent
arrival rates, e.g., the existence of a system equilibrium, and stationary distribution of the queue
length process, etc. See Section 2 for a more detailed literature review. However, we show that
these results hold owing to the distinctive characteristics of the arrival rate function driven by the
discrete choice model, and from there, we derive managerial implications regarding service capacity
allocation and information disclosure.
We develop the following approximations for DCPQ. First, under the fluid approximation, we

show that the fluid limit process converges to a unique equilibrium which can be characterized as
the solution to a nonlinear complementarity problem (NCP). Second, using the diffusion approx-
imation, we show that under diffusion scaling, the centered queue-length process converges to a
reflected multi-dimensional Ornstein-Uhlenbeck (RMOU) process, which possesses a unique sta-
tionary distribution with closed-form density function (truncated multivariate Gaussian) under
certain conditions. We also prove that interchange of limit holds, that is, the stationary distribution
of the scaled queue-length process converges to the stationary distribution of the RMOU.
By establishing the above results, we make several important contributions to the related research

domain.
1. We propose a fairly general model, i.e., the DCPQ, by incorporating a discrete choice model

into a parallel queue system. This type of behavior has been empirically identified in emergency
department choices (Dong et al., 2019; Park et al., 2023). We approximate the transient and
stationary behaviors of the queue-length process in DCPQ via fluid and diffusion approximation.
We propose an algorithm to compute the equilibrium state of the fluid limit process, and derive
the closed-form stationary distribution for the diffusion limit process. These results facilitate the
efficient evaluation of the long-term performance metrics of DCPQ, such as the social welfare.
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2. The asymptotic characterizations provide system managers with fresh qualitative insights to
the management of DCPQ. Based on the fluid model, we show a perhaps surprising result
that under a logit model, when the staffing cost is the same at different locations, the social
welfare remains a constant regardless how the service capacity is allocated among SPs with a
non-empty queue. In particular, the congestion level or service values at different SPs do not
play a role in determining the optimal service rates, as long as no service capacity is wasted.

3. The examination of the diffusion limit’s stationary state reveals that sharing waiting time
information has almost no impact on social welfare, underpinning a fundamental distinction
from findings that have been documented for single-queue systems (Ibrahim, 2018; Guo and
Zipkin, 2007; Hu et al., 2018; Wang and Hu, 2020; Hassin and Roet-Green, 2020). This disparity
underscores the unique complexities inherent in managing DCPQ.

4. The choice driven properties of the arrival rate function allow us to establish the following
technical results in lieu of the Lipschitz continuity assumption: uniqueness of the fluid limit
process, convergence of the original stochastic process to the fluid limit and diffusion limit, and
interchange of limits. We show that these results may not hold in parallel queues with general,
non-Lipschitz arrival rates; but they hold when the arrival rates are non-Lipschitz but have
the choice-driven properties. We thus provide a new proof technique for the above results that
does not rely on the Lipschitz assumption as the classical methods (e.g., (Mandelbaum et al.,
1998a,b)) do. The technical results may be of independent interest to the applied probability
society.

2. Literature Review

The first stream of papers focus on modeling and analyzing the effect of arriving customers’ queue-
joining behavior in various queueing systems. These models are classified in Figure 2. As shown in
Figure 2, first, there are two general classes of works in this area classified according to “information
level” (IL) with O for observable and U for unobservable queues. Each class is categorized into
six types of models according to “number of queues” (NQ) with M for multiple queues and S for
single queue, “customer class” (CC) with H for homogeneous and T for heterogeneous customers,
and “server type” (ST) with I for identical and D for different servers. Thus, each type of model
can be denoted by the notation with four letters separated by backslash (to distinguish from the
forward slash used for Kendall notation). For example, our model can be denoted as O\M\T\D
meaning a system with observable multiple queues, heterogeneous customers, and different servers.
Customers are different in delay sensitivity and service value, but have the same service rate at the
same server, while servers are different in service value and service rate. Note that for each node
in Figure 2, the left branch is the special case of the right branch. In reviewing the literature, it
will be clear that the model we treat here is a more general version of the observable queue setting
with customer choice, the one which has been less studied in the literature. In the literature review
on the models in the above classification, we mainly focus on those papers that are directly related
to our model. A more exhaustive reference can be found in a monograph by Hassin et al. (2006).
Some of the early models of the O\S\H\I type are by Naor (1969) and Leeman (1964) who

investigated homogeneous customers’ decisions on whether to join a queue for service. When the
queue is observable, they showed that in equilibrium, a pure threshold strategy (i.e., joining the
queue when the queue length is below a threshold) maximizes consumer surplus. However, this
equilibrium solution is sub-optimal with respect to the social welfare. The socially optimal solu-
tion is reached by introducing an admission cost (toll) in addition to the waiting cost as shown
in Stidham Jr (1978). Hassin (1986a) found that in a last-come-first-serve queue with customer
abandonment, the differences between Pareto optimal and social optimal equilibria due to possi-
ble customers’ negative externality does not arise. Larsen (1998) generalized Noar’s model to the
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one with heterogeneous customers who differ in service value. In contrast, Edelson and Hilder-
brand (1975) and Frutos and Gallego (1999) studied the heterogeneous customer model where two
classes of customers differ in their marginal waiting cost. The above models belong to O\S\T\I
type. When there are multiple parallel observable queues, homogeneous customers, and identical
servers (i.e., the O\M\H\I type model), the system generally does not have an equilibrium as
indicated in Hassin et al. (2006), except for some special models (e.g. Hassin (2009)). For this
reason, the O\M\H\I type models are studied under a weaker notion of equilibrium such as the
“ϵ-equilibrium”. An example of O\M\H\D type model was considered in Li and Lee (1994). They
considered a setting with two queues with heterogeneous servers and homogeneous customers where
balking is not allowed but jockeying is permitted. The most general case is the O\M\T\D type
model, which is the far right branch in observable queue class in Figure 1. The DCPQ studied in
this paper falls into this category as we assume customers have different sensitivity with delay and
heterogeneous preferences among SPs. Related studies in this category focus on the case where
customers receive delayed information about waiting time estimates; see Pender et al. (2020) and
Dong et al. (2019). There are several fundamental differences between our work and these two
papers. Two important ones are: (1) our paper considers a more general customer choice model
which requires different analytical methods and (2) the steady-state characterizations derived for
our model may not hold when information is delayed.
The first study on the simplest unobservable queue case or U\S\H\I type was done by Edelson

and Hilderbrand (1975) and Chen and Frank (2004). Two extensions followed the basic unobserv-
able queue model. Littlechild (1974) considered an M/M/1 queue with customers of heterogeneous
service values which falls under the U\S\T\I type. Later, Mendelson (1985a) extended the model
to a more general GI/G/s setting. Luski (1976) generalized the model in Edelson and Hilderbrand
(1975) to a two-queue system which belongs to the U\M\H\I type and studied the equilibrium
pricing strategies. Recently, Hua et al. (2014) studied two-tier service systems with either identical
or multi-class customers which are examples of U\M\T\I type or U\M\T\D type but they focused
on the two queue case only. Thus most models in the unobservable queue class have been studied
in the literature and are relatively well understood. Other queueing models involving strategic
behavior of customers or servers include Adiri and Yechiali (1974); Maglaras et al. (2016); Afèche
and Ata (2013); Ward and Armony (2013); Ibrahim et al. (2016); Dong et al. (2015); Gupta and
Zhang (2014).
The second stream of related research is the one on fluid and diffusion approximations for

service systems with multiple queues. In the models in this stream, the system state is usually
represented by a vector, with each component representing the length of a queue. There is a rich
literature that models this type of systems as multi-dimensional diffusion processes. The closest
model to the DCPQ is the state-dependent queueing network studied in Haddad and Mazumdar
(2012); Lee and Puhalskii (2015); Leite and Fragoso (2008); Mandelbaum et al. (1998a,b); Yamada
(1995), with some important differences. Compared to a general state-dependent queueing network
model, the choice-driven property allows us to derive several characterizations for the fluid and
diffusion limit processes (e.g., the fluid limit process converges to a unique equilibrium point,
the diffusion limit process is an RMOU process, whose steady-state distribution admits a closed-
form characterization). Those characteristics are otherwise not valid in a general state-dependent
queueing network. Furthermore, we show that the choice-driven property can substitute for the
Lipschitz property in the proofs of the above results in Mandelbaum et al. (1998b). Other papers
on state-dependent queues investigated the case when the service speed depends on the workload
in the buffer, e.g., (Abouee-Mehrizi and Baron, 2016; Delasay et al., 2016; Dong et al., 2015).
There are several queueing models in which the fluid and diffusion limits exhibit similar ergodic

properties. A well-known example is a queueing network with constant arrival rates and constant
or state-dependent routing matrix; see Harrison and Reiman (1981) and Reiman (1984). In these
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Figure 2 Classification of Queueing Models with Customer Choice.

models, the fluid limit process has a unique equilibrium 0, owing to the negative drifts and the
non-negative constraint enforced by the reflecting barrier. Consequently, the diffusion limit process
in those models is a multi-dimensional Brownian motion with a reflection barrier at 0. These
characterizations differ from the DCPQ, in which the equilibrium state of the fluid process results
from the choice-driven property, and the diffusion limit is thus an RMOU rather than a reflected
Brownian motion. Another related model is an overloaded queueing network where customers in
each queue renege after an exponentially distributed time. For such a model, Reed and Ward
(2004) showed that the fluid limit has a non-zero equilibrium and the diffusion limit process is a
non-reflected multi-dimensional O-U process. Other similar models include a service system with
differentiated service levels in Maglaras and Zeevi (2004), or with heterogeneous customer types
in Harrison and Zeevi (2004). In all these models, the drift is a linear function of the system state;
whereas our model allows the drift function to be nonlinear and possibly non-smooth. Therefore,
to adapt the existing methods to our model, we need to show that the original process can be
approximated by a diffusion process with a linear drift when it is close to the equilibrium.
The third strand of literature explores the impact of waiting time announcements on customer

behaviour and social welfare. Hassin (1986b) demonstrates that revealing queue lengths optimizes
social welfare primarily under conditions of significant congestion. Chen and Frank (2004) and
Hassin and Roet-Green (2020) uncovered a similar insight with respect to maximizing throughput.
Both Guo and Zipkin (2007) and Wang and Hu (2020) have evaluated various strategies for infor-
mation disclosure, discovering that an increase in available information does not invariably improve
social welfare. Hu et al. (2018) found that certain degrees of information heterogeneity could poten-
tially elevate social welfare or throughput. Additionally, Armony et al. (2009) delved into the effects
of delay announcements within a call center equipped with many servers. While these studies
predominantly focus on single-queue systems, the examination of waiting time announcements in
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parallel queue systems remains comparatively sparse. Armony and Maglaras (2004) investigated a
two-parallel queue system where customer choices are influenced by real-time waiting information.
Although their model shares similarities with ours, their analysis is confined to a one-dimensional
stochastic process within the Quality and Efficiency Driven (QED) regime. In contrast, our study
encompasses a multi-dimensional stochastic process, with queues that may exist in various regimes.
Further contributions to this area include Dong et al. (2019) and Pender et al. (2020), who assessed
the effects of accuracy and delays in releasing waiting time information on the performance of a
parallel-queue system. Singh et al. (2023) investigated the impact of waiting time announcements
on two competing parallel queues by analyzing an asymmetric Join-the-Shortest Queue system.
Our research contributes to the ongoing discourse by presenting a distinctive conclusion: the degree
of information sharing about waiting times does not impact social welfare within a DCPQ setting,
characterized by customer heterogeneity in terms of service valuation and waiting time tolerance.

3. The DCPQ Model

3.1. The Discrete Choice Model

We consider a system with J parallel heterogeneous service providers, indexed by j = 1,2, . . . , J . We
assume that the customers’ queue-joining behavior follows the classical discrete choice model with
random coefficients (e.g. Train (1986); Berry et al. (1995)). Under this assumption, the resulting
arrival rate function exhibits discrete-choice driven properties that will be defined later in this
section. Formally, for a customer of type ξ, the information available to that customer includes the
service value at the jth SP, uξ,j, the customer’s waiting cost per unit time, cξ ≥ 0, and the system
state. The system state can be described by a J-dimensional vector of waiting time estimates for
the customer to join each queue right before time t, that is, τ (t−) := (τj(t−))j=1,...,J , where τ (t−)
denotes the left-limit of τ (·) at time t. We assume that there are uncountably many different
customer types ξ. Note that both the service value uξ,j and the waiting cost cξ vary by customer
type ξ, and can be regarded as random variables that follow a fixed probability distribution as
customers are drawn from a fixed population. Given waiting time estimates τ (t−), a customer
indexed by ξ can compute her expected utility Uξ,j of joining the j-th queue at time t as follows,

Uξ,j =

{
uξ,j − cξτj(t−), if j ̸= 0 (joining)
0 if j = 0 (balking)

(1)

With the utility function defined in (1), the choice problem for a customer indexed by ξ can be
formulated as

argmax{Uξ,j | j = 0, . . . , J}, (2)

where the utility of balking is assumed to be zero without loss of generality. For example, suppose
an arrived customer sees two queues with waiting time estimates τ1(t) = 1 and τ2(t) = 2. If the
parameters of a customer are uξ,1 = 0, uξ,2 = 3, and cξ = 1, then his utility of joining queue 1 and 2
are Uξ,1 =−1 and Uξ,2 = 1, respectively, in which case he will join queue 2. If we change the value
of cξ from 1 to 2, then his utility will be Uξ,1 =−2 and Uξ,2 =−1, in which case he will choose to
balk (queue 0), receiving a utility 0.
Since the parameters uξ := (uξ,j)j=1,...,J and cξ have a fixed joint distribution, we can compute

the probability for a randomly drawn arrived customer to choose a queue j = 0,1, . . . , J , where
queue 0 corresponds to balking by slightly abuse of notation. The choice probabilities have the
following expressions,

p0(τ (t−)) = Pr(0>uξ,k − cξτk(t−) , k= 1, . . . , J)
pj(τ (t−)) = Pr(uξ,j − cξτj(t−)> 0 and uξ,j − cξτj(t−)>uξ,k − cξτk(t−), k= 1, . . . , J, k ̸= j).

(3)
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As will be discussed later, we assume that (uξ, cξ) has a continuous distribution and thus a tie
happens with zero probability. For brevity in the remainder of this paper, we will omit − in τ (t−).

Next,we introduce assumptions on the random coefficients (uξ, cξ). These assumptions are mini-
mal and are able to accommodate a wide range of applications. Under these assumptions, we prove
certain desirable properties of the arrival rate function which in turn facilitate the asymptotic
characterization of the DCPQ. Later, we will show that our choice model subsumes several well
known models such as the conditional logit model and probit model. For the sake of brevity, we will
omit the subscript ξ and denote the random parameters as uj and c when there is no ambiguity.

Assumption 1 (Waiting Aversion) c > 0 a.e.

Assumption 1 posits that all customers exhibit aversion to waiting, which is a key feature of
the choice model studied in this work. Waiting aversion ensures that, whenever a queue becomes
longer, fewer customers will join this queues while more will join other queues or balk, which leads
to the choice-driven properties of the arrival rate function to be discussed later.

Assumption 2 (Continuous Distribution of Service Values) The vector u follows an absolutely
continuous joint cumulative distribution function (cdf).

Assumption 2 requires u to possess a finite probability density function (pdf) almost everywhere.
This assumption is not applied to the distribution of c, which is allowed to be continuous or
discrete, or a hybrid of both. The existence of a density function of u is crucial as it ensures that
any small variations in queue lengths influence only a small fraction of customers’ choices. Without
such a density function, the choice probability may be discontinuous in queue lengths, presenting
considerable obstacles for our analysis. Specifically, in a two-queue setup without a density function
for u, we could encounter a situation where Pr(u1 = u2)> 0, resulting in a join-the-shortest-queue
(JSQ) model where the arrival rate is discontinuous at X1 =X2. Such discontinuity deviates from
the expected behavior in the DCPQ framework and calls for a very different analytical framework;
see (Eschenfeldt and Gamarnik, 2018; Cao et al., 2019).
While it is necessary to posit that (u) possesses a finite density function almost everywhere to

facilitate our analysis, we accommodate the possibility of it approaching to infinity over sets of
measure zero. This allows our model to approximate scenarios where a non-negligible proportion
of customers might not be served at SP j (where uj = 0) or exhibit indifferent between servers
j and k (where uj = uk). Consequently, although the cdf maintains absolute continuity, certain
points may feature an infinite derivative. Many distributions exhibit this characteristic, including
the Weibull, Beta, and Gamma distributions within specific parameter ranges.
The general formulation presented encompasses a variety of well studied choice models. By

positing that the random utility Uξ,j adopts the parametric form

Uξ,j = vj − cτj + ϵξ,j, (4)

where vj and c ≥ 0 are constants, and ϵξ,j is drawn from n i.i.d. standard type-1 extreme value
distribution, we align with the well-known conditional logit model McFadden et al. (1973). Within
this model, the choice probability has closed-form expressions,

p0(τ ) =
1

1+
∑J

k=1 exp(vk − cτk)
, pj(τ ) =

exp(vj − cτj)

1+
∑J

k=1 exp(vk − cτk)
for j = 1, . . . , J. (5)

Similarly, we can get a probit model by assuming ϵξ,j to follow an i.i.d. normal distribution.
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3.2. Arrival Process

We next characterize the arrival process under the discrete choice model. Formally, we assume
that the service times at server j are i.i.d. random variables with a finite mean 1/µj. We use the
vector notation µ := {µj}j=1,...,J . Customers arrive at the system according to a time-homogeneous
Poisson process with a constant rate 1. When a customer arrives at the system, he decides whether
to join any one of the J queues or balk. After a customer joins a queue, abandonment and switching
between queues are not allowed (Though an extension of the model with exponential abandonment
time is doable and discussed in Section 9). The service discipline is First-Come-First-Served (FCFS)
at each queue. A customer leaves the system permanently after service completion.
We describe the system state at time t using a queue-length vector X(t) := (Xj(t))j=1,...,J , where

Xj(t) denotes the number of customers in queue j including the one currently in service. In most
practical applications of DCPQ, the remaining service time of the customer at the head of line
cannot be observed by either the customer or the system manager. Therefore, we assume that
the customers or the system manager will simply use the average service time of a new job to
estimate that remaining service time. This approximation is typically accurate because the queue
length in many realistic applications of the DCPQ are usually much larger than one. Using this
approximation, the waiting time estimator τj(ξ) has the following expression:

τj(t) =
Xj(t)

µj

. (6)

In the rest of the paper, we refer to τj(t) as the waiting time estimate or the delay estimate.
Recall that we use pj(τ ) (j = 0,1, . . . , J) to denote the probability for a randomly arriving

customer to choose queue j, which is assumed to be independent of the arrival sequence. Since
the aggregate arrival rate is one, the mean arrival rate for queue j is exactly pj(τ ). We denote the
state-dependent arrival rates by Λ(τ ) := (pj(τ ))j=1,...,J , and term this the arrival rate function.
Let R(τ ) := (∂pi(τ )

∂τ j
)i,j=1,...,J denote the Jacobian matrix of Λ(τ ). We next define two properties

for the arrival rate function.

Definition 1 Λ(·) is said to satisfy the stability condition, if for each j, there exists K > 0
such that

pj(τ )<µj for all τ ∈RJ
+ with τj ≥K. (7)

The stability condition guarantees that whenever a queue is sufficiently long, the state-dependent
arrival rate is strictly capped by the service capacity, so the queue length never approaches to
infinity. Equation (7) can be considered as the “state-dependent” version of the well-known stability
condition “λ< µ” in a single queue.

Definition 2 Λ(τ ) := (pj(τ ))j=1,...,J is said to satisfy the choice driven (CD) properties if it is
absolutely continuous in τ , and its Jacobian matrix R(τ ) is continuous everywhere1 and satisfies
the following properties for almost every τ := (τj):
1. (CD-a) Non-Negative Off-Diagonals:

pj(τ ) is non-decreasing in τk for j = 1, . . . , J and k ̸= j. (8)

Or equivalently, its Jacobian R(τ ) has non-negative off-diagonal entries.

1 If ∂pj(τ )/∂τi =+∞ (−∞) at τ . Then continuity at τ means limn→∞ ∂pj(τ
n)/∂τi →+∞ (−∞) for any sequence

τn → τ .
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2. (CD-b) Negative Diagonals:

pj(τ ) is strictly decreasing in τj for j = 1, . . . , J. (9)

Or equivalently, its Jacobian R(τ ) has negative diagonal entries.

3. (CD-c) Strict Row and Column Diagonal Dominance:

pj(τ + te)< pj(τ ) for j = 1, . . . , J, t > 0, (10)

where e denotes an all-one vector. Or equivalently, R has negative row sums.

J∑
k=1

pk(τ + tej)<
J∑

k=1

pk(τ ) for j = 1, . . . , J, t > 0, (11)

where ej denotes a vector with its jth entry equal to one and all other entries equal to zero. Or

equivalently, R(τ ) has negative column sums.

The absolute continuity of Γ(·) ensures that its Jacobian, R(·), is finite a.e. Nonetheless, R may

be unbounded, leading to non-Lipschitz continuous arrival rate function Λ(τ ); see an example in in

the end of Appendix A. Moreover, the properties (CD-a)-(CD-c) together imply that the Jacobian

matrix R(·) is non-symmetric negative definite a.e. and all its eigenvalues have negative real parts

(see e.g. Plemmons and Berman (1979)).

We next provide some intuition towards the above properties for the arrival rate function. Note

that τj(t) is proportional to the queue length. Thus, a larger τj(t) corresponds to a longer queue.

Property (CD-a) stands for weak gross substitutability (WGS) across different SPs – the arrival

rate tends to increase when other queues become longer. Property (CD-b) means that the arrival

rate of a queue decreases when it becomes longer. To interpret Property (CD-c), i.e., Conditions

(10) and (11), consider a scenario when the estimated waiting times in all queues have increased by

the same amount, then the difference in the expected waiting times across different queues will keep

the same. As a result, a customer’s preference order between any two queues will not be altered.

However, the increased queue lengths lead more customers to balk, so each queue ends up with

a smaller arrival rate. This gives strict row diagonal dominance. Also, when one queue becomes

longer, it may push some customers to other queues, but may also push some other customers

to balk. So the total arrival rate for all queues has to decrease. This gives the column diagonal

dominance.

The next proposition shows that the discrete choice model outlined in Section 3 results the CD

properties (i.e., (CD-a), (CD-b) and (CD-c)) of the arrival rate function. All proofs in this paper

are provided in the Appendices.

Proposition 1 The arrival-rate function given by (3) satisfies Properties (CD-a), (CD-b), and

(CD-c) as well as the stability condition (7).

In fact, we can prove an even stronger property of the arrival rate function under our choice model

– its Jacobian matrix is symmetric everywhere. However, since symmetry is not a prerequisite for

our subsequent analysis of DCPQ, we opt not to include it as an assumption, aiming to maintain

a broader scope of applicability.
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4. Notations and Preliminaries

This section introduces some notations and preliminary results that will facilitate the subsequent
asymptotic analysis. All vectors and matrices are in boldface to differentiate from the scalars. For
a sequence of random vectors Xn, we use Xn →X a.s., Xn p→X, and Xn ⇒X to denote almost
surely point-wise convergence, convergence in probability, and convergence in distribution (weak
convergence), respectively. Let J := {1,2, . . . , J} denote the index set of the SPs. For a vector
a ∈ RJ , we use ∥a∥ to denote the ∞-norm, so ∥a∥ := maxj∈J |aj|. For two vectors a,b ∈ RJ , we
use ⟨a,b⟩ :=∑J

i=1 aibi to represent the inner product, and use a ◦ b := (ajbj)j∈J to represent the
Hadamard product. For a given nonnegative vector µ ∈ RJ

++, we define the µ-norm as ∥a∥µ :=
∥a ◦µ∥. Note that the µ-norm is topologically equivalent to the ∞-norm. Let Diag (a) denote a
diagonal matrix with its diagonal entries being a. We use B(t) to denote a J-dimensional standard
Wiener process starting at 0.

Let D([0,+∞),RJ) denote the space of right-continuous functions with left limits (i.e., RCLL
functions) in RJ with time domain [0,+∞), endowed with the usual Skorokhod topology (Jacod
and Shiryaev, 1987). For any T > 0, we define the uniform norm ∥ · ∥T on space D([0,+∞),RJ) as

∥y∥T = sup{∥y(t)∥, s∈ [0, T ]}. (12)

We denote ∥y∥∞ := sup{∥y(s)∥, s∈ [0,+∞)} with a slight abuse of notations. We say that yn → y
uniformly on all compact sets (u.o.c.), if ∥yn − y∥T → 0 a.s. for all T > 0. When y is continuous,
convergence in the topology induced by the uniform norm is equivalent to convergence in the
Skorokhod topology (Chen and Yao, 2001). Therefore, when the limit process is continuous, to
prove convergence with respect to the Skorokhod topology, it suffices to prove convergence with
respect to the uniform topology on compact sets.
We next introduce the notations of reflection mapping, which is similar to the oblique reflection

mapping defined in Chapter 7 of Chen and Yao (2001). Let ΦΩ : D([0,∞),RJ) → D([0,∞),Ω)
denote the reflection mapping with respect to a rectangular domain Ω :=

∏
j∈J [aj, bj], where −∞≤

a < b ≤ +∞. This mapping ensures that for any given RCLL function z(·) with z(0) ∈ Ω, x :=
ΦΩ(z) solve the following equations for each j and t≥ 0,

xj(t) = zj(t)+ lj(t)−uj(t).
lj(t) := sup0≤s≤t[aj +uj(s)− zj(s)]

+

uj(t) := sup0≤s≤t[zj(s)+ lj(s)− bj]
+,

(13)

where lj(·) and uj(·) are the minimal non-decreasing processes that ensure xj(·) remains within
the interval [aj, bj] at all times. We allow aj =−∞ or bj =+∞, corresponding to lj ≡ 0 or uj ≡ 0,
respectively.
Let bj(k)/µj, bj(2)/µj, . . . denote the sequence of service times of customers processed by SP j.

The random variables b1(k), b2(k), . . ., are assumed to be iid with a unit mean and a finite variance
ω2
j . From that, We define a associated renewal process Sj(t) := max{k | ∑k

i=1 bj(k)≤ µjt}, which
gives the cumulative number of service completions at the SP j provided that the service provider
has been busy during interval [0, t].
To derive the fluid and diffusion limit processes, we consider a sequence of DCPQs indexed by

n= 1,2, . . .. Within the nth DCPQ, customers, inclusive of those opting to balk, arrive according
to a time-homogeneous Poisson process with constant traffic intensity n, while the service rate
at SP j is scaled up to nµn

j , with µn
j → µj. The associated renew process has the expression

Sn
j (t) = {k | ∑k

i=1 bj(k)≤ nµn
j t}.

The scaling for the arrival and service rates is strategically chosen based on specific considera-
tions. In contrast to the conventional heavy traffic regime where the total arrival and service rates
are asymptotically balanced (Halfin and Whitt, 1981), in DCPQ we allow the aggregate service
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rate,
∑

j µj, to differ from the aggregate arrival rate of 1. We can have this flexibility because the
arrival rates in DCPQ are state-dependent, so an equilibrium exists regardless of the values of µj.
Furthermore, instead of assuming µn

j ≡ µj, we permit
√
n|µn

j −µj| to converge to a constant. This
accommodates scenarios in which certain queues are operating either slightly under demand or
over demand at equilibrium. Notably, the slightly under-demand case aligns with the quality-and-
efficiency-driven (QED) regime, which has been of significant attention in the queueing literature
(Garnett et al., 2002; Armony and Maglaras, 2004).
Upon arrival, a customer chooses the jth SP with state-dependent probability pj(τ (t−)), which

is a deterministic function of the vector of waiting-time estimates τ (t−) right before time t. We
assume that the choice probabilities Λ(τ ) = (pj(τ (t−))) satisfy all the properties given in Section
3, and are invariant with respect to the system index n.

Finally, we use Xn(t) and τn(t) to denote vectors of queue-lengths and waiting-time estimates
in the nth DCPQ at time t, respectively, and use W n

j (t) to denote the cumulative busy time of the
jth SP up to time t.

5. Fluid Approximation

We first derive a compact representation for the arrival process of each queue in DCPQ. In the
following lemma, N(·) denotes a rate-one standard Poisson process. τ (t−) denotes the left limit
of τ (·) at time t, which exists because τ (t) =X(t) ◦µ−1 is RCLL. Note that the representation
provided in Lemma 1 does not imply that the arrival process of each queue is an independent
Poisson process, because the traffic intensity is state-dependent. Similar notations have been used
in existing literature (e.g., Mandelbaum et al. (1998b); Weerasinghe (2014); Dong et al. (2015)) to
represent state-dependent arrival or departure processes.

Lemma 1 The total number of customers who have joined queue j during time interval [0, t] in

the nth DCPQ has the same distribution as N
(∫ t

0
npj(τ (s−))ds

)
.

Although the expression provided in Lemma 1 may be intuitive, rigorous derivation of the
expression relies on the Meyer’s theorem (see for example, Brown and Nair (1988)) and is not
straightforward. We attach the proof of Lemma 1 in Appendix B. In the subsequent discussion, we
will use τ (s) instead of τ (s−) for brevity, causing no changes to the integral.
We next study the asymptotic behavior of the DCPQ via fluid approximation. We prove that the

scaled queue-length processes in a sequence of DCPQs converge to a fluid limit process. Moreover,
we show that the fluid limit process converges to an equilibrium state which can be characterized
as a solution to a Nonlinear-Complementarity-Problem (NCP).
In the nth DCPQ, we define the scaled queue-length

xn(t) :=
1

n
Xn(t). (14)

We next show that the process xn converges to a fluid limit process. From hereon, without further
specification, we assume that the arrival rate function Λ(·) := (pj(·)) satisfies the CD property and
the stability condition (7). As a result, the Jacobian matrix of Λ(·) is negative definite almost
everywhere over RJ

+. We define a vector function Γ(·) := (pj(·◦µ−1)))j=1,...,J , which maps the vector
of queue-lengths to the vector of expected waiting times.

Theorem 1 (Convergence to Fluid Limit) Define Ω := [0,+∞)J . Suppose xn(0) → x(0) a.s.
when n→∞ with x(0)≥ 0. Then for all T > 0,

∥xn −x∥T → 0, a.s. (15)
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where x is the unique solution to the following differential equation with reflection,

x(t) =ΦΩ

(
x(0)+

∫ t

0

(Γ(x(s))−µ)ds

)
, (16)

where ΦΩ is the reflecting mapping defined in Section 4.

In our paper, we assume the arrival process to be time-homogeneous in order to derive steady-
state characterization. The convergence to fluid limit process still holds for time-inhomogeneous
arrivals and our proof can be adapted to that case.
We compare Theorem 1 with the findings of Mandelbaum et al. (1998b), who in Theorem 4.6,

proved that the queue-length process in a general state-dependent queueing network converges to
the unique fluid limit process when the arrival and service rate functions are Lipschitz continuous.
In contrast, our customer choice model may lead to non-Lipschitz pj(·). Therefore, the proof tech-
nique of Mandelbaum et al. (1998b) cannot be adapted to a proof of Theorem 1. In fact, if the
drift function Γ(·) in the differential equation (16) are non-Lipschitz, then generally speaking, the
differential equation may not have a solution, or have multiple solutions; see Examples 3.1 and 3.3
in (Sideris, 2013).
Interestingly, we find that the CD property can replace the Lipschitz condition in proving Theo-

rem 1. To that end, the next Lemma provides a new sufficient condition for the pathwise uniqueness
of a solution to the following stochastic differential equation with reflection (SDER), which is a
more general form of (16) by including a stochastic term2.

x(t) =x(0)+

∫ t

0

b(s,x(s))ds+

∫ t

0

σ(s,x(s))dB(s)+ ℓ(t), (17)

where the ℓ is a non-decreasing process that keeps x≥ 0 as defined in Equation (13).

Lemma 2 Suppose b(s, ·) is absolute continuous with negative definite Jacobian matrix a.e., and
σ(s, ·) is Lipschitz continuous for all s, that is, ∥σ(s,x)−σ(s,y)∥ ≤K∥x−y∥ for some constant
K > 0. Then the solution to SDER (17), if exists, must be pathwise unique.

Tanaka (1979) and Dupuis and Ishii (1993) proved that there exists a pathwise unique solution
to (17) if both b(s, ·) and σ(s, ·) are Lipschitz continuous. Swart (2002) and Yamada and Watanabe
(1971) discussed pathwise uniqueness under some similar but more general conditions. While our
Lemma 2 states that the Lipschitz continuity of the drift coefficient b(s, ·) can be replaced by
absolute continuity with negative definite Jacobian a.e. Our result thus complements the existing
results on pathwise uniqueness of the solution to (17).
As a notable difference from the standard proof, our proof for Theorem 1 leverages the CD

property instead of the Lipschitz property of the arrival rate function. To leverage the CD property,
the proof invokes the inequalities of SDERs in Tanaka (1979) rather than directly applying the
Gronwall’s inequality.
We call x in Equation (16) the fluid limit process of the DCPQ. Because there is a one-to-one

correspondence between X(t) and τ (t) via equation (6), we can alternatively represent the fluid
limit process using {τ (t) : t ≥ 0}. We next define the equilibrium (stationary) state of this fluid
limit process.

2 For the purpose of proving Theorem 1, we only need a weaker version of Lemma 2 that deals with a non-stochastic
differential equation with reflection. We presented Lemma 2 as a general result on SDER, because of its independent
interest.
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Definition 3 x∗ := (x∗
j ) ∈ RJ

+ represent the equilibrium queue-length vector if given x(0) = x∗,
the differential equation (16) has the solution x(t)≡ x∗. The associated τ ∗ := (τ ∗

j ) = (x∗
j/µj) rep-

resent the equilibrium waiting-time vector.

Intuitively, a fluid limit process is at its equilibrium if and only if the net flow rate (i.e., difference
between the arrival and departure rates) equals zero for each queue. This logic leads to the following
characterization of the equilibrium waiting-time vector of the fluid limit process, or briefly, the
fluid equilibrium.

Proposition 2 τ ∗ are equilibrium waiting-times vector of an DCPQ if and only if τ ∗ is the
solution to the following nonlinear complementarity problem (NCP):

NCP

µj − pj(τ ) ≥ 0, for j = 1, . . . , J.
τj ≥ 0 for j = 1, . . . , J.∑J

j=1 τj(µj − pj(τ )) = 0.
(18)

The proof of Proposition 2 is attached in Appendix C.

Theorem 2 (Existence and Uniqueness of Equilibrium) There exists a unique equilibrium
waiting-time vector τ ∗ for the fluid limit process in each DCPQ.

It suffices to prove that the NCP (18) always has a unique solution. To that end, we prove that
−Λ(·) satisfies the so-called P-property (Moré and Rheinboldt, 1973), which implies uniqueness.
We then construct a solution to the NCP via a tatonnement process, i.e., by adjusting the value of
τj according to the demand-supply gap µj − pj(τ ). A complete proof is provided in Appendix F.
Since our proof for the existence of an NCP solution is constructive, the tâtonnement algorithm

introduced in the proof of Theorem 2 can be used to calculate the fluid equilibrium.
The (CD) property is not only sufficient for the existence and uniqueness of the equilibrium

state, but also necessary in the sense that without them, these results cannot hold for certain
parameters. Please see the following examples as an illustration of this point.

Example 5.1 This example shows that when (CD-a) is violated, the fluid limit process
may have multiple equilibria. Consider an example with µ = (0.4,0.4)T , arrival rate func-
tion Λ(τ ) = (0.4 − 0.1exp(−(τ1 − 1)2),0.4 − 0.1exp(−(τ2 − 1)2)T , and its Jacobian R(τ ) =(
0.2(τ1 − 1) exp(−(τ1 − 1)2) 0

0 0.2(τ2 − 1) exp(−(τ2 − 1)2)

)
. The jth diagonal elements are positive

when τj < 1, so (CD-a) is violated. For queue j = 1,2, the maximum arrival rate is attained when
τj = 1, at which time the arrival rate and service rate is balanced. Thus, τj = 1 is an equilibrium
queue length for each queue. In addition to that, τj = 0 is also an equilibrium queue length. Thus,
this DCPQ consists four equilibrium states, (1,1)T , (0,1)T , (1,0)T , (0,0)T .

Example 5.2 This example shows that an equilibrium state may not exist when (CD-b) is vio-

lated. Consider an example with µ= (1,0.01,0.01)T , R≡

−0.2 −0.1 −0.1
−0.1 −0.1 0.15
−0.1 0.15 −0.1

, and Λ(τ ) = (Rτ )+.

This example satisfies the stability condition (7), because the arrival rate for each queue converges
to zero when its length approaches to infinity, as long as the lengths of the other queues are fixed.
The Jacobian also contains negative diagonals and has negative row and column sums, so (CD-a)
and (CD-c) are both satisfied. However, the Jacobian matrix contains negative off-diagonal entries
and therefore violates assumption (CD-b). One can check that if the fluid limit process starts from
(0,1,1)T , then we will have τ1(t)≡ 0, and τ2(t)≡ τ3(t)→∞ when t→∞. Consequently, no equi-
librium exists.
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Example 5.3 This example shows that when (CD-c) is violated, the fluid limit process may

also have multiple equilibria. Consider an DCPQ has R ≡
(
−1 1
1 −1

)
, µ = (0.5,0.5)T , Λ(τ ) =

((0.5,0.5)T +Rτ )+. Then any vector in the form of (z, z)T with z ≥ 0 can be an equilibrium state
of the fluid limit process.

The above examples show that when any one of (CD-a), (CD-b), (CD-c) fails, the fluid limit
process may not have a unique equilibrium state. Because all the subsequent asymptotic character-
izations for the DCPQ (e.g., convergence of the fluid limit process to the equilibrium, convergence
to the diffusion limit process, and the stationary distribution of the diffusion limit process) rely on
the fact that the fluid limit process has a unique equilibrium state, these characterizations would
not apply to general parallel-queue systems.
The next theorem shows that given the CD property, the fluid limit of the expected delays in

DCPQ must converge to the unique equilibrium state.

Theorem 3 (Convergence to Equilibrium) Suppose {x(t)|t≥ 0} is a solution to the differential
equation (16) with x(0)≥ 0, and τ (t) =x(t) ◦µ−1. Then

τ (t)→ τ ∗, when t→∞. (19)

The main idea of the proof involves showing the maximal deviation from the equilibrium queue
length maxj τj(t)− τ ∗

j decreases with time due to the CD properties.

6. Service Rate Decisions in DCPQ

We investigate the service rate decisions within DCPQ under the fluid approximation. When service
duration has an iid exponential distribution, a multi-server queue exhibits the same asymptotic
behaviour as a single-server queue with the total service rate unchanged. This asymptotic equiv-
alence is elaborated upon in Remark 10.2.1. and Theorem 10.2.2 by Whitt (2002). This insight
allows us to perceive service rate decisions as a continuous analogue to staffing level optimization,
a challenge often faced in the practical management of DCPQ systems.
Mendelson (1985b) formulated the problem of determining the optimal service rate for a single-

queue system serving customers with heterogeneous service valuations. This optimization problem
is relevant due to the variation in social welfare with service rates. Nevertheless, our analysis reveals
that if we assume that customer choices follow by a logit model in DCPQ, then social welfare
remains unaffected by how service capacity is distributed among SPs that operate with non-empty
queues.
We illustrate the above insight using a simple model, where the aggregate service rate is subject

to a total budget, that is,
∑J

j=1 µj ≤ µ. Customers choice follows a conditional logit model where
the service of SP j provides customer ξ with utility uj,ξ = vj + ϵj,ξ, with ϵj,ξ following a standard
Gumbel distribution independent of ϵk,ξ for k ̸= j. The system manager aims to maximize the
expected utility of a unitary population, or equivalently, the social welfare, at the fluid equilibrium
τ ∗, subject to the service capacity constraint. Leveraging the logit model, we derive the following
expression for the expected utility/social welfare,

SW (τ ∗) :=E[Umax(τ
∗)] :=

∫
u∈KJ

max{0, vj − cτ ∗
j + ϵj, j = 1, . . . , J}f(ϵ, c)dϵ

= ln(1+
J∑

j=1

exp(vj − cτ ∗
j )), (20)
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where the second equality follows the conditional logit model. The service rate decision can be
formulated as,

SW ∗ := max
τ∗≥0,µ≥0

ln(1+
∑J

j=1 exp(vj − cτ ∗
j )) (21)

s.t. pj(τ
∗)≤ µj, j = 1, . . . , J (22)∑J

j=1 τ
∗
j (µj − pj(τ )) = 0 (23)∑J

j=1 µj ≤ µ (24)

The formulation of the objective function (21) follows equation (20). Constraints (22)-(23) are the
NCP conditions for τ ∗ to be the fluid equilibrium given service rates µ. (24) represents the budget
constraint.
We next characterize the optimal solution to (21)-(24). We define the potential demand rate

λ :=
∑J

j=1 pj(0) as the total arrival rate when all queues are vacant. Due to the CD property, the
potential demand rate gives the maximum possible arrival rate across all states.

Theorem 4 Suppose customer choice follows the conditional logit model (3).
(1) If λ≤ µ, then SW ∗ =− ln(1−λ), and a feasible solution to (21)-(24) is optimal if and only if
τ ∗ = 0.
(2) If λ> µ, then SW ∗ =− ln(1−µ), and a feasible solution to (21)-(24) is optimal if and only if
pj(τ

∗) = µj for each j.

Theorem 4 states that when the service capacity is sufficiently large to meet the potential demand
rate (λ≤ µ), then every SP has an empty queue with respect to the fluid scaling, that is, τ = 0.
Perhaps the more interesting case is when the service capacity is not sufficiently large (λ > µ).
In that case, the optimal service rate has a simple characterization, pj(τ

∗) = µj for all j, saying
that there should be no excessive service capacity at each SP. In other words, to maximize the
social welfare, the system manager only needs to make sure to not waste any service capacity. This
characterization relies on the logit model assumption, under which maximizing social welfare is
equivalent to maximizing the throughput rate. Therefore, any throughput maximizing service rates
allocation, has to maximize the social welfare; while in DCPQ, the aggregate throughput rate is a
constant µ as long as no service capacity has been wasted.
This result might be counter-intuitive as one might expect that increasing the staffing level at a

more popular SP with a larger service value vj and a larger arrival rate pj(τ
∗) would bring in more

welfare, given that expanding service capacity is equally expensive across different SPs. However,
increasing service rate at a more popular site, despite affecting more customers, results in less
reduction in waiting time.
If ϵj,ξ follows other distributions but remain independent of ϵk,ξ for k ̸= j, the results of Theorem

4 does not hold exactly. However, our numerical study shows that different service rate allocations
only make small variations to the total welfare so the insight from Theorem 4 remains robust. At
a high level, since customer can choose which queue to join, the DCPQ as a whole is close to a
pooling queue. Therefore, the performance of DCPQ is less sensitive to the allocation of service
capacity across fully utilized SPs compared to that of a system consisting of separated parallel
queues.
Although the result of Theorem 4 is derived under the fluid approximation, the insight remains

valid in more refined approximations such as the diffusion model.
Theorem 4 implies the following result, which shows that if service rates can be reallocated to

maximize the social welfare, then either all queues are empty, or no queue is empty.

Corollary 1 (1) If λ≤ µ, then all queues are empty under the socially optimal service rates.
(2) If λ> µ, then any feasible solution (µ,τ ∗) with τ ∗ > 0 must be optimal.
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The proof is based on a simple observation that when λ> µ, 0 cannot be a feasible solution. Then

any τ ∗ > 0 is optimal as no queue would have excessive service capacity due to the complementary

slackness condition (23).

Next, we extend the analysis to the case of unequal staffing cost, in which case the budget

constraint is given by
J∑

j=1

hjµj ≤ µ, (25)

where we assume 0≤ h1 ≤ h2 ≤ . . .≤ hJ without loss of generality. The optimal service rate decision

under the above cost remains to have a simple characterization.

Proposition 3 Suppose (µ,τ ∗) is the optimal solution to (21) - (23) and (25), then either τ ∗ = 0,

or pj(τ
∗) = µj for all j and the following characterization holds with k :=min{j|τ ∗

j > 0},

τ ∗
j = 0 if j < k
µj = 0 if hj >hk.

(26)

Proposition 3 states that the optimal staffing strategy within DCPQ only needs to follow two

principles: (1) ensuring no wastage by never providing excessive service, that is, µj = pj(τ
∗); and

(2) prioritizing staffing the most cost-effective SP. Specifically, SPs whose staffing cost falls below

a threshold hk should be fully staffed to eliminate customer backlogs at the fluid scale; conversely,

SPs whose staffing costs exceed this threshold are recommended to be suspended to minimize the

expense. This policy, while economically rational, might lead to infinitely large waiting times due

to service unavailability.

7. Diffusion Approximation

In contrast to the fluid model, a diffusion process can capture the asymptotic behavior of the

centered queue-length process at a more granular level. We show that when the queue lengths are

close to the equilibrium, then its deviation from the equilibrium, under diffusion scaling, converges

to a diffusion limit which is known as a reflected multi-dimensional Ornstein-Uhlenbeck (RMOU)

process. We continue to examine the sequence of DCPQs defined in Section 3. In the nth DCPQ,

we define the virtual equilibrium τn,∗ as the solution to the following NCP

NCP

nµn
j −npj(τ

n,∗) ≥ 0, for j = 1, . . . , J.
τn,∗
j ≥ 0 for j = 1, . . . , J.∑J

j=1 τ
n,∗
j (nµn

j −npj(τ
n,∗)) = 0.

(27)

The virtual equilibrium can be interpreted as a state at which the mean arrival rate and service rate

are balanced in each queue in the nth DCPQ. Since we have assumed that µn
j → µj, the continuity of

pj(τ ) implies that the limit of τn,∗ must solve the NCP (18) for the fluid model. Since the solution

to (18) is unique according to Theorem 2, we deduce that τn,∗ → τ ∗. We use ρnj :=
pj(τ

n,∗)
µn
j

to

denote the traffic intensity at the equilibrium waiting-times. Correspondingly, we denote the traffic

intensity of queue j in the fluid model by ρj := limn→∞ ρnj . We consider four mutually exclusive

cases of the limiting behaviors of the sequences (τn
j ) and (ρnj ). Note that ρnj is no greater than one

in all queues by the NCP condition. τn,∗
j > 0 implies that ρnj = 1 by complementarity slackness.
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These four cases are not exhaustive, but they cover the asymptotic regimes which have been most
often considered in the literature (e.g., Ward and Glynn (2003)).

Largely Under-demand Queues J −− := {j|ρnj → ρj < 1}

Balanced or Slightly Under-demand Queues J − := {j| τ
n,∗
j = 0, ρnj ≤ 1 for all n, ρnj → 1,√
n(µn

j − pj(0))→ θj ≥ 0
}

Slightly Over-demand Queues J + := {j| τ
n,∗
j > 0 for all n, τn,∗

j → τ ∗
j = 0,√

n(µn
j τ

n,∗
j −µjτ

∗
j )→ ϑj ≥ 0

}

Largely Over-demand Queues J ++ := {j| τ
n,∗
j → τ ∗

j > 0,√
n(µn

j τ
n,∗
j −µjτ

∗
j )→ ϑj

},

(28)

where ϑ := (ϑj) and θ := (θj) are both J-dimensional vectors and have the following expressions,

θj =

{
limn→∞

√
n(µn

j − pj(τ
n,∗)) if j ∈J −

0 otherwise,
ϑj =

{
limn→∞

√
n(µn

j τ
n,∗
j −µjτ

∗
j ) if j ∈J + ∪J ++

0 otherwise.
(29)

To ascertain the specific scenario of each queue, we first apply the tâtonnement algorithm in the
proof of Theorem 2 to calculate the fluid equilibrium τ ∗. By definition, queues with µj > pj(τ

∗) are
largely under-demand and queues with τ ∗

j > 0 are largely over-demand. The fluid equilibrium, how-
ever, does not distinguish between “slightly under-demand” and “slightly over-demand” queues.
This distinction hinges on the asymptotic regime selected by the researcher, that is, how µn

j con-
verges to µj for queue j. In particular, the well studied QED regime (Halfin and Whitt, 1981)
corresponds to the slightly under-demand queue. Whereas our model extends beyond the QED
regime, noting that in numerous service systems (e.g., healthcare), expecting service providers
to meet the entire potential demand (the arrival rate when all queues are empty) can be overly
restrictive. More commonly, an equilibrium is achieved only after a fraction of customers balk due
to congestion, which corresponds to largely over-demand and slightly over-demand queues.
We next investigate the diffusion approximation for the scaled queue-length process

Qn
j (t) :=

√
n(xn

j (t)−x∗
j ), (30)

where xn represents the queue-lengths under fluid scaling that has been defined in Equation (14),
and x∗

j = µjτ
∗
j gives the length of queue j at the virtual equilibrium. For largely under-demand

queues where ρj < 1, it is known that there is no diffusion for those queues, i.e., Qn
j ⇒ 0 (see e.g.

Choudhury et al. (1997)). Therefore we can assume that J −− = ∅ without loss of generality, as
those queues have constant length of zero under diffusion scaling. We can focus on characterizing
the asymptotic behavior of the scaled queue-length process for queues in J −, J +, and J ++, which
can co-exist in the same system. For j ∈ J − ∪J +, we have x∗

j = µjτ
∗
j = 0 and thus Qn

j (t)≥ 0; for
j ∈J ++, since x∗

j > 0, Qn
j (t) can be either positive or negative. Consequently, Qn and its diffusion

limit process Y must reside in the following domain:

Ω=⊗[0,+∞)J
−+J+ ⊗ (−∞,+∞)J

++

. (31)

Figure 7 depicts sample paths of the diffusion limit process Yj(t) when j is in set J −, J +, and
J ++, respectively.
For the diffusion limit process to exist, we need to assume that the arrival rate function to

have a finite Jacobian matrix R∗ at the equilibrium τ ∗. This assumption, however, is without
loss of generality as the choice-driven property states that a finite Jacobian exists a.e. Under this
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0 t

Yj(t)

−θj

(a)When queue j is slightly
under-demand, Yj tends to move
toward the virtual equilibrium
ϑj = 0 at a constant downward
drift rate θj . Meanwhile, 0 is a
reflection barrier for Yj .

0 t

Yj(t)

ϑj

(b)When queue j is slightly over-
demand (or balanced), Yj oscil-
lates around the virtual equilib-
rium ϑj and is subject to a reflec-
tion barrier at 0.

0 t

Yj(t)

ϑj

(c)When queue j is largely over-
demand, Yj oscillates around the
virtual equilibrium ϑj in an
unbounded domain.

Figure 3 Typical sample paths of Yj in the cases of j ∈J−,J+,J++.

assumption, we derive the diffusion limit for the queue-lengths process in DCPQ as the solution
to the following SDER,

Y (t) =

∫ t

0

(
R∗Diag (µ−1)(Y (s)−ϑ)−θ

)
ds+Σ1/2B(t)+L(t), (32)

where Σ1/2 is a J-by-J diagonal matrix with
√
(1+ω2

j )µj as its jth diagonal entry, B(t) is a J-

dimensional standard Brownian motion with covariance matrix I (identify matrix), and L(t) is a
J-dimensional minimal non-decreasing process which makes Yj(t)≥ 0 for all j ∈J − ∪J +.

Theorem 5 (Convergence to Diffusion Limit) Suppose Qn(0)⇒ Y (0) and E∥Y (0)∥ <∞. We
then have,

Qn ⇒Y . (33)

Before providing an outline of the proof , we make a few remarks. First, according to Theorem 5,
the diffusion process has a reflection barrier at 0 only for j ∈J −∪J +, but has no reflection barrier
for j ∈J ++. Intuitively, for j ∈J −∪J +, we have Qn

j (t) =
√
nxn

j (t). Thus, Q
n
j (t) = 0 (so xn

j (t) = 0)
means that queue j is empty, at which time the server has to stop working and prevents Qn

j (t)
from decreasing further. Therefore, if j ∈J −∪J +, 0 is a reflecting barrier for Qn

j (t). For j ∈J ++,
since x∗

j = µjτ
∗
j > 0, an empty queue (xn

j (t) = 0) corresponds to Qn
j (t) =

√
n(0− x∗

j )→−∞ when
n→∞. That means, if j ∈ J ++, the reflection barrier for Qn

j (t) is at −∞, which is equivalent to
the case of no reflection barrier.
Second, we provide some interpretations of the two vectors θ and ϑ in Equation (29). For j ∈J −,

ϑj = 0, while −θj represents the negative drift that brings down Qn
j (t) towards zero, due to the

fact that the center of the RMOU is actually negative along the jth coordinate. For j ∈J +∪J ++,
θj = 0, and ϑj can be considered as the center of the RMOU for queues along the jth coordinate.
Figure 2 depicts the behavior of Yj and illustrates the role of θ and ϑ in the cases when j is in
J −, J +, and J ++, respectively.
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Finally, we want to elaborate on the relationship between our result and Theorem 7.2 in Man-
delbaum et al. (1998b). Mandelbaum et al. (1998b) developed a diffusion approximation for√
n(xn(t)−x(t)), which is the deviation of the scaled queue lengths from the fluid limit amplified

by
√
n. The same result, nevertheless, cannot be expected in our model. This is because the drift

coefficients R(τ (t)) in the SDER (32) may have infinite values when the fluid limit x(t) passes
through points at which a finite-valued Jacobian matrix does not exist. Should that happen, the
sequence of Qn may be not tight and the diffusion limit is not well defined. Thus, for our model,
the diffusion limit can only be developed in a neighborhood of the fixed equilibrium state x∗, at
which a finite Jacobian is assumed to exist.
We next provide a high level overview for the proof of Theorem 5. To develop a diffusion approx-

imation for
√
n(xn(t)−x∗), we assume that the fluid limit starts with the steady state (i.e., x(0) =

x∗, or more strongly, Qn(0) converges to a bounded random variable). Then by the definition of
equilibrium, we know the fluid limit is invariant as x(t)≡ x∗. Therefore, we actually developed a
diffusion approximation for the deviation of the scaled queue length from its fluid limit. Moreover,
in our model, the drift coefficient in the diffusion limit is the net flow rate at the equilibrium, which
allows an affine approximation using the Jacobian at the equilibrium R∗. So we can derive the dif-
fusion limit as an RMOU process, which has a stationary distribution due to negative definiteness
of R∗. Such a result, however, cannot be expected in a general state-dependent queueing network,
because the fluid limit there may not has an equilibrium, and the drift function would not exhibit
similar properties (i.e., can be approximated by an affine function with negative definite coefficient
matrix).
The framework introduced in Theorem 7.2 of Mandelbaum et al. (1998b) cannot be adapted

to derive our Theorem 5, even by assuming x(0) = x∗ in their proof. This is because their proof
framework heavily relies on the bounded derivative (or Lipschitz continuity) condition for the state-
dependent net flow rates. Without the Lipschitz condition, several of their intermediate results
cannot hold in general, including their Lemma 14.12 (compact containment), Lemma 14.13 (C-
tightness), and Lemma 14.14 (characterization of the limit process); while those results are all
needed for their proof of Theorem 7.2. In particular, their Lemma 14.12 states that for all T > 0,
{Qn(t)|t∈ [0, T ]}, as defined in (30), will be contained in a compact set with probability approach-
ing to one when n → ∞. This conclusion, nevertheless, is not valid if the arrival rate function
(thus the drift function) are non-Lipschitz, where the solution to the differential equation can be
unbounded. Although that differential equation is non-stochastic, adding a stochastic term will not
change the boundedness of the solution. Therefore, non-Lipschitz arrival rates, if without additional
constraints, may lead to a queue-lengths process that violates the compact containment condition.
To deal with the non-Lipschitz case, it suffices to prove a result analogous to Lemma 14.12

(compact containment) of Mandelbaum et al. (1998b) in Lemma 3, but for non-Lipschitz and
choice-driven arrival rates. With compact containment, we can find a compact neighborhood of the
equilibrium which contains the scaled stochastic processes at almost all the times for sufficiently
large n. Since the drift function is Lipschitz continuous in that neighborhood, the convergence to
the diffusion limit follows from Theorem 7.2 in Mandelbaum et al. (1998b).
Below we provide more details about the compact containment result. For a given κ > 0, we

define a compact rectangular

Ω(κ) := [0,+κ]J
−∪J+ ⊗ [−κ,+κ]J

++
. (34)

Define a bounded modification of Qn as

Qκ,n(t) = ΦΩ(κ)(Qn) (35)

Intuitively, Qκ,n is the process created from Qn by imposing reflection barriers on the finite bound-
ary of Ω(κ). We prove that in the following lemma that for any T > 0, when κ→∞, with probability
approaching one, Qκ,n is contained in the bounded rectangular Ω(κ).
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Lemma 3 (Compact Containment) For any T > 0, ϵ > 0, when κ→∞, we have

limsup
n→∞

Pr(∥Qn∥T >κ) = limsup
n→∞

Pr(∥Qκ,n −Qn∥T ̸= 0)→ 0 (36)

To provide some intuition towards the proof of Lemma 3, we note that without the Lipschitz
assumption, a small deviation of Qn might lead to a large drift that pushes Qn away from the
equilibrium, which causes compact containment to fail. However, the choice-driven property ensures
that any deviation of Qn can only result in a drift that pulls Qn back towards the equilibrium (even
though the drift can be quite large). Thus, the choice-driven property can replace the Lipschitz
condition and guarantee compact containment of Qn.
Perhaps the most useful characterization of a stochastic process is its stationary distribution.

The diffusion limit process Y is an RMOU and falls into the category of multi-dimensional reflected
diffusion processes, the stationary distribution of which has been studied in (Dieker and Gao, 2013;
Kang and Ramanan, 2014). Based on the results of Kang and Ramanan (2014), we can derive a
closed-form characterization of the stationary distribution of Y under additional assumptions.

To facilitate the presentation of the proposition, we use φ(·,m,Σ) to denote the density of a
multivariate Gaussian distribution with mean m and covariance matrix Σ. We use φ(·,m,Σ,r)
to denote the density of a multivariate truncated Gaussian distribution defined within the domain
{y ∈RJ |y≥ r}, which has the following expression,

φ(z,m,Σ,r) =

{
φ(z,m,Σ)∫

x≥r φ(x,m,Σ)dx
if z ≥ r,

0 otherwise.
(37)

We define vec(A) as the column vector obtained by stacking the columns of matrix A. For two
J-by-J matrices, the Kronecker product and Kronecker sum are defined respectively as follows

A⊗B = (aijB)i,j=1,...,J , A⊕B =A⊗ I + I ⊗B, (38)

where I is the J-by-J identify matrix.

Proposition 4 (Stationary Distribution of the Diffusion Limit) In the case of J + ∪ J − =
∅, the multi-dimensional O-U (MOU) process Y admits a unique stationary distribution π(·) =
φ(·,ϑ,Σ∞), where Σ∞ is determined by the equation

vec(Σ∞) =−(vec(R∗Diag (µ−1))⊕ vec(R∗Diag (µ−1)))−1vec(Diag ((1+ω2
j )µj)j=1,...,J). (39)

In the case of J + ∪J − ̸= ∅, provided that R∗ is symmetric and ωj ≡ ω1 for all j, the reflected
MOU (RMOU) process Y admits a unique distribution π(·) = φ(·,ϑ+Diag (µ)(R∗)−1θ,− 1

2
(1 +

ω2
1)Diag (µ)(R∗)−1Diag (µ)).

In scenarios where J +∪J − ̸= ∅, the symmetry of R∗ combined with the condition ωj ≡ ω1 for all
j becomes indispensable for deriving a closed-form expression for the stationary distribution, as elu-
cidated in Example 3.10, Claim 1 by Kang and Ramanan (2014). Absent these conditions, while the
stationary distribution still exists, determining its density may necessitate a numerical approach.
Typical approaches include solving the associated Fokker-Planck partial differential equations with
reflecting boundary conditions (e.g., Equation 4.115 of (Pavliotis, 2014)) using a finite difference
method (Grossmann, 2007), or simulating the diffusion limit process using a Markov Chain Monte
Carlo method (Pavliotis, 2014).
The multivariate Gaussian steady-state distribution provides the system manager with some

practical insights. Since the covariance matrix of such a distribution is proportional to the inverse
of the Jacobian (R∗)−1, the spread of the distribution is decreasing in the scale of R∗. Thus if
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one wishes to reduce the variability of the queue-length process of the DCPQ, one may consider
increasing the scale of R∗, which depends on customers’ delay sensitivity. Roughly, if customers
are more sensitive to the non-zero waiting times (so a larger cξ), then R∗ will have a larger scale
which leads to a lower spread of the multivariate Gaussian distribution. Thus the diffusion limit
process will be more concentrated at its center. Such a reduction in queue length variability will
load the multi-queue service system in a more balanced way which reduces the idle times of all
servers and increases the system throughput. To increase customers’ sensitivity to waiting times,
system manager can disclose information about real-time waiting times to prospective customers,
an approach that will be detailed in Section 8.
Proposition 4 states that characterize the stationary distribution of the limiting process Y .

We next investigate the asymptotic behaviour of the stationary distribution of Qn(·), the scaled
queue-length process in the nth DCPQ. However, Qn is not Markovian as the probability transition
depends on the remaining service time of the customer currently being served. For this reason, we
study a Markov process Ξn(·) := (Qn(·),sn(·)) instead of Qn(·), where sn(t) := (snj (t)) and snj (t)
denotes the remaining service time of the customer currently being served by the jth SP at time
t in the nth DCPQ. Let πn denote the projection of the stationary distribution of Ξn(·) onto the
coordinates of Qn(·). Then we can prove that πn weakly converges to π when n approaches infinity.
This result is also termed as interchange of limits and illustrated in Figure 4.

Qn(t) Qn(∞)

Y(t) Y(∞)

t → ∞

t → ∞

n
→

∞

n
→

∞

Figure 4 The interchange-of-limit result implies that the steady-State distribution of Y n, π, can be approximated
by πn, the projection of the steady-state distribution of Ξn onto the subspace of Qn.

The interchange of limits was proved when Ξn is the Markov process in a generalized Jackson
network by Gamarnik and Zeevi (2006). We adopt their machinery and show that the interchange
of limits holds for the DCPQ. The queueing network considered by Gamarnik and Zeevi (2006)
assume constant arrival and service rates, while the arrival rates in our model are state-dependent
and non-Lipschitz. Therefore, the adoption of their methods is not trivial and must exploit the CD
property. Specifically, the choice-driven property is used to prove that a Lyapunov function can be
constructed so that its exponential has bounded expectation.
Formally, a function V : Ω → R+ is said to be a Lyapunov function with drift size parameter

−γ < 0 and drift time parameter t0 > 0 and exception parameter κ for a Markov process Ξ if

sup
Ξ(0)∈Ω: V (Ξ(0))>κ

{EΞ(0)V (Ξ(t0))−V (Ξ(0))} ≤−γ. (40)

For each n, define

L1(u, t,n) := supΞn(0)∈ΩE[exp(u(V (Ξn(t))−V (Ξn(0))))|Ξn(0)]
L2(u, t,n) := supΞn(0)∈ΩE[(V (Ξn(t))−V (Ξn(0)))2 exp(u(V (Ξn(t))−V (Ξn(0)))+)|Ξn(0)]

(41)
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for any u> 0, t≥ 0. We then have the following proposition.

Proposition 5 Let V (Ξn(t)) := ∥Qn(t)∥µ−1
. Then for sufficiently large n, V (·) is a Lyapunov

function with drift size parameter −1, drift time parameter t0, and exception parameter κ for some
κ, t0 > 0. In addition, there exists u0 such that

limsupn→∞L1(u0, t0, n) < ∞
limsupn→∞L2(u0, t0, n) < ∞ (42)

The above proposition is in analogue to Proposition 3 in Gamarnik and Zeevi (2006), but deals
with the DCPQ case in which the drift function is not Lipschitz. Note that we have used different
notations from those used in Gamarnik and Zeevi (2006): our Qn(t) corresponds to the notation
“ 1√

n
Qn(nt)” in their paper. Because we have used a different scale, the bound we derived with

respect to the ∥ · ∥t0 norm is exactly the bound derived in their paper the interval [0, nt0].

Theorem 6 (Interchange of Limit) The sequence of stationary distributions, πn, weakly con-
verges to π.

The main idea of the proof is to construct a Lyapunov function with the properties given in
Proposition 5. Those properties allow us to prove uniform tightness of the sequences (πn), which
then yields the existence of a limiting distribution π̂. The interchange of limits can then be proved
by arguing that any such π̂ must coincide with the unique stationary distribution of Y , π.

8. Value of Waiting Time Information in DCPQ

In the previous sections, we assume that all customers in DCPQ have access to real-time information
on queue lengths or waiting times upon arrival. We now turn our attention to a variant where only
a subset of customers observe the real-time waiting times, τ (·). Those without access to current
waiting times rely instead on steady-state expected waiting times as their decision-making basis,
an assumption commonly adopted in the literature (Guo and Zipkin, 2007; Ata et al., 2021).
We introduce the concept of η-informed DCPQ, characterized by a proportion, η ∈ [0,1], of

customers who have access to real-time waiting time information. We consider a sequence of η-
informed DCPQs, similar to that in Section 7, with arrival and service rates scaled by n= 1,2, . . .
We extend our notations to include an η subscript to denote variables and processes specific to
η-informed DCPQs. For instance, τ η,∗ denotes the fluid equilibrium for the original η-informed
DCPQ, whereas τ η,n,∗ represents the virtual equilibrium in the nth η-informed DCPQ.

The next proposition shows that the fluid equilibrium in η-informed DCPQ remains consistent
with τ ∗, the equilibrium in the traditional DCPQ where η = 1. The consistency is rooted in the
observation that the expected waiting times at virtual equilibrium align with those in steady
state at the fluid scale. Therefore, the decision-making processes of both informed and uninformed
customers are identical at the virtual equilibrium. The proof is omitted as it is straightforward
following the above logic.

Proposition 6 For all η ∈ [0,1], τ η,∗ ≡ τ ∗ and τ η,∗,n ≡ τ η,∗ for all n.

We delve into the nuances of waiting time disclosure at the diffusion level, focusing on the scaled
queue-lengths process within the nth η-informed DCPQ:

Qη,n(t) :=
√
n(

1

n
Xη

j (t)− τ ∗
j µj). (43)
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To derive the diffusion limit of Qη,n(t), we have to make an assumption that all queues are
largely over-demand, that is, τ ∗ > 0, or equivalently, J −∪J + = ∅. Under this assumption, we will
show that Qη,n weakly converges to a diffusion limit Y η, the solution to the following SDER,

Y η(t) =

∫ t

0

η
(
R∗Diag (µ−1)(Y (s)−ϑ)

)
ds+Σ1/2B(t)+L(t), (44)

with Σ1/2 retaining its definition in Section 7. Notably, the only difference between Y η and Y , the
diffusion limit in the original system, lies in the drift of Y η having been scaled by η.

We have to assume τ ∗ > 0, because otherwise, queues in J −∪J + have nonzero expected waiting
times at the diffusion scaling, which deviates from their fluid equilibrium τ ∗

j = 0. This deviation
presents challenges in modeling customers’ decisions and deriving the diffusion limit. However, the
assumption of τ ∗ > 0 aligns well with the goal of welfare maximization in DCPQ systems. This
is supported by Corollary 1, which suggests that the system manager allocates the limited service
capacity to achieve a state where τ ∗ > 0.

Proposition 7 Suppose the fluid equilibrium τ ∗ > 0. For any η ∈ [0,1], if Qη,n(0)⇒ Y η(0) and
E∥Y η(0)∥<∞, we have

Qη,n ⇒Y η. (45)

According to Proposition 7, the dynamics of Y η differ by the value of η. When η ∈ (0,1], Y η is
an MOU process, which has a unique stationary distribution due to its mean-reverting property. In
contrast, when η= 0, the absence of a linear drift transforms Y 0 into a multi-dimensional Brownian
motion, which is not positively recurrent and does not have a stationary distribution.
The theoretical foundations laid out in Proposition 4 and Theorem 6, which address the inter-

change of limits and the derivation of a closed-form stationary distribution, remain applicable to
the η-informed DCPQ scenario with a simple adjustment. By substituting R∗ with ηR∗ in previous
proofs, these results can be seamlessly extended to accommodate the varying degrees of customer
information.

Corollary 2 When τ ∗ > 0 and η ∈ (0,1], we have Qη,n(∞)⇒ Y η(∞), where Y η(∞) follows a
multivariate Gaussian distribution, possessing a mean vector ϑ and a covariance matrix η−1Σ∞,
with Σ∞ defined in (39).

Knowing the stationary distribution of diffusion limit in the η-informed DCPQ, we are ready to
calculate the expected social welfare at steady state. Let SW η,n denote the expected social welfare
associated with Y η,n(∞). Let SW (τ ) := E[Umax(τ )] denote the expected social welfare when the
DCPQ is at state τ . The subsequent theorem quantifies the asymptotic influence of the information
level η on DCPQ’s social welfare.

Theorem 7 Suppose τ ∗ > 0. For all η ∈ (0,1], we have

SW η,n −SW (τ ∗)≡ C

n
+ o(

1

n
). (46)

for some constant C > 0.

Theorem 7 reveals an intriguing insight: in a DCPQ system with no empty queues, the proportion
of customers informed about real-time waiting time has almost no impact on social welfare (o(1/n)).
This outcome emerges because uninformed customers default to the fluid equilibrium for decision-
making, rendering the incremental benefit of real-time information marginal (expressed as C/n).
Although having a greater proportion of informed customers might intuitively seem advantageous,
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it actually diminishes queue-length variability, inadvertently impacting social welfare negatively
due to its convexity with queue lengths. This finding diverges notably from existing results on
single-queue systems, where disseminating real-time waiting time information typically enhances
social welfare compared to scenarios where customers rely on equilibrium waiting times for decision-
making, when the system is congested (Hassin, 1986a; Chen and Frank, 2004; Guo and Zipkin,
2007).

9. DCPQ with Reneging Customers

The previous results on DCPQ without reneging customers can be extended to the case when cus-
tomers may renege (or abandon) after an exponentially distributed time before getting served. Note
that in most past studies on the queues with customer choice, the reneging feature was not consid-
ered due to the reason that a customer’s decision to join was made based on the expected service
utility. We incorporate reneging, as it is a feature in our motif dating examples. For example, in
health care settings, death or unexpected changes in medical conditions may lead to abandonment
of the service by patients. Since the analysis with reneging is similar to the one in earlier sections,
we only elaborate the results where the technical differences are significant.
We assume that customers renege after an exponentially distributed period with mean of 1/d. We

consider a Markovian system in which the inter-arrival times, reneging times, and service times are
all exponentially distributed. In this case, the offered waiting time (i.e., waiting time conditional on
that the customer receives service before reneging) can be estimated using the following asymptotic
formula adapted from Eq. (19) of Zenios (1999),

τj(t) =
1

d
log(1+

Xj(t)d

µj

). (47)

We assume that all customers use (47) to compute their expected waiting time, and choose a
queue which maximizes their payoff Uξ,j as given in (1), which leads to state-dependent arrival rate
function Λ(τ ). Because our proof for Proposition 1 does not rely on the functional form of τj with
respect to Xj, the proof can be adapted to establishing the choice-driven property of the arrival
rate function in the presence of reneging customers.

Corollary 3 With the customer choice model defined in Section 3, even if customers renege
after an exponentially distributed time with mean 1/d before service, the arrival rate function still
satisfies the CD property, and its Jacobian is symmetric.

With reneging, the DCPQ is always stable. So the stability condition (7) is no longer necessary.
We next prove that the fluid process in a DCPQ with customer reneging converges to the

equilibrium state, which is the unique solution to an NCP with a slightly different formulation
compared to the non-reneging case.

Theorem 8 The equilibrium state of the fluid limit process in DCPQ with reneging is the unique
solution to the following Nonlinear Complementary Problem (NCP).

NCP
Zj := µj exp(τjd)− pj(τ ) ≥ 0, for j = 1, . . . , J.

τj ≥ 0, for j = 1, . . . , J.
τjZj = 0, for j = 1, . . . , J.

(48)

Moreover, if we use τ (t) to denote the waiting-time vector in a fluid model, then for any given
τ (0)≥ 0, τ (t)→ τ ∗.
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Proof. By defining p̂j := µj exp(τjd)− pj(τ ), the above NCP can be rewritten into a similar
form as in(18) by replacing the arrival function Λ(·) with Λ̂(·) := (p̂j(·))j=1,...,J . Note that the
Jacobian for Λ̂(τ ) has the form R̂= σ(τ )+R, where R is the Jacobian of p(τ ) and is a symmetric
negative definite matrix by Corollary 3, and σ(τ ) is a diagonal matrix with the jth entry σjj(τ ) =
µjd exp(τ jd)> 0. Because of the extra term σ(τ ), we are now able to prove that p̂j satisfies the
uniform P-property, i.e.,

Uniform P-Property: ∀τ 1,τ 2 ∈RJ
+, τ

1 ̸= τ 2,
J

min
j=1

(τ 1
j − τ 2

j )(p̂j(τ
1)− p̂j(τ

2))< c∥τ 1 − τ 2∥2, (49)

with c > dmaxj µj > 0. Thus, the classical theorem by Cottle (1966) implies the existence of a
unique solution to the NCP (48).
To prove τ (t) → τ ∗, we define ∆τ (t) = maxj(τj(t) − τ ∗

j ), and ∆τ (t) = minj(τj(t) − τ ∗
j ). We

want to prove that ∆τ ′(t)≤ κ(δ) for some constant κ(δ)> 0 whenever ∆τ (t)≥ δ. Without loss of
generality, assume that τj(t)− τ ∗

j =∆τ ′(t), then τj(t)> 0 and (47) imply that

τ ′
j(t) =

pj(τ )−µj

Xj(t)d+µj

≤ pj −µj

pj(τ ∗)
, (50)

where the inequality follows from the NCP constraint Zj = µj(exp(τjd))− pj(τ
∗) = µj +X∗

j d−
pj(τ

∗)≥ 0.
The rest of the proof resembles the proof of Theorem 3, i.e., we prove facts (1) and (2) and

show that ∆τ ′(t)≤−κ(δ). We then use the similar argument to show that ∆τ ′(t)≥ κ(δ) whenever
∆τ (t)≤−δ and prove τ (t)→ τ ∗.

The proof of the convergence to the diffusion limit is a simple extension of Theorem 5 by including
an extra term −dI in the drift matrix as a result of reneging. We summarize the result below and
the notations follow from the definitions in the previous sections.
We next study the diffusion approximation for Qn(·) := (Qn

j (·)), where Qn
j (·) is the scaled queue-

length process in the nth DCPQ with its expression given in Equation (30). As before we partition
the index set of queues into four subsets J −−, J −, J +, and J ++ according to (28) and assume
J −− = ∅. We redefine θ and ϑ as follows,

θj =

{
limn→∞

√
n(µn

j − pj(τ
n,∗)) if j ∈J −

0 otherwise,
ϑj =

{
limn→∞

√
n(xn,∗

j −X∗
j ) if j ∈J + ∪J ++

0 otherwise,
(51)

where Xn,∗
j =

µn
j

d
(exp(dτn,∗

j )− 1) represents the queue length when the expected waiting time is
τn,∗
j , and simiarly x∗

j :=
µj

d
(exp(dτ ∗

j )− 1) denotes the equilibrium queue length in the fluid model.
The scaled-queue length process Qn(·) and its diffusion limit Y (·) thus reside in the following
domain,

Ω= [0,+∞)J
−∪J+ ⊗ (−∞,+∞)J

++

. (52)

The next Corollary, which is analogous to Theorem 5, states that Qn converges to a J-dimensional
diffusion process Y which is the solution to the following stochastic-differential-equation,

Y (t) =

∫ t

0

(
(R∗Diag ((exp(τ ∗d) ◦µ)−1)− dI)(Y (s)−ϑ)−θ

)
ds+

∫ t

0

ΣR,1/2dB(s)+L(t), (53)

where I is an J-by-J identity matrix, ΣR,1/2 is a J-by-J diagonal matrix with
√

(ω2
j +exp(τ ∗

j d))µj

as its jth diagonal entry, B(t) is a J-dimensional Brownian motion, and L(t) is a J-dimensional
minimal non-decreasing process which makes Yj(t)≥ 0 for all j ∈J − ∪J +.
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Corollary 4 Suppose Qn(0)⇒Y (0) and E∥Y (0)∥<∞. Then we have

Qn ⇒Y . (54)

The proof for Corollary 4 is provided in Appendix R.

10. Case Study

We illustrate the applications of the theoretical results in a real life parallel-queue system and
caliber our model using real data. We consider automobile queues at the two U.S.-Canada border-
crossing ports of entries at the west coast, i.e., Peace Arch and Pacific crossings. The two ports
are located within 2 miles of each other and an automobile can cross the border via either port by
choosing the corresponding exit to leave the highway. Figure 5 visualizes the geographic locations
of the two ports.

Figure 5 The Peace Arch and Pacific Border-Crossings

To cross the border, every vehicle needs to be screened by an officer at an inspection booth. This
process takes a few minutes and creates a bottleneck or a queue for the border-crossing traffic.
There are a maximum of eight booths at each port of entry and the number of open booths varies
across a day. Since these booths are located next to each other, a vehicle can choose one of the
open booths to cross the border. Thus, all vehicles at the same port of entry are in a pooled queue,
regardless which booth they actually go through. However, the vehicles at one port of entry cannot
switch to the other, so vehicles at the two ports of entry form two separated parallel queues.
The up-to-date waiting times are estimated from the data gathered by nearby loop detectors,

capturing vehicle queue lengths, moving speed, and crossing durations (WCOG, 2019). Rajbhan-
dari et al. (2012) provided a comprehensive review on the detailed methodologies for estimating
waiting time at the U.S.-Mexico border. These waiting time estimates are updated every 5 minutes,
ensuring timely information for potential passengers. Access to these updates is facilitated through
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various channels: the website (WSDOT, 2024), which posts updates every 5 minutes, the in-vehicle
radio broadcasts at intervals of 10 minutes or less, and digital message boards along the highway
(Interstate-5) near the exists to the two crossings.
Travellers can then cross the border through either Peace Arch or Pacific. Thus, the vehicle

queues at the two crossings can be modeled as DCPQ with J = 2. We next use the historical
border-crossing traffic data to calibrate our customer choice model.
Our data is collected from the public website (WCOG, 2019). It records the number of arrivals

in five minute intervals at each port of entry, denoted by ape(t) and apa(t), and waiting-time
(delay) estimates at the beginning of every five-minute interval, denoted by τpe(t) and τpa(t). Here
t= 1,2, . . . denotes the index of each five-minute interval. Commercial trucks and vehicles with a
special dedicated fast lane such as NEXUS, go through separated lanes and are not included in
this tally. Anecdotal evidence suggests that some vehicles indeed balk upon observing a long queue
at the ports. However, the exact number of balked vehicles cannot be tracked because a vehicle
can balk anywhere on its way to the crossing.
Our data calibration is based on the northbound border-crossing traffic data in a one-year study

period from February 2018 to January 2019. To control the potential seasonal effect, we divide
the study period into four seasons: Feb-Apr, May-July, August-October, and November-January.
Months with similar intra-day arrival patterns are grouped into the same season. To control the
day-of-week effect, we only use traffic data on Tuesday, Wednesday, and Thursday, because the
arrival patterns in these days are very similar (Yu et al., 2016). Since travellers may pay more
attention to the waiting time estimates when there is a substantial delay, we focus on traffics during
the peak hours. To that end, we select a fixed 2.5-hours time window among those days in each
season, during which the arrival rate reaches a plateau. See Appendix S for how the 2.5-hour time
windows are selected.
After a traveller learns about the waiting-time estimates, it typically takes her less than ten

minutes till his vehicle joins the queue at a port of entry and is counted as an arrival. Thus, when
predicting the choice probability at the beginning of the tth five-minute slot, we should use the
waiting time estimates at the beginning of the (t−∆)th slot. In our numerical experiments, as a
robustness check we have tested ∆= 0,1,2 to capture the possible time lags of 0, 5, and 10 minutes,
respectively.
We want to study the effect of waiting time on travellers’ queue-joining behavior. A simple

model – the conditional logit model – is sufficient to serve that purpose. In fact, given the limited
number of explanatory variables in the dataset, employing a random coefficient model could lead
to overfitting.
According to the logit model, the probability for a passenger to choose Peace Arch instead of

Pacific, conditional on that the passenger would not balk, can be calculated as follows,

ppe(t)

ppe(t)+ppa(t)
=

exp(vpe−cτpe(t−∆))

exp(vpe−cτpe(t−∆))+exp(vpa−cτpa(t−∆))

= 1
1+exp((vpa−vpe)−c(τpa(t−∆)−τpe(t−∆)))

.
(55)

where ppe(t) and ppa(t) denote the proportion of travellers who choose Peace Arch and Pacific
crossing at time t, respectively, vpe and vpa denote the expected service utility, excluding the waiting
cost, at Pacific and Peace Arch, respectively, and c denotes the waiting cost per minute. Although
we do not have data on the number of balking vehicles, we can derive the nonlinear least square
estimator for v̂pa − v̂pe and ĉ as

(v̂pa − v̂pe, ĉ) := argmin(
1

1+ exp((vpa − vpe)− c(τpa(t−∆)− τpe(t−∆)))
− ape(t)

ape(t)+ apa(t)
)2. (56)

The coefficients estimated from the conditional logit model, log-likelihood, and number of obser-
vations are summarized in Table 1. For all the four seasons and time lags ∆= 0,1,2, the estimator
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of waiting cost ĉ is consistently positive at a 0.001 significance level. Moreover, the odds ratio of
c spans from 1.003 to 1.014, indicating that each minute decrease in waiting time increases the
odds of joining that queue by 3%− 14%. That provides strong evidence that travellers have paid
attention to the waiting time estimates and tried to avoid longer queues during the peak hours.
We also find that travellers’ preference, excluding waiting cost effect, changes between Peace

Arch and Pacific differ from season to season. From August till January, the coefficient estimator
v̂pa − v̂pe stays negative at a 0.001 significance level, suggesting that more travellers prefer Peace
Arch to Pacific during those months. However, from February till May, Pacific becomes the preferred
crossing. From June till August, the two ports are equally preferred. The dataset size varies slightly
across different ∆ scenarios, as we exclude the initial ∆-minute period from each analysis to
accommodate the delay. The fluctuations in log-likelihood values across various scenarios align
with the respective adjustments in the size of the dataset.

Table 1 Estimation Results from the Logit Model

Coefficients (Standard Error) Odds ratio
Time Lag 0 min 5 min 10 min 0 min 5 min 10 min

Nov-Jan

v̂pa − v̂pe
-0.124∗∗∗ -0.118 ∗∗∗ -0.118∗∗∗ 0.883 0.889 0.888
(0.008) (0.008) (0.008)

ĉ
0.003∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 1.004 1.006 1.006
(0.001) (0.001) (0.001)

Log-Lik -3503.3 -3483.2 -3483.99
N 1139 1100 1062

Feb-Apr

v̂pa − v̂pe
0.032∗∗∗ 0.034∗∗∗ 0.034∗∗∗ 1.032 1.034 1.034
(0.008) (0.008) (0.008)

ĉ
0.013∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 1.014 1.016 1.017
(0.001) (0.001) (0.001)

Log-Lik -3298.8 -3235.4 -3206.7
N 1020 986 952

May-Jul

v̂pa − v̂pe
-0.003 0.005 0.010 0.997 1.005 1.010
(0.007) (0.007) (0.007)

ĉ
0.008∗∗∗ 0.010∗∗∗ 0.012∗∗∗ 1.008 1.010 1.012
(0.001) (0.001) (0.001)

Log-Lik -3942.1 -3871.8 -3820.1
N 1200 1160 1120

Aug-Oct

v̂pa − v̂pe
-0.227∗∗∗ -0.217 ∗∗∗ -0.214∗∗∗ 0.797 0.805 0.807
(0.009) (0.009) (0.009)

ĉ
0.003∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 1.003 1.005 1.006
(0.001) (0.001) (0.001)

Log-Lik -3185.1 -3171.1 -3163.1
N 1050 1015 980

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

For robustness check, we also estimate a conditional logit model and obtain similar coefficient
estimates and log-likelihood values; see Table 2.
In our forthcoming analysis, we delve into numerical illustrations derived from the choice model

configured for the period of Feb-Apr with ∆ = 0, with the other inferred from data, if possible.
The numerical examples validate the robustness of our theoretical results in the fluid and diffusion
analysis, while also shedding light on additional observations. Specifically, we explore variations
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Table 2 Estimation Results from the Probit Model

Coefficients (Standard Error) Odds ratio
Time Lag 0 min 5 min 10 min 0 min 5 min 10 min

Nov-Jan

v̂pa − v̂pe
-0.078∗∗∗ -0.074 ∗∗∗ -0.074∗∗∗ 0.925 0.929 0.929
(0.005) (0.005) (0.005)

ĉ
0.002∗∗∗ 0.004∗∗∗ 0.003∗∗∗ 1.002 1.004 1.004
(0.000) (0.000) (0.000)

Log-Lik -3503.3 -3483.2 -3484.0
N 1139 1100 1062

Feb-Apr
v̂pa − v̂pe

0.020∗∗∗ 0.021 ∗∗∗ 0.021∗∗∗ 1.020 1.021 1.022
(0.005) (0.005) (0.005)

ĉ
0.008∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 1.008 1.010 1.010
(0.000) (0.000) (0.000)

Log-Lik -3298.8 -3235.4 -3206.8
N 1020 986 952

May-Jul
v̂pa − v̂pe

-0.002 0.003 0.006 0.998 1.003 1.006
(0.005) (0.005) (0.005)

ĉ
0.005∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 1.005 1.007 1.007
(0.000) (0.000) (0.000)

Log-Lik -3942.1 -3871.9 -3820.2
N 1200 1160 1120

Aug-Oct
v̂pa − v̂pe

-0.142∗∗∗ -0.136 ∗∗∗ -0.134∗∗∗ 0.867 0.873 0.875
(0.005) (0.005) (0.005)

ĉ
0.002∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 1.002 1.003 1.004
(0.001) (0.001) (0.001)

Log-Lik -3185.1 -3171.1 -3163.1
N 1050 1015 980

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

in the fluid equilibrium τ ∗ in response to alteration in key model parameters, including c and
vpa − vpe; see Figure 6(b) for a graphical illustration.

(a)τ ∗ varies by with v2 (fix v1 = 3, c= 0.008) (b)τ ∗ varies by with c (fix v1 = 3, v2 = 3.02)

Figure 6 Sensitivity of Fluid Equilibrium to Model Coefficients

Next we delve into how the expected social welfare (SW) changes to different service rates µ1

and µ2, subject to the budget constraint µ1 +µ2 ≤ µ= 0.9747. The budget constraint is pertinent
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to planning at border crossings, where the allocation of security check personnel, which is the
service bottleneck, between two ports does not entail additional expenses. By computing the fluid
equilibrium from the NCP (18), we ascertain that τ ∗ > 0 when 0.463 < µ1 < 0.508. This range
correlates with the plateau on top of the SWlogit(µ1) curve in Figure 7, aligning with Theorem
4, which states that social welfare reaches its peak and remains invariant for µ1 ∈ (0.0463,0.508)
where τ ∗ > 0.
We also observe a not entirely smooth plateau on top of the SWprobit(µ1) curve in Figure 7, a

phenomenon not attributed to stochastic variance as we have run 400,000 simulations to precisely
estimate the probit function. This irregularity attributes to the inapplicability of Theorem 4 to
the probit model, leading to minor the social welfare fluctuations with service rate adjustments.
Nonetheless, provided the service rate modifications remain within bounds ensuring τ ∗ > 0, social
welfare hovers near the optimum. This empirical finding underscores the robustness of Theorem
4’s insight across diverse utility models.

Figure 7 Social Welfare versus Service Rate Adjustment

Finally, we examine the convergence behaviour of the stochastic process towards its diffution
limit. We a more complicated DCPQ with J = 4 SPs. The service duration at each SP is modeled to
follow an independent Gamma distribution, characterized by shape parameters {2,2,3,3} and scale
parameters {2,2,2,2}. Customer utility function follows the form (1), with random coefficients uξ,j

for service valuation and cξ for waiting cost. We assume that uξ,j follows a normal distribution
with mean and standard deviation both set to j = 1,2,3,4, and that cξ follows an exponential
distribution with a mean 0.05. Each simulation iteration spans T = 4000 time units and the entire
simulation is replicated 1000 times to construct the probabilistic profiles of the transient transient
queue lengths Xj(100), Xj(500), Xj(1000), Xj(2000) for j = 1,2,3,4. The fluid analysis shows
τ ∗ > 0. Therefore, Proposition 4 states that the drift limit process should follow an MOU with no
reflection barrier.
Figure 8 depicts the cumulative distributions for each Xj(·) and compared them with a normal

distribution whose mean and variance is estimated based on the states at T = 4000 when the sys-
tem presumably has reached the steady state. (We choose to estimate them based on simulation as
computing the Jacobian is equally challenging due to the random coefficient model). We observe
that after T = 2000, all queue lengths have reached the stationary distribution. More interestingly,
even at T = 500,1000, when the system has not reached the stationary distribution yet, the cumu-
lative distribution is still close to the Gaussian distribution. This observation is in harmony with
Theorem 5 which shows the diffusion limit is an MOU whose transient distribution is multivariate
Gaussian.
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(a)X1(t) (b)X2(t)

(c)X3(t) (d)X4(t)

Figure 8 Simulated Queue-Lengths Process in DCPQ

11. Conclusions and Future Research

Our paper is the first to apply heavy traffic approximations to the general DCPQ problem and
derive properties of its steady sate. As mentioned, we not only make theoretical contributions but
also address some of the managerial issues of interest that arise in practice. For example, our results
can directly help practitioners implement system evaluation metrics for controlling these types of
stochastic systems. Future work can evaluate the value of information by comparing the social
welfare achieved in DCPQ versus a parallel-queue system without waiting time announcements.
Another important question would be to evaluate the discrepancy between the social welfare opti-
mization to that of a customer’s self-interest maximization in a DCPQ. The results can also be
applied to evaluate the performance of DCPQs under different staffing policies, which we were
unable to do for the border-crossing queues due to the lack of data on customer balking.
Our analytical framework can be extended to a DCPQ in which all customers renege after an

identically and exponentially distributed random period. However, if reneging is endogenous (state-
dependent), then the problem is known to be hard (Ata and Peng, 2018). Also, in some situations,
waiting customers may abandon the current queue and join a different queue. Usually, when a
customer abandons the current queue, she has to lose her priority in that queue and has to wait
at the end of the new queue. Such a switching behavior is equivalent to the event that a customer
reneges in one queue and a new customer joins another queue. Our conjecture is that this will
not change the behavior of the DCPQ and thus will not affect the asymptotic characterization
significantly. Relaxing some of the technical assumptions, such as Poisson arrival and exponential
reneging times, can be an interesting but challenging and is left for future research.
Future studies could delve into the implications of delays in disseminating real-time waiting time

information and the effects of inaccuracies in such data on the performance of DCPQ systems.
The majority of existing research on this topic focuses on single-queue models (Ibrahim, 2018),
indicating a significant research gap for DCPQ environments. This highlights a compelling need for
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further exploration within the context of parallel-queue systems, where the dynamics of information
dissemination and its reliability may have distinct impacts on system efficiency and social welfare.
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Appendix A: Proof of Proposition 1

Proof. We first prove that the Jacobian of the arrival rate function exists and is continuous a.e.
For all j ̸= i and i, j ̸= 0, if the partial derivative

∂pj(τ )

∂τi
exists, then it must equal to the following

limit

lim
t→0

1

t
(pj(τ + tei)− pj(τ )). (57)

Note that τ + tei and τ differs only in the ith component. Thus, if a customer of type ξ chooses
to join queue j at τ + tei, but not to join queue j at τ , then he must have chosen queue i at
τ . Because his utility of joining other queues is not changed. Those customers must have their
parameters (uξ, cξ) contained in the set S1 ∩S2(t), where

S1 :=

{
(u, c) | uj − cτj > max{0, uk − cτk, k ̸= i, j}

ui − cτi > max{0, uk − cτk, k ̸= i, j}

}
S2(t) :=

{
(u, c)| c(τi − τj)≤ ui −uj < c(τi − τj + t)

} (58)

Intuitively, ξ ∈ S1 if queue i and queue j are the top two choices of customer ξ; ξ ∈ S2 if the
expected utility of queue i and queue j are so close that a small change of τi would alter his choice.
The probability for ξ ∈ S1 ∩S2(t) is thus exactly the difference pj(τ + tei)− pj(τ ).
If τi ̸= τj, the limit (57) can be calculated as

lim
t→0

1

t
(pj(τ + tei)− pj(τ ))

= lim
t→0

1

t
Pr((u, c)∈ S(t))

= lim
t→0

1

t

∫
(u,c)∈S2(t)

I((u, c)∈ S1)f(u, c)dudc

= lim
t→0

∫
[
1

t

∫ ui−uj
τi−τj

ui−uj
τi−τj+t

fc|u(c)I((u, c)∈ S1)dc]f(u)du

=

∫
lim
t→0

[
1

t

∫ ui−uj
τi−τj

ui−uj
τi−τj+t

fc|u(c)I((u, c)∈ S1)dc]f(u)du (59)

=

∫
I((u,

ui −uj

τi − τj
)∈ S1)f(u,

ui −uj

τi − τj
)du. (60)
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Equality (59) is due to dominated convergence. To see that, note that the term inside [·] has the
following limit

lim
t→0

[
1

t

∫ ui−uj
τi−τj

ui−uj
τi−τj+t

fc|u(c)I((u, c)∈ S1)dc] = fc|u(
ui −uj

τi − τj
) I((u,

ui −uj

τi − τj
)∈ S1). (61)

Thus, for sufficiently small t, the term inside [·] is upper bounded by 2fc|u(
ui−uj

τi−τj
)I((u,

ui−uj

τi−τj
)∈ S1),

whose integral with respect to u is upper bounded by the marginal density 2fc(
ui−uj

τi−τj
).

Therefore, if τi ̸= τj, the partial derivative
∂pj(τ )

∂τi
, as the limit of 1

t
(pj(τ + tei)− pj(τ )), exists

and has the following expression,

∂pj(τ )

∂τi
=

∫
I((u,

ui −uj

τi − τj
)∈ S1)f(u,

ui −uj

τi − τj
)du. (62)

Since the RHS of above equation is a continuous function of τi and τj when τi ̸= τj, the partial

derivative
∂pj(τ )

∂τi
must be continuous across all τ , except at a zero-measured set of points with

τi = τj.

The above argument proves that if j ̸= i, then
∂pj(τ )

∂τi
exists and is continuous for all τ /∈KJ . It

remains to prove the above property of
∂pj(τ )

∂τi
for the j = i case. Because

∑J

i=0 pj(τ )≡ 1, we know
that

∂pi(τ )

∂τi
= −∑j ̸=i, j=0,1,...,J

∂pj(τ )

∂τi
(63)

Note that the summation at the RHS consists of
∂pj(τ )

∂τi
for all j ̸= i (including j = 0). p0(τ )

represents the proportion of customers who choose to balk, or equivalently, to join a queue indexed
by 0 with expected waiting time τ0 = 0 and service utility u0 = 0. Thus, using the previous argument
for the i ̸= j case, we can show that ∂p0(τ )

∂τi
exists and is continuous a.e. Because for all j ̸= i

(including j = 0),
∂pj(τ )

∂τi
exists and is continuous a.e., Equation (63) implies that ∂pi(τ )

∂τi
exists and

is continuous a.e..
So far, we have proved that the arrival rate function pj(τ ) has continuous derivatives except at

a zero-measured set with τj = τk. Next we show that even at points with τj = τk, pj(τ ) remains
continuous, though it may not have finite derivatives. Thus, pj(τ ) is absolute continuous. Formally,

lim
t→0

pj(τ + tei)− pj(τ ) = lim
t→0

Pr((u, c)∈ S(t))

= lim
t→0

∫ ∫
[

∫ ct

0

fui|u−i,c(uj +x)I((u, c)∈ S1)dui]fu−i,c(u−i, c)dcdu−i (64)

= 0 (65)

where equality (64) follows from Equality (65) follows from that limt→0

∫ ct

0
fui|u−i,c(uj+x)I((u, c)∈

S1)dui = 0. In the case that c has a discrete distribution, one can replace the integral
∫
·dc in the

above equation with summation
∑

k ·Pr(c= k) without changing the result.
We next prove (CD-a)-(CD-c).
(CD-a): Suppose τ 2

k > τ 1
k , and τ 2

l = τ 1
l for j ̸= k. For a customer indexed by ξ, if his choice is

queue j ̸= k, then
uk − cτ 2

k <uk − cτ 1
k ≤ uj − cτ 1

j = uj − cτ 2
j , (66)

where the first inequality is due to τ 2
k > τ 1

k , the second inequality follows from the fact that the
customer’s optimal choice is queue j instead of queue k, and the last equality follows since τ 1

j = τ 2
j .

Therefore, if a customer’s initial choice is queue j, then his choice remains the same when the
waiting-time vector is changed from τ 1 to τ 2. We thus deduce that pj(τ ) is non-decreasing in τk.
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(CD-b): Note that pj(τ ) must be non-increasing with τj as a result of (CD-a) and
∑J

k=0 pk = 1.
So it suffices to prove pj(τ ) is strictly decreasing when τ 1 has been replaced by τ 2, where τ 2

j > τ 1
j

but τ 2
k = τ 1

k for k ̸= j. A customer ξ will choose to join queue j given expected waiting-times vector
τ 1, but not join queue j when the waiting-time vector is changed to τ 2, if and only if

(uξ, cξ)∈ {(u, c)|uj − cτ 1
j > max{0, uk − cτ 1

k , k ̸= j}
uj − cτ 2

j < max{0, uk − cτ 2
k , k ̸= j} } (67)

Because the parameter c has positive conditional pdf fc|u over R+, the above set must have a
positive probability mass. Therefore, a positive proportion of customers must switch to queues
other than j when the waiting time of queue j has been increased from τ 1

j to τ 2
j . Therefore, pj(τ )

is strictly decreasing in τj.
(CD-c): Given τ 2 := τ 1 + te, the linear form of Uξ,j implies that if Uξ,j ≥ Uξ,k for all k ̸= j

(including k = 0) at τ 2, then the same inequalities must hold at τ 1. Therefore, we deduce that
pj(τ

1)≥ pj(τ
2) for all j ̸= 0. To prove the strict inequality in (10), we notice that a customer of

type ξ joins some queue at τ 1, but balks at τ 2 if

(u, c)∈
{
(u, c) | 0<max{uk − cτ 1

k , k= 1, . . . , J}
0>max{uk − c(τ 2

k + t), k= 1, . . . , J}

}
. (68)

Because the parameter c has positive conditional pdf fc|u over R+, the above set must have a
positive probability mass, so the strict inequality (10) is proved, which implies row strict diagonally
dominance of the Jacobian matrix. Inequality (11) and the column strict diagonally dominance
follow from symmetry of the Jacobian matrix, a result that will be proved in the end of this proof.
We next prove the stability condition (7). A customer will joint queue j only if uj − cτ > 0.

Therefore, when τj →∞,

pj(τ )≤Pr(uj − cτ > 0) =

∫
[

∫ uj/τj

0

fc|u(c)dc]fu(u)du→ 0. (69)

where the convergence follows from uj/τj → 0 and our assumption that fc|u(·) is bounded. Equation
(69) leads to (7).
Finally, we prove that the Jacobian matrix is symmetric whenever it exists. Equation (59) implies

that
∂pj(τ )

∂τi
= limt→0

1
t
(pj(τ + tei)− pj(τ ))

= limt→0
1
t
Pr


(u, c)|

uj − cτj > max{0, uk − cτk, k ̸= i, j}
ui − cτi > max{0, uk − cτk, k ̸= i, j}
uj − cτj > ui − c(τi + t)
uj − cτj < ui − cτi


 (70)

Similarly,

∂pi(τ )

∂τj
= limt→0

1
t
(pi(τ )− pi(τ − tej))

= limt→0
1
t
Pr


(α, c,ϵ)|

uj − cτj > max{0, uk − cτk, k ̸= i, j}
ui − cτi > max{0, uk − cτk, k ̸= i, j}

uj − c(τj − t) > ui − cτi
uj − cτj < ui − cτi


 (71)

Notice that the set at the RHS of Equation (70) and (71) are identical. The intuition is that it is
the same group of customers who will switch to queue j, when either τj has been decreased by t,
or τj has been increased by t. We thus have ∂pj(τ )/∂τi = ∂pi(τ )/∂τj and symmetry is proved.
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The above proof also leads to an example that the arrival rate function Λ(·) does not have to
be (even locally) Lipschitz continuous. In particular, its partial derivative may be infinite at some
point τ . Let u−i denote the vector obtained by removing the ith entry from u. Equation (64) then
implies that

lim inf
t→0

1

t
(pj(τ + tei)− pj(τ ))

= lim inf
t→0

∫ ∫
[
1

t

∫ uj+ct

uj

fui|u−i,c(ui)I((u, c)∈ S1)dui]fu−i,c(u−i, c)dcdu−i (72)

≥
∫∫

lim inf
t→0

[
1

t

∫ ct

0

fui|u−i,c(uj +x)I((u, c)∈ S1)dx]fu−i,c(u−i, c)dcdu−i (73)

=

∫∫
cfui|u−i,c(uj)I((u, c)∈ S1)fu−i,c(u−i, c)du−i dc

=

∫
c[

∫
fu|c(uj,u−i)I((u, c)∈ S1)du−i]fc(c)dc

where inequality (73) follows from the Fatou’s Lemma. Note that the integral inside [·] can be
infinitely large because

∫
fu|c(uj,u−i)du−i = fui|c(uj) can be infinitely large when ui = uj; while

we can always properly select the parameters such that the constraint I((u, c) ∈ S1) is satisfied

by u−is in a positive-measured set. Consequently, the partial derivative
∂pj(τ )

∂τi
can be infinitely

large (i.e., not exist) at τ , and can be unbounded near those points. That means, the arrival rate
function Λ(·) does not have to be (even locally) Lipschitz continuous.

Appendix B: Proof of Lemma 1

Given τ (t−)∈RJ
+, define the following partition over the domain of (u, c) (i.e., RJ+1

+ ):

π0(τ (t−)) := {(u, c)∈RJ+1
+ |0>uk − cτk(t−) for all k= 1, . . . , J},

πj(τ (t−)) := {(u, c)∈RJ+1
+ |uj − cτj(t−)>max{0, uk − cτk(t−), k ̸= j}}. (74)

According to the above definition, a customer, by observing waiting-time estimates τ (t−), will
join queue j(= 0,1, . . . , J) if his parameter vector (u, c) ∈ πj(τ (t−)). Since a tie happens with
probability zero, the probability for a customer to join queue j is given by

pj(τ (t)) =

∫
(u,c)∈RJ+1

+

1((u, c)∈ πj(τ (t−)))f(u, c)dudc. (75)

Let Aj(t) denote the cumulative number of arrivals at queue j by time t. Let (uk, ck) denote the
parameters of the We have

Aj(t) =

∫ t

0

1{(uN(s), cN(s))∈ πj(τ (s−))}dN(s), (76)

where N(·) denotes a standard rate-one Poisson process. Thus, (uN(s), cN(s)) denote the parameters
of the customer who arrive at time s. Let Âj(t) :=

∫ t

0
pj(τ (s−))ds denote the mean of A(t). Let H

denote the σ-field of the common probabilistic space where all the random events are defined. We
then define a filtration for the arrival process as

F(t) := σ(N(s), 0≤ s≤ t)∨σ((uℓ∩N(t), cℓ∩N(t)), ℓ= 0,1, . . .)∨σ(N 0). (77)

where σ(·) denotes the sigma-field generated by the random variables inside (·), and N 0 consists
of all null sets in H. We define stochastic processes M 1 := (M 1

j ) and M 2 := (M 2
j ) as follows,

M 1
j (t) := Aj(t)−

∫ t

0
pj(τ (s−))dN(s)

=
∫ t

0
(1{(uN(s), cN(s))∈ πj(τ (s−)}− pj(τ (s−)))dN(s),

M 2
j (t) :=

∫ t

0
pj(τ (s−))dN(s)− Âj(t).

(78)
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We next show that M 1
j and M 2

j are both F(t)-martingales. For any t > t0 ≥ 0, the following identify
holds due to Equation (75),

E[M 1
j (t)|F(t0)]

= M 1
j (t0)+E

[∫ t

t0
[1{(uN(s), cN(s))∈ πj(τ (s−))}− pj(τ (s−))]dN(s) |F(t0)

]
= M 1

j (t0)+
∑∞

ℓ=1E
[(
1{(uN(t0)+ℓ, cN(t0)+ℓ)∈ πj(τ (tℓ−))}− pj(τ (tℓ−))

)
1{tℓ ≤ t} |F(t0)

]
= M 1

j (t0).

(79)

where tℓ :=N−1(N(t0)+ ℓ) denotes the arrival time of the (N(t0)+ ℓ)th customer. The last equality
follows that the random variables (uN(t0)+ℓ, cN(t0)+ℓ) (ℓ= 1,2, . . .) are independent of F(t0), tℓ, and
τ (tℓ−). Thus, M 1 is an F(t)-martingale.
ForM2, sinceN(t) is a Poisson process,N(t)−t is an F(t)-martingale. Moreover, since pj(τ (t−))

is left-continuous, and thus is an F(t)-predictable process with respect to F(t). We then invoke the
integration theorem part (β) (T8 Page 27, Brémaud (1981)), in which Xs = pj(τ (s−)), λu ≡ 1, and
Ms =N(s)− s in the theorem. It then implies that M 2

j (t) :=
∫ t

0
pj(τ (s−))dN(s)−

∫ t

0
pj(τ (s−))ds

is an F(t)-martingale for each j = 1, . . . , J . Therefore, both M 1 and M 2 are vector-valued F(t)-
martingale, and so is A− Â=M 1 +M 2.
Since A − Â is an F (t)-martingale, it must be also an F (t)-local martingale. Furthermore,

Â(0) = 0. Thus, Â satisfies the definition as being a compensator of the counting process A(·),
i.e., the unique right-continuous and increasing process with Â(0) = 0 such that A− Â is a local
martingale (Lowther, 2011). Furthermore, Â is a continuous compensator of A because for each
j = 1,2, . . . , J , Âj(t) =

∫ t

0
pj(τ (s−))ds has continuous paths (Brown and Nair, 1988). We also know

that with probability 1, A(·) does not have simultaneous jumps. We can then invoke Meyer’s
theorem (Brown and Nair, 1988) and deduce that Aj(Â

−1
j (t)), j = 1, . . . , J are independent rate-one

Poisson processes, i.e.,

Aj(Â
−1
j (·)) d

=Nj(·), (80)

where each Nj(·) (j = 1,2, . . . , J) is an independent rate-one standard Poisson process. Note that
the inverse function Â−1

j (·) is well defined since Âj(·) is strictly and continuously increasing. Con-

sequently, for 0< t1 < . . .≤ tm, we define zk = Âj(tk) =
∫ tk
0

pj(τ (s−))ds for k = 1,2, . . . ,m. Then
for all Borel sets B1,B2, . . . ,Bm, we have

Pr(Aj(t1)∈B1,Aj(t2)∈B2, . . . ,Aj(tm)∈Bm)

= Pr(Aj(Â
−1
j (z1))∈B1,Aj(Â

−1
j (z2))∈B2, . . . ,Aj(Â

−1
j (zm))∈Bm)

= Pr(N1(z1)∈B1,N2(z2)∈B2, . . . ,Nm(zm)∈Bm)

= Pr(N1(
∫ t1

0
pj(τ (s−))ds)∈B1,N2(

∫ t2

0
pj(τ (s−))ds)∈B2,

. . . ,Nm(
∫ tm

0
pj(τ (s−))ds)∈Bm)

(81)

where the second equality follows from (80) (finite dimensional distribution equivalence). The above
equality therefore proves the equivalence between Aj(·) and Nj(

∫ ·
0
pj(τ (s−))ds) with respect to

finite dimensional distribution.

Appendix C: Proof of Proposition 2

Proof. If τ ∗ is an equilibrium, then the arrival and departure rates must be balanced with each
other in each queue. So the departure rate in each queue must be pj(τ

∗). For queues with excessive
service capacity, we must have µj − pj(τ

∗)> 0, and that queue must be empty so τ ∗
j = 0; for other

queues, we have µj − pj(τ ) = 0. We thus proved the complementary slackness condition in (18).
The other inequality constraints can be proved straightforwardly.
Suppose τ ∗ is a solution to (18). For queues with τ ∗

j > 0, by the complementary slackness
condition in (18), we have µj − pj(τ ) = 0, which implies that the service rate and arrival rate are
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balanced for those queues; for queues with τ ∗
j = 0, we know that the arrival rate has not exceeded

the service capacity due to the inequality constraint µj − pj(τ )≥ 0. Since those queues are empty,
the arrival and departure rates must be balanced. Thus, the drift coefficient in equation (16) must
equal to zero at τ ∗, which implies τ (t)≡ τ ∗ provided that τ (t) is a solution to (16) with τ (0) = τ ∗.

Appendix D: Proof of Lemma 2

Proof. Suppose x and y are both solutions to SDER (17). Then by the first equation in the
proof of Theorem 4.1 in (Tanaka (1979), page 175), we have

∥x(t)−y(t)∥2
≤ ∥

∫ t

0
(σ(s,x(s))−σ(s,y(s)))dB(s)∥2 +2

∫ t

0
⟨x(s)−y(s),b(s,x(s))− b(s,y(s))⟩ds+ the remainder.

(82)
where the remainder has zero expectation. We thus have

E∥x(t)−y(t)∥2
≤ E

∫ t

0
∥σ(s,x(s))−σ(s,y(s))∥2ds+2

∫ t

0
⟨x(s)−y(s), b(s,x(s))− b(s,y(s))⟩ds

≤ K2E
∫ t

0
∥x(s)−y(s)∥2ds+2

∫ t

0
⟨x(s)−y(s), b(s,x(s))− b(s,y(s))⟩ds

(83)

where the inequality follows from Lipschitz continuity of σ(s, ·). By absolute continuity of b(s, ·),
we have

b(s,x(s))− b(s,y(s)) =

∫ 1

0

R(y(s)+ ξ(x(s)−y(s)))(x(s)−y(s))dξ, (84)

with the Jacobian matrix R(y(s) + ξ(x(s)− y(s))) negative definite for almost all ξ ∈ [0,1]. Con-
sequently,

⟨x(s)−y(s),b(s,x(s))− b(s,y(s))⟩ = ⟨x(s)−y(s),
∫ 1

0
R(y(s)+ ξ(x(s)−y(s)))(x(s)−y(s))dξ⟩

=
∫ 1

0
⟨x(s)−y(s), R(y(s)+ ξ(x(s)−y(s)))(x(s)−y(s))⟩dξ

≤ 0
(85)

which, together with Equation (83), leads to

E∥x(t)−y(t)∥2 ≤K2

∫ t

0

E∥x(s)−y(s)∥2ds. (86)

Then by the Gronwall’s inequality (e.g., Ethier and Kurtz (2009), page 498), we have ∥x(t)−y(t)∥=
0.

Appendix E: Proof of Theorem 1

Proof. By Lemma 1, the length of queue j is described by the following equation,

xn
j (t) = xn

j (0)+
1
n
N(
∫ t

0
npj(τ

n(s))ds)− 1
n
Sn
j (W

n
j (t))

= xn
j (0)+

1
n
Zn

j (t)+
∫ t

0
(pj(x

n(s) ◦ (µn)−1)− pj(x
n(s) ◦µ−1))ds

+
∫ t

0
(pj(x

n(s) ◦µ−1)−µn
j )ds+ ℓnj (t)

(87)

where xn
j (t) was defined in (14), ℓnj (t) := µn

j (t−W n
j (t)) is the minimal non-decreasing process which

ensures xn
j (t)≥ 0, and

Zn
j (t) :=

(
N(
∫ t

0
npj(X

n(s) ◦ (nµn)−1)ds)−
∫ t

0
npj(X

n(s) ◦ (nµn)−1)ds
)

+
(
nµn

jW
n
j (t)−Sn

j (W
n
j (t))

) (88)



Author: Article Short Title
Operations Research 00(0), pp. 000–000, © 0000 INFORMS 43

represents a mean-zero centered process. We also define Γ(x) :=Λ(x ◦µ−1) and

z̃n(t) := 1
n
Zn(t)+

∫ t

0
(Λ(xn(s) ◦ (µn)−1)−Λ(xn(s) ◦ (µ)−1))ds. (89)

Then we can express x(t) and xn(t) as

xn(t) = xn(0)+
∫ t

0
Γ(xn(s))ds− tµn + z̃n(t)+ ℓn(t),

x(t) = x(0)+
∫ t

0
Γ(x(s))ds− tµ+ ℓ(t).

(90)

where ℓ(·) := (ℓj(·))j=1,...,J and ℓn(·) denote the minimal non-decreasing processes that keep x(t)
and xn(t) staying non-negative.
We invoke the first inequality in Remark 2.2 of (Tanaka, 1979), in which we plug in the following

quantity ξ(t) :=x(t), ξ̃(t) :=xn(t), w(t) :=x(0)−tµ and w̃(t) :=xn(0)+ z̃n(t)−tµn, a(t) =Γ(x(t))
and ã(t) = Γ(xn(t)). Since Γ(·) is absolutely continuous, a(·) and ã(·) are both right continuous
and have bounded variation, which satisfy the conditions specified in (Tanaka, 1979). The first
inequality in Remark 2.2 of (Tanaka, 1979) then leads to following inequality,

∥xn(t)−x(t)∥2
≤ ∥xn(0)−x(0)+ z̃n(t)− t(µn −µ)∥2 +2

∫ t

0
⟨xn(s)−x(s),Γ(xn(s))−Γ(x(s))⟩ds

+
∫ t

0
⟨z̃n(t)− z̃n(s)− (µn −µ)(t− s), dã(s)− da(s)+ dℓ̃(s)− dℓ(s)⟩ds

(91)

Later, we will prove that ∥z̃n∥T → 0 for all T > 0. Since ∥xn(0)− x(0)∥ → 0 and ∥µn −µ∥ → 0,
the first and the third terms on the right-hand-side of Equation (91) both converge to zero. The
second term is non-positive because

⟨xn(s)−x(s),Γ(xn(s))−Γ(x(s))⟩
= ⟨xn(s)−x(s),

∫ 1

0
R(xn(s)+ ξ(xn(s)−x(s)))((xn(s)−x(s)) ◦µ−1)⟩

= ⟨(xn(s)−x(s)) ◦µ−1/2,
∫ 1

0
R(xn(s)+ ξ(xn(s)−x(s)))((xn(s)−x(s)) ◦µ−1/2)⟩

≤ 0,

(92)

where the last inequality follows from that the Jacobian matrix R(xn(s) + ξ(xn(s) − x(s))) is
negative semidefinite a.e. The inequality (91) thus implies that ∥xn(t)−x(t)∥2 → 0.
It remains to show that ∥z̃n∥T → 0 for all fixed T > 0. By the functional strong law of large

number (e.g., Theorem 5.10 in Chen and Yao (2001)), and µn →µ, we have

1
n
∥N(n

∫ t

0
pj(

Xn
j (s)

nµn
j
)ds)−

∫ t

0
npj(

Xn
j (s)

nµn
j
)ds∥T → 0

1
n
∥nµn

jW
n
j (t)−Sn

j (W
n
j (t))∥T → 0.

(93)

We thus conclude that

∥ 1
n
Zn∥T → 0. (94)

Also, since Λ(·) is continuous and bounded (by one), by bounded convergence, we have

∥
∫ t

0

(Λ(xn(s)◦(µn)−1)−Λ(xn(s)◦(µ)−1))ds∥T ≤
∫ T

0

∥Λ(xn(s)◦(µn)−1)−Λ(xn(s)◦(µ)−1))∥ds→ 0

(95)
Equations (94) and (95) imply that ∥z̃n∥T → 0.
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Appendix F: Proof of Theorem 2

Proof. We first use (CD-a) and (CD-c) to prove that −Λ(·) :=−(pj(·))j=1,...,J satisfies the so-
called P-property (Moré and Rheinboldt (1973)). Then by Theorem 2.3 of Moré (1974a) or the
comments after Theorem 1.6 of Megiddo and Kojima (1977), the P-property of −Λ(τ ) ensures
that the solution to the NCP (18) is unique, if exists.

P-Property: ∀τ 1,τ 2 ∈RJ
+, τ

1 ̸= τ 2,
J

min
j=1

(τ 1
j − τ 2

j )(pj(τ
1)− pj(τ

2))< 0. (96)

Without loss of generality, we assume that τ 1
j∗ − τ 2

j∗ =maxj(τ
1
j − τ 2

j )> 0 for some j∗, and define

∆τ := τ 1
j∗ − τ 2

j∗ . (97)

Then to prove (96), it suffices to prove that pj∗(τ
1)< pj∗(τ

2). By the definition of ∆τ , we have
τ 1 ≤ τ 2 +∆τe, but τ 1

j∗ = τ 2
j∗ +∆τ . Therefore, (CD-a) implies that

pj∗(τ
1)≤ pj∗(τ

2 +∆τe). (98)

If we define a univariate function f(x) := pj∗(τ
2+xe) and apply the mean value theorem to f(·)3,

we get
f(∆τ)− f(0) =∆τf ′(ζ). (99)

for some ζ ∈ [0,∆τ ]. That implies

pj∗(τ
2 +∆τe)− pj∗(τ

2) = ∆τ
∑

iRj∗i(τ
2 + ζe)

= ∆τRj∗j∗(τ
2 + ζe)+∆τ

∑
i̸=j∗ Rj∗i(τ

2 + ζe)

< 0

(100)

for some ζ ∈ [0,∆τ ], where Rji(τ
2 + ζe) represents the entry at the jth row and ith column of the

Jacobian matrix evaluated at τ 2+ζe, and the last inequality follows from (CD-c). Inequalities (98)
and (100) together imply that pj∗(τ

1)< pj∗(τ
2), which leads to the P-property.

We next prove the existence of a solution to the NCP. The most well known sufficient conditions
for existence is that the Jacobian of −Λ(τ ) is positively bounded, i.e., every principle minor of the
Jacobian of −Λ(τ ) is bounded between [δ, δ−1] for all τ (Cottle (1966)), or that −Λ(τ ) is a uniform
P-function, i.e., min(τ 1

j −τ 2
j )(pj(τ

1)−pj(τ
2))≤−c∥τ 1−τ 2∥2 for some c > 0 (Karamardian (1969);

Moré (1974b)). Unfortunately, neither condition is satisfied by our −Λ(τ ), as its Jacobian can be
arbitrarily close to a singular matrix when ∥τ∥→∞.
The next step of the proof involves proposing a new set of sufficient conditions for the existence

of a solution to an NCP of the form of (18), i.e., (CD-a), (CD-b), and the stability condition (7).
Note that (CD-c) is only needed to prove the uniqueness of the solution, but not the existence.
We use a constructive approach to prove the existence of the equilibrium. We prove that the

equilibrium state can be achieved by iterative adjustment of the waiting times τ . This adjustment
process is referred to as a tatonnement process in the economics literature Arrow et al. (1959);
Walras (2013). We start with τ = 0. In each iteration, we check sequentially if µj − pj(τ ) < 0
for each j = 1,2, . . . , J . Suppose for some j, µj − pj(τ )< 0, then we increase the value of τj and
keep the other components of τ unchanged until µj − pj(τ ) = 0. Such a τ always exists because
lim inf µj − pj(τ )> 0 by the stability condition (7), and µj − pj(τ ) increases continuously in τj by
(CD-b). We repeat the above procedure sequentially for j = 1,2, . . . , J until at some j, µk−pk(τ )≥ 0
for k > j. Note that after τj being increased, the value of µl − pl(τ ) can only decrease and turn

3 The mean value theorem holds even if at some point x, the derivative f ′(x) may equal to +∞ or −∞, as long as
f ′(x) has no jumps.
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negative again for some ℓ < j due to (CD-a). Therefore, we have to run the above algorithm for
another iteration, that is, checking if µj −pj(τ )< 0 for some j and increase τj to make the equality
to hold.
According to the above discussion, either at the very beginning µj −pj(τ )> 0, or µj −pj(τ )≤ 0

throughout the entire algorithm. We use τN to denote the updated value of τ in the N th iteration.
If in some iteration N , µj − pj(τ

N) ≥ 0 for all j, then τN is a solution to the NCP because
µj − pj(τ )> 0 only if the value of τj has never been updated (so τj = 0); otherwise, we obtain a
sequence of waiting-time vectors {τN |N = 1,2, . . .}. We next show that τN → τ ∗ <∞ and τ ∗ is
the unique solution to the NCP (18).
Without loss of generality, we assume that the value of τj has been updated (so τj > 0)

at iteration N1,N2, . . . ,Nl, . . .. After each time τj was updated, the waiting-time vector τ =
(τ

Nl
1 , . . . , τ

Nl
j , τ

Nl−1
j+1 , . . . , τ

Nl−1
J ) must solve the equation µj − pj(τ ) = 0. Therefore, the following

equation must hold for each l= 1,2, . . .,

µj − pj(τ
Nl
1 , . . . , τ

Nl
j , τ

Nl−1
j+1 , . . . , τ

Nl−1
J ) = 0. (101)

Since the value of τN
j can only increase after each iteration, the monotone convergence theorem

implies that τj → τ ∗
j . By the stability condition (7), τ ∗

j must be a finite number, otherwise we have
µj − pj(τ

N)→ µj − 0> 0, which contradicts the complementarity slackness condition. By letting
l→∞ and taking the limit on both sides of equation (101), we get µj − pj(τ

∗) = 0. By repeatedly
applying this argument for j = 1,2, . . . , J , we prove that (µ−Λ(τ ∗),τ ∗) is a solution to the NCP
(18).

Appendix G: Proof of Theorem 3

Proof. We define ∆τ (t) =maxj τj(t)− τ ∗
j (t) and ∆τ (t) =minj τj(t)− τ ∗

j (t). We first prove that

for any δ > 0, if ∆τ (t)> δ, then ∆τ ′(t)≤−h(δ), where h(δ) is a positive constant which depends
on the value of δ.

Suppose τj∗(t) − τ ∗
j∗ = ∆τ (t) ≥ δ. Since τj∗(t) > 0, the complementarity slackness condition

implies that µj = pj(τ
∗). Thus,

τ ′
j∗(t) =

X ′
j∗(t)

µj∗
=

pj∗(τ (t))

µj∗
− 1 =

pj∗(τ (t))

pj∗(τ ∗)
− 1. (102)

Note that τ ′
j∗(t) exists a.e., because Xj∗(t) can be expressed as integrals from 0 to t (See e.g.,

Equation (87)) and is therefore absolute continuous.
With the above equality, to show that τ ′

j∗(t)≤−h(δ), it suffices to show that

pj∗(τ (t))− pj∗(τ
∗)

pj∗(τ ∗)
≤−h(δ). (103)

We prove the above inequality using a similar argument as in the proof of P-property of Theorem
2. By substituting τ 1 = τ (t) and τ 2 = τ ∗ into inequality (98) and (100), we get

pj∗(τ (t))− pj∗(τ
∗) ≤ pj∗(τ

∗ +∆τ (t)e)− pj∗(τ
∗)

≤ pj∗(τ
∗ + δe)− pj∗(τ

∗)
= δRj∗j∗(τ

∗ + ζe)+ δ
∑

i ̸=j∗ Rj∗i(τ
∗ + ζe)

(104)

for some ζ ∈ [0, δ]. In Equation (104), the first inequality follows from inequality (98) (which uses
property (CD-a)), and the second inequality follows from ∆τ (t)≥ δ and property (CD-c). We then
define

h(δ) :=
−δ

pj(τ ∗)

(
max{z ∈ [0, δ] | Rj∗j∗(τ

∗ + ze)+
∑
i̸=j∗

Rj∗i(τ
∗ + ze)}

)
. (105)
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Using (CD-c), we deduce that Rj∗j∗(τ
∗ + ze)+

∑
i ̸=j∗ Rj∗i(τ

∗ + ze)< 0 for all z ∈ [0, δ]. Therefore,
h(δ) is a positive constant that is independent of τ (t). With h(δ) defined as in (105), inequality
(104) directly implies (103). Therefore, τ ′

j∗(t) =∆τ ′(t)≤−h(δ) whenever ∆τ (t)≥ δ. An analogous
argument can be used to prove that ∆τ ′(t)≥ h(δ) whenever ∆τ (t)≤−δ. Therefore, whenever the
maximum deviation of τ (t) from τ ∗ has to decrease at a rate of at least h(δ) whenever it is greater
than δ. This guarantees that the maximum deviation must drop below δ after a finite period. The
conclusion of Theorem 3 then follows by letting δ→ 0.

Appendix H: Proof of Theorem 4

Proof. The optimization problem (21)-(24) is equivalent to the following problem,

max
τ∗≥0

ln(1+
∑J

j=1 exp(vj − cτ ∗
j )) (106)

s.t.
∑J

j=1 pj(τ
∗)≤ µ, j = 1, . . . , J. (107)

(108)

Because if τ ∗ is an optimal solution to the above problem, by letting µj = pj(τ
∗), (µ,τ ∗) must be

an optimal solution to (21)-(24).
Furthermore, we have ln(1 +

∑J

j=1 exp(vj − cτ ∗
j )) = − ln(p0(τ )) as p0(τ ) = (1 +

∑J

j=1 exp(vj −
cτ ∗

j ))
−1, and

∑J

j=1 pj(τ
∗) = 1− p0(τ ). Then the optimization problem (106)-(107) is equivalent to

the following problem,

max
τ∗≥0

− ln(p0(τ
∗)) (109)

s.t. p0(τ
∗)≥ 1−µ, j = 1, . . . , J. (110)

(111)

Note that λ = 1 − p0(0) ≤ 1 − p0(τ
∗), we have p0(τ

∗) = max{1 − µ,1 − λ}, and the optimal
objective value is given by − ln(max{1−µ,1−λ}).

In the case of λ ≤ µ, the optimal value is given by − ln(1− λ), in which case λ = 1− p0(τ
∗)

implies τ ∗ = 0.
In the case of λ< µ, p0(τ

∗) = 1−µ, indicating that
∑

j pj(τ
∗) = µ and thus pj(τ

∗) = µj. In fact,
any feasible (µ,τ ∗) that satisfies pj(τ

∗) = µj for each j will have the same objective value and thus
be an optimal solution.

Appendix I: Proof of Proposition 3

Proof. The first-order necessary conditions for the optimization problem (21) - (23) and (25)
imply

−cpj(τ
∗)(1−hhjp0(τ

∗)+ tjp0(τ
∗)) =−sj ≤ 0

sj = 0 if τ ∗
j > 0

tj = 0 if µj > 0,
(112)

where h denotes the shadow price for the constraint (25), and sj ≥ 0 and tj ≥ 0 denotes the shadow
prices for the non-negative constraints τ ∗

j ≥ 0 and µj ≥ 0, respectively.
If tau∗ ̸= 0, then by defining k := min{j|τ ∗

j > 0}, we have τ ∗
j = 0 for all j < k by definition. For

j ≥ k, we have τ ∗
j > 0 and thus sj = 0. Then the first equation in (112) implies

(1−hhj + tj)p0(τ
∗)) = 0, for all j ≥ k. (113)

Given that hk ≤ hk+1 ≤ . . .≤ hJ , the above condition implies tk ≤ tk+1 ≤ . . .≤ tJ . If hk < hj, then
we have tj > tk ≥ 0, implying µj = 0.
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Appendix J: Proof of Lemma 3

We define n1/2∆τn(s) for a given Qn(s) as

n1/2∆τn(s) = n1/2(n1/2Qn(s)+nτ ∗ ◦µ) ◦ (nµn)−1 − τn,∗

= Qn(s) ◦ (µn)−1 +(τ ∗ ◦µ− τ n,∗ ◦µn) ◦ (µn)−1 (114)

Note that the second term at the RHS of (114) converges to −ϑ ◦µ−1, so the second term must
be bounded for all n. Also, the sequence {µn} is bounded as it converges to µ. Thus, there exists
ϵ > 0, such that for sufficiently large n,

n1/2∆τn
j (s)+

ϑj

µj

− ϵ≤ Qn
j (s)

µj

≤ n1/2∆τ n
j (s)+

ϑj

µj

+ ϵ, (115)

which implies that n1/2∆τn(s) is bounded if and only if Qn(s) is bounded. We let ∆τn(t) and
∆τ n(t) denote the maximal and minimal entries in the vector ∆τn(t), respectively. To prove
Lemma 3, it suffices to prove that for any fixed T > 0, when κ→∞,

limsupnPr(sup{n1/2∆τn(t) | t∈ [0, T ]}>κ) → 0
limsupnPr(inf{n1/2∆τn(t) | t∈ [0, T ]}<−κ) → 0

(116)

To prove (116), we first derive an expression for Qn in analogue to the expression for Qκ,n in
(35) by ignoring the reflection barrier at ±κ,

Qn
j (t) = Qn

j (0)+
∫ t

0
Γn
j (τ

n,∗ +∆τ n(s))ds+n−1/2Zn
j (t)+n−1/2Ln

j (t), (117)

where ∆τn(s) is defined as in (114) for a given Qn(s), Γn
j (τ ) := n1/2

(
pj(τ )−µn

j

)
represents the

deterministic drift that can be non-Lipschitz, and Zn
j (t) represents a mean-zero stochastic process

which was defined in Equation (88).
We next consider the scenario when n1/2∆τn(s) = n1/2(τn

j∗(s)− τn,∗
j∗ )> δ in some interval [a1, b1]

and for some fixed j∗ ∈ {j = 1, . . . , J}. That means, τn has the largest positive deviation from the
equilibrium τn,∗ along dimension j∗ over [a1, b1]. Then using the choice-driven property of Γn(τ )
(whose Jacobian is R(τ ) so it inherits the choice-driven property), we can prove that over [a1, b1],
the drift term would be upper bounded by a negative constant (See (122) below), and consequently
the deviation ∆τn(s) would decrease by at least an amount proportional to b1 − a1 (See (125)).
Formally, we have

Γn
j∗(τ

n,∗ +∆τ n(s)) = n1/2
(
pj∗(τ

n,∗ +∆τn(s))−µn
j∗
)

= n1/2 (pj∗(τ
n,∗ +∆τn(s))− pj∗(τ

n,∗))+n1/2(pj∗(τ
n,∗)−µn

j∗).
(118)

We next provide an upper bound for the RHS of Equation (118). In inequality (103) (which builds
on the choice-driven property), by replacing τ (t) with τn,∗+∆τn(s), and by noting that ∆τn(s)≥
n−1/2δ, we get

pj∗(τ
n,∗ +∆τn(s))− pj∗(τ

n,∗)≤−n−1/2hn(δ). (119)

where hn(·) follows a similar functional form of h(·) as given in Equation (105), that is,

hn(δ) :=
−δ

pj(τn,∗)

(
max{z ∈ [0, n−1/2δ] | Rj∗j∗(τ

n,∗ + ze)+
∑
i ̸=j∗

Rj∗i(τ
n,∗ + ze)}

)
(> 0) (120)

Inequality (119) allows us to upper bound the RHS of (118) as

Γn
j∗(τ

n,∗ +∆τ n(s)) ≤ −hn(δ)+n1/2(pj∗(τ
n,∗)−µn

j∗)

→ δ
pj(τ

n,∗)

(
Rj∗j∗(τ

n,∗)+
∑

i ̸=j∗ Rj∗i(τ
n,∗)
)
− θj∗

(121)
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That means, for sufficiently large n,

Γn
j∗(τ

n,∗ +∆τn(s))<
δ

pj(τn,∗)

(
Rj∗j∗(τ

n,∗)+
∑
i ̸=j∗

Rj∗i(τ
n,∗)

)
− θj∗ :=−∆n < 0 (122)

whereRj∗j∗(τ
n,∗)+

∑
i̸=j∗ Rj∗i(τ

n,∗)< 0 by the choice-driven property. By looking into the sequence
{∆n}, we deduce that it converges to some positive constant, ∆> 0. Inequalities (117) and (122)
imply that

Qn
j∗(b1)−Qn

j∗(a1)≤−∆n(b1 − a1)+n−1/2(Zn
j∗(b1)−Zn

j∗(a1))+n−1/2(Lj∗(b1)−Lj∗(a1)) (123)

If j∗ ∈J −∪J +, then τn
j∗(s)−τn,∗

j∗ > 0 implies that Qn
j∗(s)> 0 over [a1, b1). Consequently, Lj∗(b1)−

Lj∗(a1) = 0. If j∗ ∈J ++, then there is no reflection barrier along dimension j∗, so Lj∗ ≡ 0. Thus in
either case, Li(b1)−Li(a1) = 0 and inequality (123) implies that

Qn
j∗(b1)−Qn

j∗(a1)≤−∆n(b1 − a1)+n−1/2(Zn
i (b1)−Zn

i (a1)). (124)

which leads to

n1/2(∆τn(b1)−∆τn(a1)) = n1/2(τn
j∗(b1)− τn

j∗(a1))
= 1

µn
j

(
Qn

j∗(b1)−Qn
j∗(a1)

)
.

≤ 1
µn
j

(
−∆n(b1 − a1)+n−1/2(Zn

j∗(b1)−Zn
j∗(a1))

) (125)

That means, the largest deviation ∆τn keeps decreasing. For any interval [a, b]⊆ [0, T ] over which
n1/2∆τ(s)≥ δ, we can partition [a, b] in into countably many intervals ∪∞

i=1[ai, bi) such that ∆τ(s) =
τn
ji
(s) − τn,∗

ji
for the same index ji ∈ {1,2, . . . , J} and for all s ∈ [ai, bi). Using this notation, we

derive the following inequality

n1/2(∆τn(b)−∆τn(a)) =
∑∞

i=1 n
1/2(∆τn(bi)−∆τn(ai))

≤ ∑∞
i=1

1
µn
ji

(
−∆n(bi − ai)+n−1/2(Zn

ji
(bi)−Zn

ji
(ai))

)
≤ 1

minj µ
n
j

(
−∆n(b− a)+n−1/2∥Zn(b− a)∥

) (126)

Now let δ= κ
2
. If ∆τn(·) has ever exceeded κ

2
over [0, t], then we let a= sup{s∈ [0, t] : ∆τn(s)≤ κ

2
}

and b= t. The selection of a and b guarantees that ∆τn(a) = κ
2
and ∆τn(s)≥ κ

2
for all s ∈ [a, b].

Thus, Equation (126) implies that4

n1/2∆τn(t)− κ
2
= n1/2(∆τn(b)−∆τn(a))
≤ 1

minj µ
n
j

(
n−1/2∥Zn∥t

)
. (127)

If ∆τ(·) is always upper bounded by κ
2
over [0, t], then the above inequality holds trivially. We thus

have
n1/2 sup{∆τn(t) | t∈ [0, T ]} ≤ κ

2
+ 1

minj µ
n
j
n−1/2 sup{∥Zn(t)∥ | t∈ [0, T ]}

= κ
2
+ 1

minj µ
n
j
n−1/2∥Zn∥T . (128)

4 To derive (127), we have only used a weaker upper bound (126) for ∆τn(b) −∆τn(a) by ignoring the negative
drift −∆n(b− a). The original upper bound (126) including −∆n(b− a), however, is needed in the later proof for
Proposition 5.
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When κ→∞, we deduce that

limsupnPr(sup{n1/2∆τn(t) | t∈ [0, T ]}>κ)
≤ limsupnPr(sup{n1/2∆τn(t) | t∈ [0, T ]}>κ | n1/2∆τn(0)≤ κ

2
)Pr(n1/2∆τn(0)≤ κ

2
)

+ limsupnPr(n
1/2∆τn(0)> κ

2
)

→ limsupnPr(sup{n1/2∆τn(t) | t∈ [0, T ]}>κ | n1/2∆τn(0)≤ κ
2
) · 1+0

≤ limsupnPr(supt∈[0,T ]
1

minj µ
n
j
n−1/2∥Zn∥T > κ

2
)

≤ supn 2c1 exp(− c2
4
κ2)+ 2nc3 exp(− c4

2
κ
√
n)

(129)

for some positive constants ci (i= 1,2,3,4). In Equation (129), the convergence result follows from
limsupnPr(n

1/2∆τn(0)> κ
2
)→ 0 as Qn(0) (so n1/2∆τn(0)) is assumed to have finite expectation;

the second inequality follows from (128), and the last inequality follows from the upper bound
(149) for the tail probability of n−1/2∥Zn∥T (See Lemma 4 in Appendix O). Note that the second
term of RHS in Equation (129) is dominated by exp(− c4

4
κ
√
n) when n is large, so the RHS has to

converge to zero when κ→∞, which leads to the first convergence equation in (116).
The second convergence in (116) can be proved using an analogous argument and is omitted

here.

Appendix K: Proof of Theorem 5

Since ∥Qκ,n∥T ≤ κ, if we define the waiting-time vector associated with Qκ,n as

τ κ,n(t) = (n1/2Qκ,n(t)+nτ ∗ ◦µ∗) ◦ (nµn)−1, (130)

then ∥τ κ,n − τ ∗∥T → 0. We can then select a neighborhood N of τ ∗, such that τ κ,n ∈ N for all
sufficiently large n, and the arrival rate function Λ(·) is Lipschitz continuous in N . The latter
holds because Λ(·) has bounded Jacobian R∗ at τ ∗, and the Jacobian is continuous everywhere.
Therefore, the state-dependent arrival rate of the process Qκ,n is Lipschitz continuous over its
domain. Hence, we can invoke Theorem 7.2 in Mandelbaum et al. (1998b) and show that

{Qκ,n(t)|0≤ t≤ T}⇒ {Y κ(t)|0≤ t≤ T}. (131)

Finally, for all bounded, continuous real-valued function f with domain D([0, T ),RJ), when
κ→∞, we have

limsupn→∞ |Ef(Qn)−Ef(Y )|
≤ limsupn→∞ |Ef(Qn)−Ef(Qκ,n)|+ limsupn→∞ |Ef(Qκ,n)−Ef(Y κ,n)|+ |Ef(Y κ)−Ef(Y )|
≤ limsupn→∞ 2f Pr(∥Qn −Qκ,n∥T ̸= 0)+0+ |Ef(Y κ)−Ef(Y )|
→ 0

(132)
where f represents an upper bound for |f |, limsupn→∞ |Ef(Qκ,n) − Ef(Y κ,n)| = 0 follows from
Equation (131), limsupn→∞ 2f Pr(∥Qn −Qκ,n∥T ̸= 0)→ 0 follows from Lemma 3, and |Ef(Y κ)−
Ef(Y )| → 0 follows from bounded convergence and the continuous mapping theorem. Equation
(132) implies that Qn ⇒Y .

Appendix L: Proof of Proposition 4

Proof. When reflections are absent, the density of the stationary distribution of Y follows the
classical results pertaining to the O-U process (Meucci, 2009; Vatiwutipong and Phewchean, 2019).
For the case involving reflection barriers, as described by Example 3.10, Claim 1 in the work of Kang
and Ramanan (2014), the situation is as follows: If the diffusion limit is a solution to an SDER with

affine drift coefficient Cx, and if C∗ := [A−N
−1
Q]−1C (see definitions in Kang and Ramanan
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(2014)) is symmetric, then p(x) = ex
TC∗x, after normalization, gives the stationary distribution of

the diffusion limit. We next check whether with the parameters in our setting, C∗ is symmetric
and p(x) is proportional to π(z) as defined in the proposition. Because in our model the reflection
direction is always normal, it has zero component tangential to the boundary. Thus, we have Q= 0,
because its rows are exactly the tangential components of the reflection direction according to the
comments after Theorem 3 in Kang and Ramanan (2014). Consequently, by comparing the SDER
in Kang and Ramanan (2014) to Equation (32), we have A=Σ= (1+ ω2

1)Diag (µ), x= z−ϑ−
(Diag (µ)R∗)−1θ and C =R∗Diag (µ−1). Thus, C∗ :=A−1C = (1+ω2

1)
−1Diag (µ−1)R∗Diag (µ−1)

is symmetric and negative definite as R∗ is symmetric and negative definite. We thus conclude
that

p(x) = exp(xTC∗x)
= exp((z−ϑ− (Diag (µ)R∗)−1θ)T ((1+ω2

1)
−1Diag (µ−1)R∗Diag (µ−1))(z−ϑ− (Diag (µ)R∗)−1θ))

= exp(− 1
2
(z−ϑ− (Diag (µ)R∗)−1θ)T (− 1

2
(1+ω2

1)Diag (µ)(R∗)−1Diag (µ))−1

(z−ϑ− (Diag (µ)R∗)−1θ))
(133)

is proportional to the density of the stationary distribution of the diffusion limit, πY (z). By
looking into the above expression, we find that p(x) is proportional to the density of a multi-
variate Gaussian random variable with mean ϑ+(Diag (µ)R∗)−1θ and covariance matrix − 1

2
(1+

ω2
1)Diag (µ)(R∗)−1Diag (µ), which is denoted by π(z). Therefore, πY (z) is proportional to π(z).

Normalizing π(z) thus leads to an exact expression for πY (z) in (37).

Appendix M: Proof of Proposition 5

Equation (115) implies that when n is sufficiently large, the difference between V (Ξn(t))(=
∥Qn∥µ−1

) and ∥n1/2∆τn(t)∥ is almost a constant (i.e., within ±ϵ). So proving Equation (42) is
equivalent to proving the same bounded condition for ∥n1/2∆τn(t)∥, that is, for some u0 > 0, t0 ≥ 0,

limsupn→∞ supΞn(0)∈Ω E[exp
(
u0(∥n1/2∆τn(t0)∥−∥n1/2∆τn(0)∥)+

)
| Ξn(0)]<∞

limsupn→∞ supΞn(0)∈Ω E[(∥n1/2∆τn(t0)∥−∥n1/2∆τn(0)∥)2
exp

(
u(∥n1/2∆τn(t0)∥−∥n1/2∆τ n(0)∥)+

)
| Ξn(0)]<∞

(134)

To prove (134), we first consider the case when ∥n1/2∆τn(s)∥> κ
2
for all s∈ [0, T ]. By Equation

(126) (which builds on the choice-driven properties of the arrival rate) and by plugging into a= 0
and b= t0, we have

n1/2∥∆τn(t)∥−n1/2∥∆τn(0)∥ ≤ 1
minj µ

n
j

(
−∆nt0 +n−1/2∥Zn(t0)∥

)
(135)

where ∆n was defined in (122), which converges to a positive constant ∆> 0. By choosing

t0 =
minj µ

n
j

∆

(
n1/2∥∆τn(0)∥− κ

2

)+

, (136)

for sufficiently large n, Equation (135) implies that

n1/2∥∆τn(t)∥ ≤ κ

2
+

1

minj µn
j

n−1/2∥Zn(t0)∥. (137)

In the other case when ∥n1/2∆τ n(s)∥ ≤ κ
2
for some s ∈ [0, T ], we can also deduce (137) using a

similar argument as we establish inequality (128) in the proof for Lemma 3.
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In view of (137), we deduce that there exists u0 > 0 such that

limsupn→∞ supΞn(0)∈Ω E[exp(u0(∥n1/2∆τn(t0)∥−∥n1/2∆τ n(0)∥)+) | Ξn(0)]
≤ limsupn→∞ supΞn(0)∈Ω E[exp(u0∥n1/2∆τn(t0)∥) | Ξn(0)]
≤ limsupn→∞ supΞn(0)∈Ω E[exp(u0(

κ
2
+ 1

minj µ
n
j
n−1/2∥Zn(t0)∥))|Ξn(0)]

< +∞,

(138)

where the last inequality follows from (144) in Lemma (4) (See Appendix O). Similarly, there exists
u0 > 0, such that

limsupn→∞ supΞn(0)∈Ω E[(∥n1/2∆τn(t0)∥−∥n1/2∆τn(0)∥)2
exp(u(∥n1/2∆τ n(t0)∥−∥n1/2∆τn(t0)∥)+) | Ξn(0)]

≤ limsupn→∞ supΞn(0)∈Ω E[(max{n1/2∆τn(0), κ
2
+ 1

minj µ
n
j
n−1/2∥Zn(t0)∥})2

exp(u0(
κ
2
+ 1

minj µ
n
j
n−1/2∥Zn(t0)∥))|Ξn(0)]

< +∞,

(139)

where the last inequality follows from (145) in Lemma (4). We have thus proved (134), and thus
(42) in Proposition 5.
It remains to show that V (·) is a Lyapunov function with drift size parameter −1, drift term

parameter t0, and exception parameter κ for Ξ, or equivalently, to prove condition (40) for γ = 1.
Because V (Ξn(t)) and n−1/2∥∆τn(t0)∥ only differs by almost a constant, proving (40) is equivalent
to proving the same condition for ∥n1/2∆τn(t)∥ for some positive constant γ. To that end, we
choose t0 as (136) and get

sup∥n1/2∆τn(0)∥>κ{E[∥n1/2∆τn(t0)∥ | ∥n1/2∆τn(0)∥}
≤ sup∥n1/2∆τn(0)∥>κ{E[κ2 + 1

minj µ
n
j
n−1/2∥Zn(t0)∥ | ∥n1/2∆τn(0)∥]}−κ

≤ c′ − κ
2

(140)

for some constant c′ > 0. In (140), the first inequality follows from inequality (137) and that
∥n1/2∆τ n(0)∥> κ, and the second inequality follows from (143) in Lemma 4 that n−1/2∥Zn(t0)∥
is uniformly upper bounded. By choosing a sufficiently large κ, we can have c′ − κ

2
< −1, which

proves that V (·) is a Lyapunov function with drift size parameter −1.

Appendix N: Proof of Theorem 6

Proof. By Proposition 5, V (·) is a Lyapunov function with parameter −1, t0, and κ. Moreover,
the second inequality in (42) implies that there exists u0, such that u0L2(u0, t0, n) < 1 for all
sufficiently large n. Thus, both conditions of Theorem 6 in Gamarnik and Zeevi (2006) are satisfied
for all sufficiently large n. We then invoke their Theorem 6 and deduce that 1− u0/2> 0 and the
following inequality holds for all sufficiently n,

Pr
πn

(∥Qn(0)∥T > s)≤ (1−u0/2)
−1L1(u0, t0, n) exp(−u0(s−κ)). (141)

By the above inequality and the inequality in (42), we have

Pr
πn

(∥Qn(0)∥T > s)≤H1 exp(−h1s), (142)

for properly selected constantsH1 and h1. Inequality (142) implies uniform tightness of the sequence
of distributions (πn). The rest of the proof follows exactly as in Theorem 8 of Gamarnik and Zeevi
(2006).
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Appendix O: Lemma 4 and its Proof

The following Lemma was used in both Lemma 3 and Proposition 5.

Lemma 4 There exists a constant u0 > 0, such that the following inequalities hold for all fixed
t0 ≥ 0,

limsup
n→∞

sup
∥Ξn(0)−ϑ∥>κ

n−1/2E[∥Zn∥t0 |Ξn(0)]<∞, (143)

limsup
n→∞

sup
Ξn(0)∈Ω

E[exp(n−1/2u0∥Zn∥t0)|Ξn(0)]<∞, (144)

limsup
n→∞

sup
Ξn(0)∈Ω

E[∥Zn∥2t0 exp(n
−1/2u0∥Zn∥t0)|Ξn(0)]<∞, (145)

where Ξn(0) gives the initial state of the Markovian process, and Zn(t) is a J-dimensional centered
process defined in (88).

Proof. Using the argument provided at the beginning of the proof for Lemma A.1 in Gamarnik
and Zeevi (2006), inequality (144) implies (143) and (145). To prove (144), define An

j (t) :=∫ t

0
pj(X

n(s) ◦ (nµn)−1)ds. Let S∗
j (t) denote the cumulative number of customers that have com-

pleted service at the jth service provider up to time t,
By change of the time variables, we can derive the following bound for n−1/2∥Zn

j ∥t0 ,
n−1/2∥Zn

j ∥t0
≤ ∥n−1/2(N(nt)−nt)∥An

j (t0)
+ ∥n−1/2(nµn

j t−Sn
j (t))∥Wn

j (t0)

= ∥n−1/2(N(t)− t)∥nAn
j (t0)

+ ∥n−1/2(t−Sn
j (

t
nµn

j
))∥nµn

j W
n
j (t0)

≤ ∥n−1/2(N(t)− t)∥nt0 + ∥n−1/2(t−Sn
j (

t
nµn

j
))∥2nµjt0

≤ n−1/2∥N(t)− (t+Bj(t))∥nt0 +n−1/2∥Bj∥2nµjt0

+n−1/2∥Sn
j (t)− (t+B′

j(t))∥2nµjt0 +n−1/2∥B′
j(t)∥2nµjt0

(146)

where the second inequality follows from An
j (t0)≤ t0,W

n
j (t)≤ t, and µn

j < 2µj for a sufficiently large
n, B = (Bj) and B′ = (B′

j) denote two independent J-dimensional standard Brownian motions.
We next derive the tail bounds for each term at the RHS of (146). Using standard bounds for

Brownian motion, we can bound the following two terms with constants c1, c2 > 0 which depend
on t0 but not on n,

Pr(∥Bj∥nt0 > 1
4
a
√
n) = c1 exp(−c2a

2)
Pr(∥B′

j∥nt0 > 1
4
a
√
n) = c1 exp(−c2a

2).
(147)

Using the functional strong approximation theorem (FSAT) (Theorem 5.14 and Remark 5.17 in
Chen and Yao (2001)), we may upper bound the tail probability of the other two terms in (146)
with constants c3, c4 > 0 as follows:

Pr(n−1/2∥N(t)− (t+Bj(t))∥nt0 ≥ 1
4
a) ≤ nc3 exp(−c4an

−1/2)
Pr(n−1/2∥Sn

j (t)− (t+B′
j(t))∥2nµjt0 ≥ 1

4
a) ≤ nc3 exp(−c4an

−1/2)
(148)

(146), (147), and (148) together imply that

Pr(n−1/2∥Zn
j ∥t0 ≥ a)≤ 2c1 exp(−c2a

2)+ 2nc3 exp(−c4a
√
n). (149)

We can then upper bound the expectation E[exp(n−1/2u0∥Zn∥t0)|Ξn(0)] for all sufficiently large
n and initial state Ξn(0) using the tail probability bounds,

E[exp(n−1/2u0∥Zn∥t0)|Ξn(0)]
≤ 2+

∫∞
2

Pr
(
exp(n−1/2u0∥Zn∥t0)>a

)
da

= 2+
∫∞
2

Pr
(
exp(n−1/2∥Zn∥t0)> logx

u0

)
dx

≤ 2+
∫∞
2

2c1 exp(−c2
log2 x

u2
0

)dx+
∫∞
2

2nc3 exp(−c4
logx
u0

n−1/2)dx

< 2M,

(150)
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where the second inequality follows from (149) by replacing a with logx
u0

, and the last inequality
follows from the fact that both integrals can be uniformly upper bounded by a constant M > 0 for
sufficiently large n. Thus we have proved inequality (144).

Appendix P: Proof of Proposition 7

Proof. It suffices to prove the η version of (131), that is, Qκ,η ⇒ Y κ,η over a compact domain
Ω(κ), where Qκ,η, Y κ,η follow an analogous definition as Qκ and Y κ in (35), and Ω(κ) follows the
definition in (34). In the rest of the proof, we omit the superscript κ for brevity.

The dynamics of queue j implies the following equation,

Qη,n
j (t) = Qη,n

j (0)+n−1/2N
(
ηn
∫ t

0
pj(τ

η,n(s))ds+(1− η)n
∫ t

0
pj(τ

n,∗(s))ds
)
−n−1/2Sη,n

j (t)

+n−1/2Lη,n
j (t)−n−1/2Uη,n

j (t)

= Qη,n
j (0)︸ ︷︷ ︸
(A.1)

+

∫ t

0

η

(
n1/2

(
pj(τ

η,n(s))−µn
j

)
−
∑
i

R∗
ji(Q

η,n
i (s)−ϑi)

µn
i

)
ds︸ ︷︷ ︸

(A.2)

+

∫ t

0

(1− η)n1/2
(
pj(τ

n,∗)−µn
j

)
ds︸ ︷︷ ︸

(A.3)

+n−1/2Zη,n
j (t)︸ ︷︷ ︸

(A.4)

+
∫ t

0

∑
i

ηR∗
ji(Q

η,n
i (s)−ϑi)

µn
i

ds+ 1√
n
Lη,n

j (t)− 1√
n
Uη,n

j (t),

(151)
where the centered process Zη,n := (Zη,n

j ) has the expression

Zη,n
j (t) := N

(
η(
∫ t

0
npj(τ

η,n(s))+ (1− η)(
∫ t

0
npj(τ

n,∗(s)))
)

−
(
η
∫ t

0
npj(τ

η,n(s))+ (1− η)
∫ t

0
npj(τ

n,∗(s))ds
)
+
(
nµn

j t−Sη,n
j (t)

) (152)

We next analyze the terms labeled as (A.1)-(A.3) in (151).
(A.1) Our assumption of the initial value implies that (A.1)⇒Y η(0).
(A.2) Since j ∈ J ++, we have τ ∗,n

j > 0 for all sufficiently large n. Then by complementary
slackness (27), we have n(µn

j − pj(τ
n,∗)) = 0. Then using Taylor expansion, we have

n1/2
(
pj(τ

η,n(s)−µn
j

)
= n1/2 (pj(τ

η,n(s)− pj(τ
n,∗))→

∑
i

R∗
ji(Q

κ,n
i (s)−ϑi)

µn
i

(153)

Thus (A.2) → 0.
(A.3) Following the logic in the last bullet, (A.3)= n1/2(µn

j − pj(τ
n,∗)) = 0.

(A.4) By functional central limit theorem (Chen and Yao, 2001), n−1/2Zη,n ⇒Σ1/2B(t) with

Σ1/2 a diagonal matrix with Σ
1/2
jj =

√
(1+ω2

j )µj.

It then follows that Qη,n ⇒Y η.

Appendix Q: Proof of Theorem 7

Proof. Let SW (τ ) denote the expected utility for a unitary customer to join DCPQ at state
τ , with its expression given by (20). In the nth DPQS, let SW η,n denote the expected utility for a
unitary customer to joining the nth η-informed DPQS at its steady state Qη,n(∞). If this customer
observes the expected waiting times, her expected utility will be E[SW

(
τ ∗ +n−1/2Qη,n(∞) ◦µ−1

)
];

if the customer does not observe the expected waiting times, then she will use the equilibrium
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waiting times τ n,∗ as her believe. In that case, the expected utility of the customer joining any
queue j is the same as that of joining a queue with the equilibrium waiting time τn,∗

j due to linearity
of the utility function. Therefore, the expected utility of an uninformed customer equals SW (τn,∗),
the expected utility of an informed customer arriving at state τn,∗. Therefore,

n(SW η,n −SW (τn,∗))
= n

(
ηE[SW

(
τ ∗ +n−1/2Qη,n(∞) ◦µ−1

)
] + (1− η)SW (τn,∗)−SW (τ n,∗)

)
= nη

(
E[SW

(
τ ∗ +n−1/2Qη,n(∞) ◦µ−1

)
]−SW (τ ∗ +n−1/2ϑ ◦µ−1)

)
→ nη

(
E[SW

(
τ ∗ +n−1/2Y η(∞) ◦µ−1

)
]−SW (E[τ ∗ +n−1/2Y η(∞) ◦µ−1])

)
= η

∫
z∈RJ

1
2
(z ◦µ−1)T∇2SW (τ ∗)(z ◦µ−1)f(z,0, η−1Σ∞)dz+ o(1)

→ 1
2
(Diag (µ)−1)∇2SW (τ ∗)Diag (µ)−1) ·Σ∞ :=C,

(154)

where the last equality follows Taylor expansion, the · on the right-hand-side limit denotes the
matrix inner product. The right-hand-side is a constant, showing that SW η,n actually stays invari-
ant with η ∈ (0,1].

Appendix R: Proof of Corollary 4

The proof is mostly similar to that of Theorem 5, but differs in two places: (1) the derivative of
Qn

j (t) includes an extra term −dXj(t), which represents the aggregate reneging rate at time t; (2)
the waiting time is no longer linear in Xj(t) but has to be computed using equation (47). We will
prove the theorem by highlighting the parts due to the above differences.
We next prove that by restricting the process to stay inside the bounded domain Ω(κ), the

bounded process {Qκ,n(t)|0≤ t≤ T} weakly converges to {Y κ(t)|0≤ t≤ T}. The rest of the proof,
including Lemma 3, follows the same routine as in the proof for Theorem 5 and we will not repeat
them.
We first express Qκ,n

j (t) in a similar way to (35) as follows:

Qκ,n
j (t) = Qκ,n

j (0)+n−1/2N
(
n
∫ t

0
pj(τ

κ,n(s))ds
)
−n−1/2N

(∫ t

0
dXκ,n

j (s)ds
)
−n−1/2Sκ,n

j (t)

n−1/2Lκ,n
j (t)−n−1/2Uκ,n

j (t)
= Qκ,n

j (0)︸ ︷︷ ︸
(A.1)

+

∫ t

0

(
n1/2

(
pj(τ

κ,n(s))−µn
j −n−1dXκ,n

j (s)
)
− ((

∑
i

R∗
ji

exp(τn
i d)µ

n
i

− d)(Qκ,n
i (s)−ϑi)− θj)

)
ds︸ ︷︷ ︸

(A.2)

+n−1/2Zκ,n
j (t)︸ ︷︷ ︸

(A.3)

+
∫ t

0

(
(
∑

i

R∗
ji

exp(τni d)µn
i
− d)(Qκ,n

i (s)−ϑi)− θj

)
ds+ 1√

n
Lκ,n

j (t)− 1√
n
Uκ,n

j (t),

(155)
where the additional superscript κ represents that the corresponding process has a domain Ω(κ).
Note that the centered processZκ,n := (Zκ,n

j ) has included an extra term for the reneging customers,
which has the expression

Zκ,n
j (t) :=

(
N(
∫ t

0
npj(τ

κ,n(s)))−
∫ t

0
npj(τ

κ,n(s))ds
)

+
(
nµn

j t−Sκ,n
j (t)

)
−
(
N(
∫ t

0
dXκ,n

j (s)ds)−
∫ t

0
dXκ,n

j (s)ds
) (156)

We next analyze the terms labeled as (A.1)-(A.3) in (155).
1. Our assumption of the initial value implies that (A.1)⇒Y (0).
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2. Since τj has to be computed using (47), the expression for ∆τ κ,n will be

∆τ κ,n(s) := τ κ,n(s)− τ ∗

= 1
d
log(1+ (n1/2Qκ,n(s)+X∗) ◦ (nµn)−1)− 1

d
log(1+Xn,∗ ◦ (nµn)−1).

(157)

It is not difficult to show that n
1
2 ∥∆τ κ,n∥t is uniformly bounded and thus it suffices to expand

the Taylor series of n1/2 (pj(τ
n,∗ +∆τ κ,n(s))− pj(τ

n,∗)) till its first-order term. Some basic
algebra leads to

n1/2 (pj(τ
n,∗ +∆τ κ,n(s))− pj(τ

n,∗))→
∑
i

Qκ,n
i (s)−ϑi

exp(τ ∗
j d)µ

n
i

R∗
ji (158)

Thus, by our definition of θj and ϑj, we have

n1/2
(
pj(τ

n(s))−µn
j −n−1dXκ,n(s)

)
= n1/2 (pj(τ

n,∗ +∆τ κ,n)− pj(τ
n,∗))+n1/2

(
pj(τ

n,∗)−µn
j −n−1dXn,∗)

+n1/2 (n−1dXn,∗ −n−1dX∗)−n1/2 (n−1dXκ,n(s)−n−1dX∗)

→ ∑
i

Q
κ,n
i (s)−ϑi

exp(τ∗j d)µn
i
R∗

ji − θj + dϑj − dQκ,n
j (s)

(159)

The above convergence leads to that (A.2)→ 0 uniformly over any compact set.
3. n−1/2Zκ,n(t) is the sum of three centered processes. We have shown in the proof of Theorem 5

that the sum of the first two terms converges toΣ1/2B(t) withΣ1/2 a diagonal matrix and Σ
1/2
jj =√

(1+ωj)2µj, respectively. Since
1
n

∫ t

0
dXκ,n

j (s)ds → 1
n
dX∗

j t = (exp(τ ∗
j d) − 1)µjt uniformly on

any compact set t∈ [0, T ], and 1
n

∫ t

0
dXκ,n

j (s)ds is a non-decreasing process in t, we may invoke
the random time-change theorem and FCLT to prove that

n−1/2

(
N(

∫ t

0

dXκ,n
j (s)ds)−

∫ t

0

dXκ,n
j (s)ds

)
⇒BD

j (t). (160)

where BD
j (t) is a Brownian motion whose covariance matrix is a diagonal matrix and the

jth entry of its diagonal is given by (exp(τ ∗
j d)− 1)µj. Since n−1/2Zκ,n(t) is the sum of three

independent Brownian processes, we deduce that

n−1/2Zκ,n(t)⇒ΣR,1/2B(t). (161)

Appendix S: Supplementary Materials for Case Study

Figure 9 in plots The average total arrival rates ape(t) + apa(t) for the two ports of entry on
Tuesday/Wednesday/Thursday (T/W/T) in each season. It also highlights the selection of the
peak hours.



Author: Article Short Title
56 Operations Research 00(0), pp. 000–000, © 0000 INFORMS

(a)Nov. 2017 - Jan. 2018, 14:30-17:00 (b)Feb. 2018 - Apr. 2018, 14:30-17:00

(c)May. 2018 - Jul. 2018, 14:00-16:30 (d)Aug. 2018 - Nov. 2018, 14:40-17:10

Figure 9 Plots of average total arrival rates on T/W/T in each season, with the peak hours marked in blue.


