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A central decision maker (CDM), who seeks an efficient allocation of scarce resources among a finite number
of players, often has to incorporate fairness criteria to avoid unfair outcomes. Indeed, the Price of Fairness
(POF), a term coined in the seminal work by Bertsimas et al. (2011), refers to the efficiency loss due to
the incorporation of fairness criteria into the allocation method. Quantifying the POF would help the CDM
strike an appropriate balance between efficiency and fairness. In this paper we improve upon existing results
in the literature, by providing tight bounds for the POF for the proportional fairness criterion for any n,
when the maximum achievable utilities of the players are equal or are not equal. Further, while Bertsimas
et al. (2011) have already derived a tight bound for the max-min fairness criterion for the case that all
players have equal maximum achievable utilities, we also provide a tight bound in scenarios where these
utilities are not equal. For both criteria, we characterize the conditions where the POF reaches its peak and
provide the supremum bounds of our bounds over all maximum achievable utility vectors, which are shown
to be asymptotically strictly smaller than the supremum of the Bertsimas et al. (2011) bounds. Finally,
we investigate the sensitivity of our bounds and the bounds in Bertsimas et al. (2011) for the POF to the
variability of the maximum achievable utilities.
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1. Introduction
In this paper, we consider a problem facing a central decision maker (CDM) who needs to allocate
scarce resources among finitely many players. There are many real-life applications wherein the CDM
cannot use the most efficient allocation due to a fairness constraint. Instead, the CDM often has to
allocate resources while recognizing the tradeoffs between efficiency and fairness (Zenios et al. 2000,
Bertsimas et al. 2012).

An illustrative example of the efficiency-fairness trade-off is the allocation of deceased-donor kid-
neys. Kidney transplantation is a desired treatment for individuals with end-stage renal disease
(ESRD). However, the reality is that the demand for kidneys far exceeds the available supply. To
illustrate, in 2021, 43,617 new patients registered to the kidney waiting list, while only 25,490 trans-
plants were performed that year1. This significant discrepancy between the number of patients in
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need and the available transplants highlights the significance of allocating deceased-donor kidneys in
an efficient and fair manner. Efficiency, in this context, refers to maximizing the overall utility, usu-
ally measured by the total quality-adjusted life-years (QALY). The problem of maximizing the sum
of the utilities among all candidates on the waitlist has been extensively studied in the operations
research literature; see, e.g., Derman et al. (1972), Righter (1989) and David and Yechiali (1995).
However, a policy solely focused on maximizing total QALYs may inadvertently disadvantage patient
groups with lower expected QALYs gained from transplant. If the policy maker seeks to decrease
such inequities, they must contend with the trade-off of potentially reducing the overall number of
life-years saved, e.g., Ata et al. (2021), Su and Zenios (2006), Bertsimas et al. (2013).

Similar trade-offs between efficiency and fairness naturally emerge in many other applications.
For example, in air traffic flow management, the CDM needs to fairly allocate limited air space to
different airlines (e.g., Barnhart et al. 2012, Vossen et al. 2003, Jiang et al. 2022, Nguyen et al. 2021).
In congested airports, the CDM has to fairly allocate runways and aprons to different airlines (Fair-
brother et al. 2020). Other equitable resource allocation problems arise in finance, where simultaneous
trading with multiple accounts is carried out and the CDM’s goal is to treat all clients fairly while
maximizing collective interests (O’Cinneide et al. 2006), water allocation, where a CDM attempts
to balance unsatisfied demand of all consumers (Udías et al. 2012), medical funds allocation, where
equity across different regions and populations is a major concern (Earnshaw et al. 2007), spectrum
allocation in a communication system where a common frequency band is shared by multiple users
(Ye 2014), and kanban allocation in production systems, where both minimizing the rate of lost sales
and balancing lost sales across product types are under consideration (Ryan and Vorasayan 2005).
Finally, efficiency-fairness tradeoffs can arise in classical optimization problems such as location,
vehicle routing, transportation and scheduling, as elaborated in the excellent survey papers by Karsu
and Morton (2015) and Luss (1999).

Naturally, quantifying the efficiency loss resulting from the incorporation of fairness concerns is
essential for the CDM who strives to select the appropriate balance between efficiency and fair-
ness when facing resource allocation challenges. Bertsimas, Farias, and Trichakis (2011) (BFT 2011)
introduced the notion of the price of fairness (POF), which is defined as the relative efficiency loss,
compared to the utility-maximization solution (i.e., utilitarian solution), of a fair solution. They
considered two fairness notions that have been widely used in the literature: Proportional Fairness
(PF) and Max-Min Fairness (MMF), and quantified the POF for both. That is, they provided upper
bounds of the POF for both the PF and the MMF cases, which we refer to as the BFT bounds.

When all players have equal maximum achievable utilities, the BFT bound for the PF criterion,
when the number of players, n, is a square of an integer, and the BFT bound for the MMF criterion
for an arbitrary number of players were verified to be tight for a specific resource allocation problem.
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By contrast, we theoretically derive tight upper bounds for the POF both for PF and MMF. Indeed,
our approach is shown to reveal the source for the gap between our bound and the BFT bound for
the POF for PF when the number of players, n, is not a square of an integer.

For PF, we prove that the improvement of our bound over the BFT bound achieves a local maxi-
mum when n is a product of two consecutive integers, e.g., n= 2,6,12, etc. Both bounds increase as a
function of n, and as noted by Bertsimas, Farias, and Trichakis (2011), for a small number of players,
the price of proportional fairness is small. Indeed, for example, for n= 2, which corresponds to Nash
original two-player bargaining problem, the price of fairness according to our bound is at most 6.7%.
By comparison, we note that according to the BFT bound, the price of proportional fairness for
n= 2 is at most 8.6%. We further show that for a fixed number of players, both for PF and MMF,
our bounds and the BFT bounds increase when the variability of the maximum achievable utilities
increases. However, the BFT bounds increase at a faster rate.

The assumption that players have equal maximum achievable utilities is appropriate in settings in
which the utility functions merely represent the players’ preferences among the various resource allo-
cation options. These preferences are invariant to positive affine transformations of the corresponding
utility functions, and thus, permit the assumption that in such settings, the maximum achievable
utilities of all players are equal. However, there are many applications in which the utility functions
have some intrinsic values, which facilitates interpersonal comparisons of utilities. For instance, in
the context of organ transplantation, as previously discussed, the utility of each patient is commonly
quantified by QALYs (Su and Zenios 2005, Zenios et al. 2000). In air traffic flow management, the
disutility of an airline is measured by the total time delays (Barnhart et al. 2012), and in most
business applications, a firm’s utility can be measured by a monetary value. In all such examples, the
utilities of players cannot be normalized and the assumption of equal maximum achievable utilities
cannot be made without loss of generality.

When the maximum achievable utilities are unequal, the BFT bounds for the price of PF and
MMF are, in general, not tight. We note, though, that for the price of MMF, the BFT bound is
attained in an example of bandwidth allocation in a communication network, where the maximum
achievable utilities follow a special pattern. By contrast, our bounds for both the price of PF and
MMF are tight in the sense that for any collection of maximum achievable utilities by the players,
we prove the existence of a utility set U for which our bound is attained. The improvement of our
bounds over the BFT bounds for the unequal case are demonstrated in our study of the sensitivity of
the bounds to the variability of the maximum achievable utilities. Both bounds are shown to increase
with such variability, but for a wide range of the maximum achievable utility vectors, our bounds
are shown to be significantly smaller than the BFT bounds both for the PF and MMF criteria.
Additionally, we have studied the supremum of our bounds and the BFT bounds over all possible
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maximum achievable utilities, and have proven that our bounds are asymptotically strictly smaller
than the BFT bounds. Specifically, for a large n, we prove that the BFT bound for the POF is of the
order of 1−O(1/n1.25) for the PF criterion and 1−O(1/n2) for the MMF criterion, while our derived
tight bounds are of the order of 1−O(1/n) for both fairness criteria. See Table 1 for a summary of
the comparison between our bounds and the BFT bounds.

BFT Bounds

BFT Bounds
Equal Maximum

Achievable Utilities
Unequal Maximum
Achievable Utilities

Tight? Tight? Asymptotic Order

Proportional Fairness Yes only when
√
n is integral No 1−O(1/n1.25)

Max-Min Fairness Yes No∗ 1−O(1/n2)

Our Bounds

Our Bounds
Equal Maximum

Achievable Utilities
Unequal Maximum
Achievable Utilities

Tight? Tight? Asymptotic Order

Proportional Fairness Yes Yes 1−O(1/n)

Max-Min Fairness Yes∗∗ Yes∗ 1−O(1/n)

Table 1 Summary of BFT bounds and our bounds
∗ “Yes” or “No” refers to whether the bound is tight for all maximum achievable utility vectors.
∗∗ Our tight bound for the max-min unequal case reduces to the BFT tight bound for the equal case.

Our paper makes the following contributions:
1. Our paper introduces a fractional programming whose optimal solution delivers tight bounds

for the POF, while a relaxation of this programming yields the BFT bounds, effectively delin-
eating the source of the gap in the BFT’s estimation. By characterizing the optimal solution
to this fractional programming, we establish the first tight bounds for the POF under both PF
and MMF criteria in general scenarios involving an arbitrary number of players with poten-
tially unequal maximum achievable utilities. Our results complement the work of BFT (2011),
who demonstrated the tightness of their bounds when players’ maximum utilities are all equal
or follow special structures. Under generalized conditions of maximum utilities, our bounds
asymptotically improve over the BFT bounds for both PF and MMF criteria.

2. The tight bounds for the POF we derived provide qualitative insights into how the POF changes
with problem’s parameters, which allows a CDM to evaluate and compare the POF across
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different application scenarios. We show that when players have different maximum achievable
utilities, the POF is relatively large when the distribution of the maximum achievable utilities
exhibit a large variance. In fact, we show that the POF attains its peak as when one player
has a large maximum achievable utility while all others have a very small maximum achievable
utilities. Our results strengthen BFT (2011) conclusion that the POF is likely to be small for
a small number of players. Indeed, for the two-player case we prove that the POF for PF with
equal maximum achievable utilities is at most 6.7%.

3. A growing body of research, exemplified by studies such as (Hasankhani and Khademi 2022,
Ma et al. 2023, Agnetis et al. 2019), has been concerned with calculating the POF for special
problem instances. Our tight bounds for the POF in general settings could serve not only as
a cap but also as a benchmark for the POF estimates in those papers. This underscores the
broader applicability and relevance of our findings within the literature on the POF across
various applications.

2. Fairness
2.1. Related Literature

There are two stream of literature closely related to our study of the POF. The first stream is
concerned with the various fairness criteria. It is generally understood that different equity/fairness
criteria may be required in different contexts/applications (see, e.g., Sen 1997, Young 1995), and that
no universal criterion of fairness can be applied in all settings. Nevertheless, there are several widely
accepted criteria for fairness.

A simple and common fairness criterion, based on the Rawlsian principle (Rawls 2004), is the
MMF criterion. According to this criterion we seek a solution which is the lexicographically largest
vector, whose elements are either the allocations to the different players or the performance function
values corresponding to the different activities, which are arranged in a non-increasing order.

Some studies handle fairness using an inequality index, which is a function that maps a resource
allocation instance to a scalar value representing the level of inequality. For example, Kozanidis (2009)
uses the difference between the upper bound and the lower bound of outcomes as the inequality
index, and Turkcan et al. (2011) uses variance to measure fairness.

Another approach to achieve fairness optimizes an objective function which is some aggregation
of the allocations to the different players. Indeed, proportional fairness (PF), which we study in this
paper, is achieved by maximizing the sum of the logarithms of the utility outcomes corresponding
to the allocations to the players. It is a generalization of the Nash bargaining solution, see, e.g.,
Nash Jr (1950), which has an axiomatic basis as we further elaborate in the sequel. Finally for a
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classification of the extensive literature concerned with fairness in terms of the fairness criteria they
employ, such the Rawlsian principle, its lexicographic extension or an aggregation function, see the
survey by Karsu and Morton (2015).

The second stream of literature related to our study of the POF focuses on the assessment of
the POF in particular contexts. Recent papers in this stream include, for example, Hasankhani and
Khademi (2022), who studied the US heart transplant system and, using a fluid model, have quantified
the POF for both the PF and MMF fairness criteria. They have shown, for example, that consistent
with known theoretical results, the price of PF is smaller than that of MMF. Liu and Salari (2022)
calculated the POF for a facility location problem, considering disutility as an aggregate of transit
time and queueing delays. Agnetis et al. (2019) were the first to investigate the POF in scheduling
problems, providing tight bounds within their defined context. Zhang et al. (2020) extended this
exploration to a two-agent scheduling game variant, specifically examining scenarios where one of
the two players has exactly two jobs. Donahue and Kleinberg (2020) provided provable upper bounds
on the gap between the maximum possible utilization of the resource and the maximum utilization
achievable under a natural fairness condition in resource allocation problems with uncertain demand,
showing that for certain distributions, this gap exists but is bounded by a constant factor. Elzayn
et al. (2019) studied the POF using the Philadelphia Crime Incidents dataset and fully characterized
a worst-cast variant of the POF. In the context of indivisible goods, Barman et al. (2020) studied the
POF for two well-established fairness notions, envy-freeness up to one good (EF1) and approximate
maximin share (MMS), and Feldman et al. (2024) studied the tradeoffs between fairness and efficiency,
where envy-freeness up to any item (EFX) is used as a fairness criterion and the Nash welfare is
used as an efficiency criterion. Dickerson et al. (2014) showed that the POF in the standard kidney
exchange model is small and empirically explored the POF under two natural definitions of fairness
using both real and simulated data. Nicosia et al. (2017) characterized the POF for a specific discrete
allocation problem with two agents for multiple fairness notions.

As noted above, our tight bounds for the POF for the PF and MMF criteria, and our related
investigation about the sensitivity of the POF to the distribution of the maximum achievable utilities
could be helpful in future investigations into the POF in different contexts and application areas.

2.2. Fairness Notions

We quantify the price of fairness for two fairness criteria - PF and MMF.

2.2.1. Proportional Fairness Under PF, the preferred allocation, uPF (U) = (uPF
1 (U), uPF

2 (U),

. . . , uPF
n (U)), from a utility set U , is such that for any other feasible allocation of utilities u, the

aggregate of proportional changes is zero or negative, i.e.,
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n∑
i=1

ui −uPF
i (U)

uPF
i (U)

≤ 0, for any u∈U. (1)

For a convex utility set U , uPF (U) is a generalization on the Nash bargaining solution for n players,
and can be obtained by maximizing the product of the players’ utilities, i.e.,

uPF (U) := argmax
(u1,u2,...,un)∈U

n∏
i=1

ui.

Equivalently, uPF (U) can be derived by maximizing the logarithmic transformation of the above
objective function, i.e.,

uPF (U) := argmax
(u1,u2,...,un)∈U

n∑
i=1

logui. (2)

Note that (1) is the necessary and sufficient condition for the optimality of uPF (U) for the opti-
mization problem associated with (2). As mentioned above, such a solution is a generalization of
the Nash bargaining solution. It satisfies four axioms: Pareto optimality, symmetry, affine invariance
and independence of irrelevant alternatives. Pareto optimality avoids a waste of resources. Symmetry
guarantees that the solution does not distinguish between the players if the model does not distin-
guish between them. By the third axiom, the allocation is invariant to scaling of utilities, and thus
would not be affected if different measurement units of utility are used by players. The fourth axiom
implies that the preferred allocation remains unchanged when inferior allocations are removed, see,
e.g., Nash Jr (1950) and Roth (1979a).

The first application of PF was in the telecommunications field (Mazumdar et al. 1991), and the
term PF was first coined by Kelly et al. (1998).

2.2.2. Max-min Fairness MMF is motivated by the Kalai-Smorodinsky (KS) solution for two-
person bargaining problems, axiomatically characterized by Kalai and Smorodinsky (1975). The KS
solution is the unique solution satisfying the axioms of Pareto optimality, symmetry, invariance with
respect to affine transformations of utility, and monotonicity. According to the KS solution, the
players obtain the largest possible equal fraction of their respective maximum achievable utilities.
However, Roth (1979b) has shown that in n-person bargaining problems, such a solution may not
satisfy Pareto optimality and that there does not exist a solution satisfying all the above five axioms.
Imai (1983) has modified the KS solution to n-person bargaining problems by proposing a weaker set
of axioms. Namely, he proposes a solution which satisfies Pareto optimality, symmetry and invariance
under linear utility transformation. But, instead of the monotonicity axiom, originally proposed by
Kalai and Smorodinsky (1975), he requires the axioms of independence of irrelevant alternatives
other than ideal point and individual monotonicity.
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The axiom of independence of irrelevant alternatives other than the ideal point is a less stringent
requirement compared to the axiom of independence of irrelevant alternatives, which is satisfied by
the Nash bargaining solution. It stipulates that the solution remains unchanged if the alternatives
that have been removed do not alter the maximum achievable utilities by all players. The other
axiom, individual monotonicity, requires that if the utility set expands in a manner which keeps the
projection of the utility set onto the N\{i}-dimensional space unchanged, then the utility of the i-th
player must increase.

Imai (1983) has proven that when all players have equal maximum achievable utility, his solution
coincides with the MMF solution (referred to as lex-max-min in his paper), which, according to
BFT (2011), maximizes the ratios of players’ utilities to their maximum achievable utilities in a
lexicographical manner. That is, the CDM first maximizes the minimum ratio of the players’ utilities
to their respective maximum achievable utilities. Subsequently, the CDM maximizes the second
smallest ratio, the third smallest ratio, and so on. Thus, for two-person problems, the MMF solution
coincides with the KS solution.

2.3. The Price of Fairness

The utilitarian solution, which maximizes the sum of the utilities to all the players, is viewed as a
measure for system efficiency. Naturally, implementing a fair solution, instead of a utilitarian solution,
will reduce system efficiency. To quantify the relative loss incurred by adopting a fair solution over
the utilitarian solution, we employ the concept of the POF as introduced by BFT (2011).

Formally, consider a resource allocation problem with n players, and let U :⊆Rn denote the set
of all possible utility vectors of the players. Let ui denote the utility of player i. We assume U to
be convex and compact, which is a common assumption in the literature (see BFT 2011). Since the
PF, MMF, and utilitarian solutions are all Pareto optimal, we can assume, without loss of generality,
that U is monotone. That is:

Definition 1. A set U is monotone if for any u∈U and 0≤ v≤u, v ∈U .

2.3.1. Utilitarian Solution A utilitarian solution is an allocation based on classical utilitari-
anism, which maximizes the sum of utilities of all players. Thus, the utilitarian solution, denoted by
u∗(U) := (u∗

1(U), . . . , u∗
n(U)), is an optimal solution to the following problem:

max
n∑

i=1

ui,

s.t. (u1, u2, . . . , un)∈U.

(3)

The sum of utilities to the players is often used as a measure of system efficiency. Thus, if the
social planner aims to maximize efficiency without fairness considerations, the utilitarian solution
should be used.
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2.3.2. Fairness Solution As previously mentioned, in many applications it would be inappro-
priate to implement solutions based exclusively on system efficiency. In these circumstances, the
central decision maker will choose an allocation scheme based on some fairness criteria, trying to
balance both efficiency and fairness.

We consider two notions in this paper, PF and MMF, and denote the allocation scheme with a set
function ufair : 2R

n
+ → Rn

+, where the superscript, fair, could be PF or MMF to indicate whether
we use PF or MMF.

2.3.3. The Price of Fairness We use the notion of the price of fairness, introduced by BFT
(2011) and denoted POF (U ;fair), to measure the relative loss resulting from an implementation of
a fair solution rather than the utilitarian solution, i.e.,

POF (U ;fair) =

∑n

i=1 u
∗
i (U)−

∑n

i=1 u
fair
i (U)∑n

i=1 u
∗
i (U)

= 1−
∑n

i=1 u
fair
i (U)∑n

i=1 u
∗
i (U)

, (4)

where u∗
i , resp., ufair

i , i= 1, . . . , n, denotes the utilitarian, respectively, the fair solution which is being
used.

BFT (2011) have derived upper bounds for the POF (U ;fair) for the cases where the fair solution
is either the PF solution or the MMF solution, and for the cases when the maximum achievable
utilities of the players are either equal or not equal. As will be clarified in the sequel, we improve upon
the bounds derived by BFT (2011), by providing tight bounds for the price of proportional fairness
when the maximum achievable utilities by the players are either equal or not necessarily equal, and
for the price of MMF when the maximum achievable utilities by the players are not necessarily equal.

3. Upper Bounds for The Price of Proportional Fairness
3.1. Equal Maximum Achievable Utilities

We begin by considering the case where all players have equal maximum achievable utilities in the
utility set U . For simplicity and without loss of generality, we set this maximum achievable utility to
one, and denote by N := {1,2, . . . , n}, the set of players. Consequently, max{ui|u∈U}= 1 for i∈N .

To derive an upper bound for the price of fairness (POF) in U , we employ a utility set U ′, U ′ ⊇U ,
such that the PF solutions in U and U ′ coincide. Consequently, since U ⊆U ′, the POF with respect
to U is bounded by the POF with respect to U ′. Formally,

Proposition 1. Suppose U ⊆ {u := (u1, u2, . . . , un) |0 ≤ ui ≤ 1, i ∈ N} is a convex and compact
utility set, and max{ui |u ∈ U}= 1 for i ∈N . Then there exist ci ∈ [1/n,1], i ∈N , such that U ⊆

U ′ = {u |
∑n

i=1 ciui ≤ 1,0 ≤ ui ≤ 1, i ∈ N}, and max{
∑n

i=1 logui |u ∈ U} = max{
∑n

i=1 logui |u ∈

U ′}. Consequently, POF (U ;PF )≤ POF (U ′;PF ).
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The proof of Proposotion 1 is in Appendix EC.1. By Proposition 1, we can derive an upper bound
for the price of proportional fairness (PF) with respect to U , by finding this bound with respect
to U ′, U ′ = {(u1, u2, . . . , un) |

∑n

i=1 ciui ≤ 1, 0 ≤ ui ≤ 1, i ∈ N}. To that end, we need to find the
utilitarian solution u∗(U ′), which is an optimal solution to the following Problem (5):

max
n∑

i=1

ui, (5a)

s.t. 0≤ ui ≤ 1, ∀i∈N, (5b)
n∑

i=1

ciui ≤ 1. (5c)

Without loss of generality, we assume that

c1 ≤ c2 ≤ · · · ≤ cn. (6)

Following BFT (2011), we define

l(c) :=max{j |
j∑

i=1

ci ≤ 1}, δ(c) :=
1−

∑l(c)

i=1 ci
cl(c)+1

∈ [0,1). (7)

Then, since Problem (5) is a linear relaxation of the 0-1 knapsack problem, the optimal solution,
u∗, to Problem (5) is u∗

1 = u∗
2 = · · ·= u∗

l(c) = 1, u∗
l(c)+1 = δ(c), u∗

l(c)+2 = u∗
l(c)+3 = · · ·= u∗

n = 0, and the
optimal value of Problem (5) is l(c)+ δ(c).

On the other hand, the PF solution can be obtained by solving the following Problem (8):

max
n∑

i=1

log(ui), (8a)

s.t. 0≤ ui ≤ 1, ∀i∈N, (8b)
n∑

i=1

ciui ≤ 1. (8c)

Problem (8) has a unique optimal solution, uPF , which has the following explicit form:

Proposition 2. uPF (U ′) := (1/nc1,1/nc2, . . . ,1/ncn) is the unique optimal solution to Problem
(8).

The proof of Proposition 2 is in Appendix EC.1.
The utilitarian solution, u∗, and the PF solution, uPF , we have derived with respect to U ′, can

be used to find an upper bound for the price of proportional fairness by minimizing f0(c, l) :=

1−POF (U ′;PF ) =
∑n

i=1 u
PF
i (U ′)/

∑n

i=1 u
∗
i (U

′), which is equivalent to Problem (9):

min
c,l

f0(c, l) :=

∑n

i=1
1

nci

l+
1−

∑l
i=1 ci

cl+1

, (9a)
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s.t. 1

n
≤ c1 ≤ c2 ≤ · · · ≤ cn ≤ 1, (9b)
l∑

i=1

ci ≤ 1, (9c)

l+1∑
i=1

ci > 1, (9d)

where the numerator of the objective function can be interpreted as system efficiency, i.e., the sum of
players’ utilities, under the proportional fairness solution, the denominator of the objective function
stands for system efficiency under the utilitarian solution, and (9c), (9d) restrict l to satisfy the
definition of l(c), as given in the Expression (7).

The optimal value of Problem (9) thus gives a tight bound for the price of proportional fairness.
Later, we will derive an explicit expression for the optimal value and show that it strictly improves
upon the upper bound, 1− (2

√
n− 1)/n, derived by BFT (2011). Before proceeding, we investigate

the source of the gap between our bound and the BFT bound. To that end, we introduce a fractional
programming formulation (10) below, which is an alternative formulation for Problem (9), and whose
optimal value yields the tight bound for the price of proportional fairness. We then prove, in Propo-
sition 4, that a relaxation of Problem (10), derived after the removal of Constraints (10c) therefrom,
yields the BFT bound. Thus, the difference between the two bounds can be entirely attributed to
the removal of Constraints (10c) from Problem (10).

In Problem (10), we introduce new variables, yi’s, yi ∈ [0,1], to replace the superscript variable
l. Each such variable yi represents the portion of good i that is included in the knapsack. We also
introduce new variables, d2i−1, d2i such that d2i−1 = d2i = ci. Problem (10) is defined as follows:

min
d,y

f1(d,y) :=

1
n

∑n

i=1(
yi

d2i−1
+ 1−yi

d2i
)∑n

i=1 yi
, (10a)

s.t. 1

n
≤ d1, d2 ≤ d3, d4 ≤ · · · ≤ d2n−1, d2n ≤ 1, (10b)

d2i−1 = d2i, i= 1,2, . . . , n, (10c)
n∑

i=1

yid2i−1 = 1, (10d)

yi ≥ yi+1, i= 1,2, . . . , n− 1, (10e)

0≤ yi ≤ 1, (10f)
n∑

i=1

(
√
yi − yi) =

n∏
i=1

(
√
yi − yi +1)− 1. (10g)

Note that Constraints (10b) correspond to Constraints (9b), Constraints (9c) and (9d) correspond
to Constraints (10d), and Constraints (10e)-(10g) ensure that yi is decreasing in i, and that there is
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at most one variable yi which is strictly between 0 and 1. Thus, the yi variables act as a substitute
for l. Formally, the following proposition, whose proof is in Appendix EC.1, states the equivalence of
the two formulations.

Proposition 3. Problems (9) and (10) are equivalent.

In Proposition 4 below, we prove that the optimal value of Problem (10) from which Constraints
(10c) were removed yields the BFT bound for the price of proportional fairness. For brevity, let k

denote the largest integer that is not larger than the square root of n, i.e., k= ⌊
√
n⌋.

Proposition 4. The optimal solution to Problem (10) from which Constraints (10c) have been
removed is given by

y1 = · · ·= yk = 1, yk+1 =
√
n− k, yk+2 = · · ·= yn = 0,

d2i−1 =
1√
n

for i∈ {i : yi ̸= 0}, d2i = 1 for i∈ {i : yi ̸= 1},

all other variables di can assume any feasible value.
with a corresponding optimal value, (2

√
n − 1)/n, which yields the BFT bound for the price of

proportional fairness, 1− (2
√
n− 1)/n.

Proof. By Cauchy–Schwarz inequality, we have

(
n∑

i=1

yi
d2i−1

)(
n∑

i=1

yid2i−1)≥ (
n∑

i=1

yi)
2. (11)

By (10d),
∑n

i=1 yid2i−1 = 1, and thus, (11) reduces to
n∑

i=1

yi
d2i−1

≥ (
n∑

i=1

yi)
2, (12)

where equality holds when all d2i−1 variables are equal for i∈ {i : yi ̸= 0}.
In addition,

n∑
i=1

1− yi
d2i

≥
n∑

i=1

(1− yi) = n−
n∑

i=1

yi, (13)

where equality holds when d2i = 1 for i∈ {i : yi ̸= 1}.
Thus by (12) and (13),

f1(d,y) =

1
n
(
∑n

i=1
yi

d2i−1
+
∑n

i=1
1−yi
d2i

)∑n

i=1 yi
≥

(
∑n

i=1 yi)
2 +n−

∑n

i=1 yi
n
∑n

i=1 yi

=
1

n
(

n∑
i=1

yi +
n∑n

i=1 yi
− 1)≥ 2

√
n− 1

n
,

where the first inequality is tight when the equality conditions in (12) and (13) are satisfied, and the
second inequality is tight when

∑n

i=1 yi =
√
n.
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For convenience, let k = ⌊
√
n⌋ and define SE

1 = {i |yi = 1}, SE
2 = {i |0< yi < 1}, SE

3 = {i |yi = 0},
and d2i−1 = x for i∈ SE

1 ∪SE
2 . In addition, we have d2i = 1 for i∈ SE

2 ∪SE
3 by the equality condition

of (13).
From (10d),

n∑
i=1

yid2i−1 =
∑

i∈SE
1 ∪SE

2

yid2i−1 = x ·
∑

i∈SE
1 ∪SE

2

yi = x ·
n∑

i=1

yi = x
√
n= 1⇒ x=

1√
n
.

Constraint (10g) ensures that SE
2 is either a singleton set or an empty set. Given that yi is non-

increasing with i and
∑n

i=1 yi =
√
n, the only possible scenario for the optimal solution is

y1 = · · ·= yk = 1, yk+1 =
√
n− k, yk+2 = · · ·= yn = 0,

d2i−1 =
1√
n

for i∈ {i : yi ̸= 0}, d2i = 1 for i∈ {i : yi ̸= 1},

all other variables di can assume any feasible value.
Then the optimal value is

f1(d,y) =
2
√
n− 1

n
.

■

In the absence of Constraints (10c), both the first term and the second term in the numerator of
the objective function (10a) can reach their respective minima simultaneously even when yi is neither
0 or 1, as shown in (12) and (13). Specifically, for i such that yi is strictly between 0 and 1, d2i−1

should be equal to 1/
√
n to allow the first term in the numerator of (10a) reach its minimum with

fixed
∑n

i=1 yi, as shown in (12), while d2i should be equal to 1 to allow the second term in (10a)
reach its minimum with fixed

∑n

i=1 yi, as shown in (13). However, in the presence of Constraints
(10c), d2i−1 is constrained to be equal to d2i, for each i, preventing the first and second terms in
the numerator of (10a) from being minimized simultaneously. This discrepancy, stemming from the
possible existence of Constraints (10c), creates the difference between our bound and the BFT bound
for the price of PF. However, if

√
n is an integer, then yk+1 = 0, and thus, one optimal solution

could be d2i−1 = d2i = 1/
√
n for i∈ [1, k], and d2i−1 = d2i = 1 for i∈ [k+1, n], which already satisfies

Constraints (10c). Therefore, in this case, Problem (10) and Problem (10) without Constraints (10c)
have the same optimal value.

Next, we proceed to solve Problem (10). Recall that k = ⌊
√
n⌋. Claims 1 and 2 below assert that

the optimal values of the yi variables, i ̸= k+1, coincide with the optimal values of the yi variables
in the relaxation of Problem (10). Note that for i ̸= k + 1, the d2i−1 = d2i constraints are easily
satisfied since either d2i−1 or d2i can assume any feasible value. However, d2k+1 and d2k+2 do not
satisfy (10c). We will show that the difference between the optimal solutions of Problem (10) and its
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relaxation stems from the values of yk+1 and di, i≤ 2k+2. The proofs of Claims 1 and 2 are provided
in Appendix EC.2.

Let (d∗,y∗) denote an optimal solution to Problem (10).

Claim 1.
∑n

i=1 y
∗
i ∈ [k, k+1].

Claim 2. y∗
1 = y∗

2 = · · ·= y∗
k = 1, y∗

k+2 = · · ·= y∗
n = 0.

Next we will derive an explicit expression for the optimal value of Problem (10). To that end, we
will keep the constraints d2i−1 = d2i for i= 1, . . . , n, and for simplicity, let ci = d2i−1 = d2i. By Claims
1 and 2, we can replace yk+1 with (1−

∑k

i=1 ci)/ck+1, leading to Problem (14):

min
c

g1(c) :=

1
n

∑n

i=1
1
ci

k+
1−

∑k
i=1 ci

ck+1

, (14a)

s.t. 1

n
≤ c1 ≤ c2 ≤ · · · ≤ cn ≤ 1, (14b)

k∑
i=1

ci ≤ 1, (14c)

k+1∑
i=1

ci ≥ 1. (14d)

A key step towards the derivation of the optimal value is the characterization of the optimal
solution, c∗i , i= 1, . . . , n, to Problem (14), as stated in Proposition 5.

Proposition 5. (1) When n= 2, c∗1 =
√
3− 1, c∗2 = 1.

(2) When n≥ 3 and n≤ k(k+1), c∗1 = · · ·= c∗k = 1/k, c∗k+1 = · · ·= c∗n = 1.
(3) When n≥ 3 and n> k(k+1), c∗1 = · · ·= c∗k+1 = 1/(k+1), c∗k+2 = · · ·= c∗n = 1.

Proof.
Claims 3 - 7, whose proofs are provided in Appendix EC.2, are used in the proof of Proposition 5.

Claim 3. c∗i = 1 for i= k+2, . . . , n.

Claim 4. c∗1 = c∗2 = · · ·= c∗k.

Now, for convenience, let x := c1(= c2 = · · ·= ck), and let h1(x, ck+1) denote the objective function
(14a) in terms of variables, x and ck+1, after removing the constant 1/n. Then,

h1(x, ck+1) :=

k
x
+ 1

ck+1
+n− k− 1

k+ 1−kx
ck+1

. (15)

We next characterize an optimal solution (x∗, c∗k+1) in the next three claims.
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Claim 5. c∗k+1 is either max{x,1− kx} or 1.

Claim 6. When n≥ 3, h1(x, ck+1) reaches its minimum either at x= 1/(k+1), ck+1 = 1/(k+1) or
at x= 1/k, ck+1 = 1.

Comparing the objective function values at the two solutions, we have

h1(
1

k
,1)≤ h1(

1

k+1
,

1

k+1
)⇒ n≤ k(k+1).

Claim 7. When n= 2, c∗1 =
√
3− 1, c∗2 = 1.

When n = 2, Proposition 5 coincides with Claim 7. When n ≥ 3, we have x∗ = 1/k, c∗k+1 = 1 if
n≤ k(k+1), and otherwise, x∗ = 1/(k+1), c∗k+1 = 1/(k+1), by Claim 6.

■

Proposition 5 provides a complete characterization of the optimal solution to Problem (9), which
leads to the first main result on the upper found of the POF for the proportional fairness criterion.

Theorem 1. Consider a resource allocation problem with n players, n≥ 2, for which the utility set
U ⊆ [0,1]n is compact and convex, and the maximum achievable utilities of all players are equal.

Let
√
n= k+ ϵ, where k ∈N is the integral part of

√
n and ϵ ∈ [0,1) is the fractional part. Then,

the tight bound of the price of proportional fairness solution is:
(a) For n= 2,

POF (U ;PF )≤ 2−
√
3

4
.

(b) For n≥ 3 :

(1) For n< k(k+1),

POF (U ;PF )≤ 1−
2
√
n− 1+ ϵ2

k

n
.

(2) For n≥ k(k+1),

POF (U ;PF )≤ 1−
2
√
n− 1+ (1−ϵ)2

k+1

n
.

Proof. (a) For n= 2, we have g1(c
∗) = (2+

√
3)/4 by Proposition 5, and

POF (U ;PF )≤ 1− g1(c
∗) = 1− 2+

√
3

4
=

2−
√
3

4
.

(b) For n≥ 3, by Proposition 5, we have

g1(c
∗) =


k− 1

n
+

1

k
, n≤ k(k+1),

k

n
+

1

k+1
, n > k(k+1).



Authors’ names blinded for peer review
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Figure 1 Upper bound of the Proportional POF as a function of the number of players.

Thus, if n< k(k+1), then g1(c
∗) = (n+ k(k− 1))/nk= (2

√
n− 1+ ϵ2/k)/n, and

POF (U ;PF )≤ 1−
2
√
n− 1+ ϵ2

k

n
.

If n≥ k(k+1), then g1(c
∗) = (n+ k(k+1))/(n(k+1)) = (2

√
n− 1+ (1− ϵ)2/(k+1))/n, and

POF (U ;PF )≤ 1−
2
√
n− 1+ (1−ϵ)2

k+1

n
.

The above bounds are tight, as we have explicitly derived in Proposition 5 the optimal solution to
Problem (14).

■

Figure 1 plots our bound for the price of proportional fairness, POF (U ;PF ), as a function of the
number of players, n. Evidently, the bound increases in n.

Let us consider the relative improvement, ∆(n), of our bound over the BFT bound, and note
that for

√
n ∈ N, i.e., ϵ = 0, the BFT bound coincides with our bound. Indeed, when

√
n is an

integer, there exists an optimal solution for Problem (10) without Constraints (10c) which already
satisfies Constraints (10c). Thus, the optimal values of Problem (10) with or without Constraints
(10c) coincide, both yielding the BFT bound.

∆(n) :=
BFT bound− our bound

BFT bound =

{
ϵ2

k(n−2
√
n+1)

, n < k(k+1);
(1−ϵ)2

(k+1)(n−2
√
n+1)

, n≥ k(k+1).
(16)
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Figure 2 The relative improvement of our upper bound of the proportional POF over the BFT bound.

Figure 2 plots ∆(n) as a function of n, and we note that it reaches a local maximum when the number
of players, n, is a product of two adjacent integers, that is, when n= a(a+1) for some a ∈N, as in
the cases when n= 6,12, . . . , etc. In Lemma 1 below, whose proof is in Appendix EC.3, we formally
prove this result.

Lemma 1. For any a∈N+, ∆(n) reaches a local maximum when n= a(a+1).

Finally, as BFT (2011) have noted, the price of proportional fairness is relatively small when n is
small. In particular, for n= 2, which corresponds to the Nash Bargaining two-player game setting,
the BFT bound is 8.6%. Our results strengthen BFT (2011) observation. Indeed, as shown in Figures
1 and 2, for n= 2 the POF for our bound is 6.7%, an improvement of 22% over the BFT bound.

3.2. Unequal Maximum Achievable Utilities

We next consider the case where players have unequal maximum achievable utilities. Denote the
maximum achievable utility for player i by Li. Thus, 0≤ ui ≤Li for all u∈U .

To derive an upper bound for the POF in this case, we again start by employing a utility set
U ′ ⊇U , as stated in the following proposition. The proof can be found in Appendix EC.4.

Proposition 6. Suppose U ⊆ {u |0 ≤ ui ≤ Li, i ∈ N} is a convex and compact utility set, and
maxu∈U ui = Li for i ∈ N . Then there exist ci ∈ [1/nLi,1/Li], i ∈ N , such that U ⊆ U ′ =

{u |
∑n

i=1 ciui ≤ 1, 0 ≤ ui ≤ Li, i ∈ N}, and max{
∑n

i=1 logui |u ∈ U} = max{
∑n

i=1 logui |u ∈ U ′}.
Consequently, POF (U ;PF )≤ POF (U ′;PF ).
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3.2.1. Proportional Fairness To find the PF solution in the unequal maximum achievable
utilities case we need to solve the following optimization Problem (17):

max
(u1,u2,...,un)

n∑
i=1

log(ui), (17a)

s.t. 0≤ ui ≤Li, ∀i∈N, (17b)
n∑

i=1

ciui ≤ 1. (17c)

Let ki = ui/Li, then Problem (17) can be written as Problem (18):

max
(k1,k2,...,kn)

n∑
i=1

log(ki)+
n∑

i=1

log(Li), (18a)

s.t. 0≤ ki ≤ 1, ∀i∈N, (18b)
n∑

i=1

ciLiki ≤ 1. (18c)

The PF solution in the unequal maximum achievable utilities case is provided in the next propo-
sition. Its proof is essentially identical to the proof of Proposition 2 and is therefore omitted.

Proposition 7. The unique optimal solutions to Problems (17) and (18) are kPF = (1/(nc1L1),

1/(nc2L2), . . . ,1/(ncnLn)) and uPF = (1/(nc1),1/(nc2), . . . ,1/(ncn)), respectively.

3.2.2. Utilitarian Solution By Proposition 6, the utilitarian solution in the unequal maximum
achievable utilities case is the optimal solution to

max
(u1,u2,...,un)

n∑
i=1

ui, (19a)

s.t. 0≤ ui ≤Li, ∀i∈N, (19b)
n∑

i=1

ciui ≤ 1. (19c)

Let ki = ui/Li, then the above optimization problem can be written as Problem (20):

max
(k1,k2,...,kn)

n∑
i=1

Liki, (20a)

s.t. 0≤ ki ≤ 1, ∀i∈N, (20b)
n∑

i=1

ciLiki ≤ 1. (20c)
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Problem (20) is a linear relaxation of the 0-1 knapsack problem with rewards Li and costs ciLi.
Thus, its optimal solution is

kσ(i) =


1 i= 1, . . . , l(c)

δ(c) i= l(c)+ 1

0 i= l(c)+ 2, . . . , n,

where

l(c) :=max{j |
j∑

i=1

cσ(i)Lσ(i) ≤ 1}, δ(c) :=
1−

∑l(c)

i=1 cσ(i)Lσ(i)

cσ(l(c)+1)Lσ(l(c)+1)

, (21)

and σ(i) is the index of the ith smallest element in vector c.
Without loss of generality, we assume that the Li’s are decreasing, i.e. L1 ≥ L2 ≥ · · · ≥ Ln. Then

let us consider the following Problem (22),

max
(k1,k2,...,kn)

n∑
i=1

Liki, (22a)

s.t. 0≤ ki ≤ 1, i∈N, (22b)
n∑

i=1

cσ(i)Liki ≤ 1. (22c)

Problem (22) is a knapsack problem with rewards Li and costs cσ(i)Li. Compared to Problem (20),
in Problem (22) items with larger rewards, Li, have smaller costs, cσ(i)Li. Thus, the optimal value
of Problem (22) exceeds that of Problem (20). Note further that replacing all ci with cσ(i) does not
affect the sum of the players’ utilities in the PF solution. Thus, optimality would be achieved when
c1 ≤ c2 ≤ · · · ≤ cn, and we can therefore assume in the sequel that c1 ≤ c2 ≤ · · · ≤ cn.

3.2.3. The Price of Proportional Fairness Similar to our analysis of the equal maximum
achievable utilities case, to calculate the upper bound of the price of proportional fairness, we solve
the following optimization Problem (23):

min
c,l

(

∑n

i=1 u
PF
i∑n

i=1 u
∗
i

=)

∑n

i=1
1

nci∑l

i=1Li +
1−

∑l
i=1 ciLi

cl+1

, (23a)

s.t. 1

nL1

≤ c1 ≤ c2 ≤ · · · ≤ cn ≤
1

Ln

, (23b)

1

n
≤ ciLi ≤ 1, i∈N, (23c)
l∑

i=1

ciLi ≤ 1, (23d)

l+1∑
i=1

ciLi > 1. (23e)

Constraints (23d) and (23e) ensure that l satisfies the definition of l(c), given in Expression (21).
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Let (c∗ := (c∗1, c
∗
2, . . . , c

∗
n), l

∗) denote an optimal solution for (23). The derivation of (c∗, l∗) would
yield a tight bound of the POF for the proportional fairness case when players have unequal maximum
achievable utilities.

Recall that, for a resource allocation problem with n ≥ 2 players and a utility set U with a
corresponding positive vector of maximum achievable utilities L= (L1,L2, . . . ,Ln)> 0, we denote by
POF (U ;PF ) the price of proportional fairness of a problem instance with a utility set U . The next
theorem derives an explicit expression for the upper bound of POF (U ;PF ), UB(n,L;PF ), with
given parameters n and L, and proves its tightness.

Theorem 2. For any n≥ 2 and L= (L1,L2, . . . ,Ln) with L1 ≥L2 ≥ · · · ≥Ln > 0, we have

max

{
POF (U ;PF ) |U is convex and compact, dim(U) = n,

max(U) = (max
u∈U

u1, . . . ,max
u∈U

un) =L

}
=UB(n,L;PF ),

(24)

where

UB(n,L;PF ) =



1− (
∑ℓ

i=1

√
Li)

2+
∑n

i=ℓ+1 Li

n
∑ℓ

i=1 Li
, if

∑n

i=1Li ·L2 ≤L2
1,

1−min

{
(
∑ℓ

i=1

√
Li)

2+
∑n

i=ℓ+1 Li

n
∑ℓ

i=1 Li
,

(
√

L2
2+2L1L2+(L1+L2)

∑n
i=3 Li+

√
L1L2)

2

n(L1+L2)2

}
, if

∑n

i=1Li ·L2 >L2
1,

ℓ=

{
1, if SP

1 =∅,

max(SP
1 ), otherwise ,

and SP
1 := {l ∈N+ ∩ [2, n− 1] |

√
Ll[(

∑l

i=1

√
Li)

2 +
∑n

i=l+1Li]≥ 2
∑l

i=1Li ·
∑l−1

i=1

√
Li}.

According to Equality (24), our bound, UB(n,L;PF ), is tight in the sense that for any given
n≥ 2 and L> 0, there exists a utility set U for which POF (U ;PF ) =UB(n,L;PF ). Equality (24)
does not hold for the BFT bound except when all entries of L are equal and

√
n is an integer.

Proof.
To characterize an optimal solution, (c∗, l∗), to Problem (23), we start by fixing l and characterizing

the corresponding minimizers, ci (i = 1, . . . , n). The next two claims characterize ci for i ≤ l and
i≥ l+2, respectively, except for cl+1 whose value cannot be determined. The proofs of the two claims
are provided in Appendix EC.5.

Claim 8. ci = 1/Li, for i= l+2, . . . , n.

Claim 9. c1
√
L1 = c2

√
L2 = · · ·= cl

√
Ll.
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Given Claim 9, we define y := c1
√
L1. We also define x := cl+1. Then, Problem (23) can be written

as follow:

min
x,y,l

1
y

∑l

i=1

√
Li +

1
x
+
∑n

i=l+2Li∑l

i=1Li +
1−y

∑l
i=1

√
Li

x

, (25a)

s.t. y√
Ll

≤ x≤ 1

Ll+1

, (25b)

x≥ 1

nLl+1

, (25c)

1

n
√
Ll

≤ y≤ 1∑l

i=1

√
Li

, (25d)

y
l∑

i=1

√
Li +xLl+1 > 1. (25e)

For convenience, we define A(l) :=
∑l

i=1

√
Li, B(l) :=

∑n

i=l+2Li, and M(l) :=
∑l

i=1Li. Problem
(26) below is a relaxation of Problem (25), derived therefrom by removing the left-hand-side con-
straints of (25b) and (25d).

min
x,y,l

f2(x, y, l;L) :=
1
y
A(l)+ 1

x
+B(l)

M(l)+ 1−yA(l)

x

, (26a)

s.t. 1

nLl+1

≤ x≤ 1

Ll+1

, (26b)

y≤ 1

A(l)
, (26c)

yA(l)+xLl+1 > 1. (26d)

We next characterize an optimal solution, (x∗, y∗, l∗), to Problem (26). Later, we will show that
(x∗, y∗, l∗) is also a feasible solution to the original Problem (25), and thus, it is an optimal solution
to Problem (25) as well. The characterization of (x∗, y∗, l∗) leads to a complete characterization of
an optimal solution, (c∗, l∗), to the original Problem (23). We start by characterizing x∗ and y∗ for
a given l∗ in the next two claims, whose proofs are in Appendix EC.5.

Claim 10. x∗ = 1/Ll∗+1.

Claim 11. (1) y∗ = 1/A(l∗) when l∗ = 1 with
∑n

i=1Li ·L2 ≤L2
1, or when l∗ ≥ 2.

(2) y∗ = ỹ := (−
√
L1 +

√
B(0)+L1 +B(0)L1/L2)/B(0) when l∗ = 1 with

∑n

i=1Li ·L2 >L2
1.

Finally, it remains to characterize l∗. If
∑n

i=1Li ·L2 ≤L2
1, then, by Claims 10 and 11, the objective

function (26a) attains the minimum at x∗ = 1/Ll∗+1, y
∗ = 1/A(l∗), regardless of whether l∗ = 1 or

l∗ ≥ 2. Knowing that, we may rewrite the objective function (26a) as

h2(l) := f2(
1

Ll+1

,
1

A(l)
, l;L) =

(A(l))2 +Ll+1 +B(l)

M(l)
=

(A(l))2 +B(l− 1)

M(l)
.
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In Claim 12 below, whose proof is provided in Appendix EC.5, we prove that the objective function
h2(l) is unimodal, i.e., there exists ℓ∈ [1, n−1] such that h2(l) is decreasing for l ∈ [1, ℓ] and increasing
for l ∈ [ℓ,n− 1]. Thus, we can search for a minimizer ℓ by comparing h2(l) for successive values of l.
If
∑n

i=1Li ·L2 >L2
1, then x= 1/L2, y= ỹ, l= 1, as well as x= 1/Ll+1, y= 1/A(l), l= 2,3, . . . , n−1,

are all candidates for an optimal solution. So we need to compare the values of f2(1/L2, ỹ,1;L) and
h2(l) for l= 2, . . . , n− 1.

Claim 12. h2(l) is unimodal, i.e., there exists ℓ∈ [1, n−1] such that h2(l) is decreasing for l ∈ [1, ℓ],
increasing for l ∈ [ℓ,n− 1], and

ℓ=

{
1, if SP

1 =∅,

max(SP
1 ), otherwise ,

where SP
1 := {l ∈N+ ∩ [2, n− 1] |

√
Ll[(

∑l

i=1

√
Li)

2 +
∑n

i=l+1Li]≥ 2
∑l

i=1Li ·
∑l−1

i=1

√
Li}.

Thus, if
∑n

i=1Li · L2 ≤ L2
1, then l∗ = ℓ. If

∑n

i=1Li · L2 > L2
1, then l∗ is either ℓ, if h2(ℓ) ≤

f2(1/L2, ỹ,1;L), or 1 otherwise.
So far we have characterized an optimal solution (x∗, y∗, l∗) to Problem (26). It remains to show

that (x∗, y∗, l∗) is feasible to the original optimization Problem (25), and thus, it is an optimal solution
to Problem (25), since Problem (26) is a relaxation of Problem (25).

Claim 13. (x∗, y∗, l∗), as characterized in Claims 8-12, is feasible and thus optimal to Problem (25).

To characterize, c∗, we set c∗i = y∗/
√
Li for i = 1,2, . . . , l∗, c∗l∗+1 = x∗ and c∗i = 1/Li for i = l∗ +

2, . . . , n. We thus obtain an explicit construction of an optimal solution, (c∗, l∗), to Problem (23).
This also confirms the tightness of our upper bound for the price of proportional fairness, as for
any given (L1, . . . ,Ln), the upper bound can always be achieved by constructing a utility set U :=

{u |
∑n

i=1 c
∗
iui ≤ 1, 0≤ ui ≤Li, i∈N}, which is non-empty since it was verified in the proof of Claim

13 that c∗i ∈ [1/nLi,1/Li] for all i.
■

The relationship between Theorem 1 and Theorem 2 is formalized in the following corollary, whose
proof is provided in Appendix EC.6.

Corollary 1. When the players have equal maximum achievable utilities, the bound in Theorem 2
reduces to the bound in Theorem 1.

3.2.4. Worst-Case Bound for the Price of Proportional Fairness Next, in Proposition
8, we derive the supremum of UB(n,L;PF ) across all possible values of L, for a fixed n, under
the condition that 1 ≥ L1 ≥ L2 ≥ · · · ≥ Ln > 0. The proof can be found in the Appendix EC.4.
Investigating this supermum is crucial for understanding the worst-case price of proportional fairness
and its dependence on the distribution of players’ maximum achievable utilities.
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Proposition 8.
sup

L: 1≥L1≥...≥Ln>0

UB(n,L;PF ) = 1− 1

n
,

where the supremum is approached when L= (1− ϵ, ϵ/(n− 1), . . . , ϵ/(n− 1)) with ϵ→ 0.

According to Proposition 8, the worst case for our bound for the price of PF is when one player
has a very large maximum achievable utility L1 and all other players have very small maximum
achievable utilities.

Next, we calculate the supremum of the BFT bound for proportional fairness among all L under
the same condition 1≥ L1 ≥ · · · ≥ Ln > 0, and compare it with ours. Let BFT (n,L;PF ) : Rn → R

denote the BFT bound of the price of PF for a given n and L. The supremum of BFT (n,L;PF )

over all L has a more complicated expression than the supremum of our bound, but it admits a
simple asymptotic characterization when n is large; see the next proposition, whose proof is in the
Appendix EC.4.

Proposition 9.

sup
L: 1≥L1≥...≥Ln>0

BFT (n,L;PF ) = 1− 1

n
+

(
1−

√
2
√
n−1

n

)2

n− 1
= 1−O(

1

n1.25
),

where the supremum is reached when

L=

(
√
δ,

1−
√
δ

n− 1
, . . . ,

1−
√
δ

n− 1

)
and δ=

2
√
n− 1

n
. (27)

The comparison of the supremums of the upper bounds derived in Proposition 8 and 9 shows that
the supremum of our bound, which exhibits an asymptotic order 1−O(1/n), strictly improves the
BFT bound characterized by an asymptotic order 1−O(1/n1.25). This improvement is achieved by
deriving a tighter bound for the second term in (4), which represents the ratio of the total utility
gained by a proportional fairness solution to the maximum possible total utility.

We observe that the worst-case L values for our bound and the BFT bound follow the same
pattern, with L1 ≥L2 = · · ·=Ln. However, our bound reaches its supremum when L1 is much larger
than Li, whereas the BFT bound reaches its supremum when L1 is moderately larger than the Li’s.
In the following section, we will numerically investigate how these two bounds vary with the values
of L1 and Li (i≥ 2) when L satisfies L1 ≥L2 = · · ·=Ln.

3.2.5. Numerical Illustration We compare our bound with the BFT bound for the price of
PF under varying structures of the maximum achievable utility vector L= (L1, . . . ,Ln).

We first examine the case where L is structured as L1 ≥L2 = · · ·=Ln, which was shown to derive
the worst case for our bound and the BFT bound. In the numerical analysis, we consider a scenario
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Figure 3 The two upper bounds of the price of proportional fairness as a function of the variance for n= 9 and
for a vector L for which L1 ≥L2 = · · ·=Ln.

with n= 9 where L has the parametric form (α+(1−α)/n, (1−α)/n, . . . , (1−α)/n) for α∈ [0,1).
By varying α, we generate a family of vectors that maintain the structure L1 ≥ L2 ≥ · · · ≥ Ln and
satisfy

∑
iLi = 1. The corresponding values of our bound and the BFT bound are plotted in Figure

3.
From Figure 3, we observe that at α= 0, both bounds coincide at a value of 4/9, approximately

0.444. This coincidence occurs because both bounds are tight when the players’ maximum achievable
utilities are equal, i.e., L= (1/9, . . . ,1/9), and n is a square of an integer. As α increases, leading to
greater variance across the Li values, both bounds increase, although the BFT bound increases more
rapidly. Specifically, at α= (3

√
5− 1)/8≈ 0.714, when L coincides with the expression in (27), the

BFT bound peaks at its maximum of 0.897, indicated by the upper yellow dashed line. As α continues
to increase and approaches 1, the gap between the two bounds narrows. At the limit, as α → 1

and L approaches (1,0, . . . ,0), our bound approaches its supremum, as delineated in Proposition 8,
marked by the lower yellow line. At this point, the BFT bound converges to our bound, both equal
to 1− 1/9≈ 0.889.

When L adopts forms other than L1 ≥L2 = · · ·=Ln, the improvement of our bound over the BFT
bound becomes even more pronounced. Figure 4 illustrates the comparison of the two bounds for
n= 9 when L assumes the structure of (1,1, . . . ,1,Ln), with Ln varying from 1 to 0. As expected, in
the case where Ln = 1 and all players’ maximum achievable utilities are equal, both bounds are tight,
having the value of 4/9 = 0.444. As Ln decreases, the BFT bound increases faster than our bound.
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Figure 4 The two bounds for the price of PF when n= 9 and L1 =L2 = · · ·=Ln−1 = 1,Ln ∈ (0,1].

This reveals a greater sensitivity of the BFT bound to the variance of the maximum utility values
than our bound for the case when L has this structure. The performance of the two bounds behaves
similarly for utility vectors of the form L= (1,1, . . . ,1,Ln−k+1, . . . ,Ln) when k is a small integer and
Ln−k+1, . . . ,Ln varying between 1 and 0. Thus, in scenarios where the maximum achievable utilities
of most players are equal and is very high, but the maximum achievable utilities of a few players are
much smaller and thus possibly difficult to accurately estimate, our bound offers a more robust and
significantly lower estimate for the price of PF compared to the BFT bound.

Finally, we explore scenarios where L does not follow a specific structure. In this study, we fix
n= 100 and generate 100 random maximum achievable utility vectors L. The entries of the tth vector
for t= 1, . . . ,100 are independently drawn from a truncated normal distribution with mean 1 and a
standard deviation σt = 0.01(t− 1). The distribution is truncated to ensure that all elements of L
remain positive.

Figure 5 displays the two bounds for the 100 L vectors with varying σt. At σt = 0, the situation
reduces to the case of equal maximum achievable utilities L= (1,1, . . . ,1), where both bounds are
tight. However, as σt increases, the value of the BFT bound increases more rapidly than our bound,
significantly widening the gap between them. The solid lines in the figure represent a nonlinear
regression fit to the values of each bound for the 100 instances.

From these numerical examples, it is evident that our bound consistently outperforms the BFT
bound in situations involving unequal maximum achievable utilities, whether for small or large val-
ues of n. The advantage of our bound becomes more pronounced as the variation among players’
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Figure 5 Comparison of two bounds for the price of PF for varying σt

maximum utilities increases, affirming its robustness and effectiveness across a broad spectrum of

utility vector structures.

4. Upper Bounds for The Price of Max-Min Fairness

In this section we improve upon the BFT bound for the price of max-min fairness when the players

maximum achievable utilities are not necessarily equal. Specifically, we prove that the bound we

derive is tight and we investigate the gap between our bound and the BFT bound for the unequal

case. Further, we prove that when all players have equal maximum achievable utilities, our tight

bound for the unequal case reduces to the bound derived by BFT (2011) for the equal case. Thus,

our result theoretically confirms the tightness of the BFT bound for the case of equal maximum

achievable utilities, which was verified by a specific resource allocation problem.

4.1. The Max-Min Fairness Solution

Similar to the PF case, we first utilize a super set U ′ of the utility set U , to derive an upper bound

for the price of MMF in a tractable form, as stated in the following proposition. The proof can be

found in the Appendix EC.7.
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Proposition 10. Suppose U ⊆ {u |0 ≤ ui ≤ Li, i ∈ N} is a convex and compact utility set, and
max{ui |u∈U}=Li for i∈N . Then there exist ci ∈R for i∈N , such that U ⊆U ′ := {u |

∑n

i=1 ciui ≤

1,0≤ ui ≤Li, i∈N}, and max{mini∈N(ui/Li) |u∈U}=max{mini∈N(ui/Li) |u∈U ′}. Then,

POF (U ;MMF )≤ 1−
∑n

i=1Li∑n

i=1 ciLi

∑n

i=1 u
∗(U ′)i

. (28)

4.2. The Utilitarian Solution

The approach to find the utilitarian solution for U ′ is similar to that used to derive the price of
proportional fairness, which involves solving the following optimization Problem (29):

max
(u1,u2,...,un)

n∑
i=1

ui, (29a)

s.t. 0≤ ui ≤Li, ∀i∈N, (29b)
n∑

i=1

ciui ≤ 1. (29c)

Let ki = ui/Li for all i. Then Problem (29) can be formulated as Problem (30):

max
(k1,k2,...,kn)

n∑
i=1

Liki, (30a)

s.t. 0≤ ki ≤ 1, ∀i∈N, (30b)
n∑

i=1

ciLiki ≤ 1. (30c)

Problem (30) is a linear relaxation of the knapsack problem with rewards Li and costs ciLi.
Without loss of generality, we assume that ci is increasing in i, i.e.,

c1 ≤ c2 ≤ · · · ≤ cn. (31)

As before, following BFT (2011), we define

l(c) :=max{j |
j∑

i=1

ciLi ≤ 1}, δ(c) :=
1−

∑l(c)

i=1 ciLi

cl(c)+1Ll(c)+1

∈ [0,1). (32)

Then the optimal solution to Problem (30) is given by

ki =


1 i= 1, . . . , l(c)

δ(c) i= l(c)+ 1

0 i= l(c)+ 2, . . . , n,

and the optimal value is
∑l(c)

i=1Li + δ(c)Ll(c)+1.
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4.3. The Price of MMF

In order to calculate the upper bound of the price of max-min fairness, it suffices to minimize the
negative term on the right-hand side of (28), by incorporating the optimal solution to Problem (30)
derived above. Let l denote l(c), and consider the optimization Problem (33):

min
c,l

f3(c, l;L) :=
cl+1

∑n

i=1Li

(
∑n

i=1 ciLi) ·
(
cl+1

∑l

i=1Li +1−
∑l

i=1 ciLi

) , (33a)

s.t. c1 ≤ c2 ≤ · · · ≤ cn, (33b)

ciLi ≤ 1, i∈N, (33c)
l∑

i=1

ciLi ≤ 1, (33d)

l+1∑
i=1

ciLi > 1. (33e)

The first Constraint, (33b), is from (31). Since (0, . . . ,Li, . . . ,0)∈U for all i and U ⊆U ′, we have
(0, . . . ,Li, . . . ,0) ∈ U ′, which implies Constraint (33c). Constraints (33d) and (33e) ensure that l

satisfies the definition of l(c), given in Expression (32).
We next derive a tight bound for the prices of max-min fairness for a resource allocation problem

with n≥ 2 players, where the utility set U is assumed to be compact and convex, and the maximum
achievable utilities are assumed, without loss of generality, to satisfy L1 ≥L2 ≥ · · · ≥Ln > 0. We will
show below that we can simultaneously assume both c1 ≤ c2 ≤ · · · ≤ cn and L1 ≥L2 ≥ · · · ≥Ln. Recall
that POF (U ;MMF ) denotes the price of max-min fairness for a problem instance with a utility set
U , and let UB(n,L;MMF ) denote the upper bound that we will specify in the next theorem.

Theorem 3. For any n≥ 2 and L= (L1,L2, . . . ,Ln) with L1 ≥L2 ≥ · · · ≥Ln > 0, we have

max

{
POF (U ;MMF ) |U is convex and compact, dim(U) = n,

max(U) = (max
u∈U

u1, . . . ,max
u∈U

un) =L

}
=UB(n,L;MMF ),

(34)

where

UB(n,L;MMF ) =


1− 4Ll∗+1

∑n
i=1 Li

(
∑l∗

i=1 Li+(n−l∗+1)Ll∗+1)
2
, if SM

1 ̸=∅,

1−
∑n

i=1 Li∑l∗
i=1 Li(n−l∗+1)

, if SM
1 =∅,

l∗ =

{
maxSM

1 , if SM
1 ̸=∅,

minSM
2 , if SM

1 =∅,

and SM
1 := {l ∈N+ | (n− l− 1)Ll+1 <

∑l

i=1Li ≤ (n− l+1)Ll+1}, SM
2 := {l ∈N+ |

∑l

i=1Li > (n− l+

1)Ll+1}.
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Proof.
The proofs of all claims used to prove Theorem 3 are in Appendix EC.8.
Let (c∗ := (c∗i )i=1,2,...,n, l

∗) denote an optimal solution of Problem (33). As before, we first charac-
terize the minimizer ci for i≥ l+2 corresponding to a given l.

Claim 14. ci = 1/Li for i= l+2, . . . , n.

To simplify the notation, we define

x := cl+1, y :=
l∑

i=1

ciLi, and A :=
l∑

i=1

Li.

According to Claim 14, Problem (33) can be reformulated as Problem (35):

min
x,y,l

x
∑n

i=1Li

(y+n− l− 1+xLl+1)(Ax+1− y)
, (35a)

s.t. y≤Ax, (35b)

0≤ xLl+1 ≤ 1, (35c)

0≤ y≤ 1, (35d)

y+xLl+1 > 1. (35e)

To solve Problem (35), we first fix the value of l, l ∈ [1, n− 1] and characterize the corresponding
optimal values of x, y. Note that if l= n, then

∑n

i=1 ciLi ≤ 1 and thus L := (L1,L2, . . . ,Ln) ∈ U . In
this case, both the utilitarian solution and the MMF solution are L, with a corresponding POF of
0, which is not an interesting case to explore.

Let g3(x, y; l) denote the objective function without the constant
∑n

i=1Li in (35a), i.e.,

g3(x, y; l) :=
x

(y+n− l− 1+xLl+1)(Ax+1− y)
.

For a given l, we have the following characterization of x∗, y∗, and g3(x
∗, y∗; l).

Claim 15. If A≤ (n− l− 1)Ll+1,

x∗ ∈ [
1

A+Ll+1

,
1

Ll+1

], y∗ = 1−x∗Ll+1, g3(x
∗, y∗; l) =

1

(n− l)(A+Ll+1)
;

If (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ =
1

2
(

A

Ll+1

−n+ l+1), g3(x
∗, y∗; l) =

4Ll+1

(A+(n− l+1)Ll+1)2
;

If A> (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ = 1, g3(x
∗, y∗; l) =

1

A(n− l+1)
.
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We next characterize the order of the L′
is at optimality. For convenience, we introduce p(A,Ll+1; l),

defined as follows:

p(A,Ll+1; l)(:= g3(x
∗, y∗; l)) =



1
(n−l)(A+Ll+1)

, A≤ (n− l− 1)Ll+1,

4Ll+1

(A+(n−l+1)Ll+1)
2 , (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1,

1
A(n−l+1)

, A> (n− l+1)Ll+1.

(36)

Claim 16. p(A,Ll+1; l) is decreasing both in A and Ll+1.

Since A =
∑l

i=1Li, the internal order of L1 to Ll does not affect the value of A and thus, does

not affect the objective function value. Therefore, without loss of generality, we assume that L1

to Ll are arranged in a descending order. Then, according to Claim 16, the permutation of the

L′
is that would minimize p(A,Ll+1; l) should satisfy: L1 ≥ L2 ≥ · · · ≥ Ll ≥ Ll+2, Ll+1 ≥ Ll+2 and

Ll+2 ≥ Ll+3 ≥ · · · ≥ Ln. In fact, in Claim 17 below we prove that the L′
is should be in descending

order overall, i.e., L1 ≥L2 ≥ · · · ≥Ln.

Claim 17. The value of p(A,Ll+1; l) is minimized with respect to the Li, i = 1, . . . , n, if they are

arranged in a descending order.

Next we discuss the value of l at optimality. For convenience, we define

SM
0 := {l ∈N+ |

l∑
i=1

Li ≤ (n− l− 1)Ll+1},

SM
1 := {l ∈N+ | (n− l− 1)Ll+1 <

l∑
i=1

Li ≤ (n− l+1)Ll+1},

SM
2 := {l ∈N+ |

l∑
i=1

Li > (n− l+1)Ll+1}.

Claim 18. Let l∗ denote an optimal value of l. If SM
1 ̸=∅, l∗ =maxSM

1 , otherwise l∗ =minSM
2 .

Now, l∗ =maxSM
1 , corresponds to the second case in Claim 15. Thus, g(x∗, y∗; l∗) = 4Ll∗+1/(A+

(n− l∗+1)Ll∗+1)
2 and 1−POF (U ;MMF ), which is the objective function of Problem (35), is given

by 4Ll∗+1

∑n

i=1Li/(A+ (n− l∗ +1)Ll∗+1)
2. Similarly, l∗ =minSM

2 corresponds to the third case of

Claim 15. Thus, g(x∗, y∗; l∗) = 1/A(n− l∗ + 1) and 1− POF (U ;MMF ) =
∑n

i=1Li/A(n− l∗ + 1),

and we have derived the expressions for the upper bound for the price of MMF given in Theorem 3.

Finally, for any vector of maximum achievable utilities, L, we construct below an instance of U

to illustrate that the above values of l∗, x∗, and y∗ (or c∗) can be achieved, which implies that the
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upper bound in Theorem 3 is tight. Specifically, for a given L= (L1,L2, . . . ,Ln), we can derive the
corresponding SM

1 , SM
2 , and l∗, and define:

Y :=

{
1
2
(
∑l∗

i=1 Li

Ll∗+1
−n+ l∗ +1), if l∗ =maxSM

1 ,

1 if l∗ =minSM
2 .

If l∗ =maxSM
1 , (n− l∗ − 1)Ll∗+1 <

∑l∗

i=1Li, and thus Y is always positive. We then construct a
utility set U = {u |0≤ ui ≤Li,

∑n

i=1 ciui ≤ 1}, where

ci =

{
Y

l∗Li
i= 1, . . . , l∗,

1
Li

i= l∗ +1, . . . , n.

Now, recall that to obtain the MMF solution, we initially maximize the minimum ratio of play-
ers’ utilities to their corresponding maximum achievable utilities, i.e., maxu∈U mini∈N ui/Li. In the
above specific example, the solution to this max-min optimization problem can be shown to be
ū := (L1/(Y + n − l∗),L2/(Y + n − l∗), . . . ,Ln/(Y + n − l∗)), at which, obviously, all the ratios
of the players utilities to their maximum achievable utilities are equal. Since at ū, the constraint∑l

i=1 ciui ≤ 1 in U is satisfied as equality, and since all c′is are positive, any increase in the utility of
any of the players will violate this constraint. Therefore, ū must be the MMF solution.

Furthermore, since the utilitarian solution, u∗, for this example is u∗ = (L1, . . . ,Ll∗ , (1 −
Y )Ll∗+1,0, . . . ,0), the price of MMF for this example is

POF (U ;MMF ) = 1−
∑n

i=1 u
MMF
i∑n

i=1 u
∗
i

= 1−

∑n
i=1 Li

Y+n−l∗∑l∗

i=1Li +(1−Y )Ll∗+1

=


1− 4Ll∗+1

∑n
i=1 Li

(
∑l∗

i=1 Li+(n−l∗+1)Ll∗+1)
2

l∗ ∈ SM
1 ,

1−
∑n

i=1 Li∑l∗
i=1 Li(n−l∗+1)

l∗ ∈ SM
2 .

■

We conclude that (34) is indeed satisfied for the above example, which establishes the tightness of
our bound for the price of max-min fairness. In contrast, for the BFT bound, in general, (34) is not
satisfied.

We note that in the special case when all players have equal maximum achievable utilities, that is,
when L1 =L2 = · · ·=Ln, our upper bound, UB(n,L;MMF ), reduces to the BFT bound. Therefore,
in some sense, our result theoretically confirms the tightness of the BFT bound in this case, which
was shown by BFT (2011) to be tight for a specific resource allocation problem.

BFT (2011) provide an example where the maximum achievable utilities vector L has a special
structure, L1 = L2 = · · ·= L(n+1)/2 ≥ 1,L(n+3)/2 = L(n+5)/2 = · · ·= Ln = 1, for which their bound is
achieved. As we show below in Corollary 2, whose proof is in Appendix EC.9, also in this case, for
a more general maximum achievable utility vector, L, L1 = L2 = · · ·= L⌊n/2⌋+1, equality (34) holds
and our bounds reduces to the BFT bound.
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Corollary 2. (a) For L1 =L2 = . . .=Ln, our upper bound reduces to the BFT bound for the case
of equal maximum achievable utilities, i.e.,

UB(n,L;MMF ) = 1− 4n

(n+1)2
.

(b) For L1 = L2 = · · ·= L⌊n/2⌋+1≥L⌊n/2⌋+2 ≥ · · · ≥Ln, our upper bound reduces to the BFT bound
for the case of unequal maximum achievable utilities, i.e.,

UB(n,L;MMF ) = 1−
4
∑n

i=1Li

(n+1)2L1

.

4.4. Worst-Case Bound for the Price of Max-Min Fairness

Similar to the proportional fairness scenario, we investigate the worst-case upper bound for the
price of max-min fairness, which is the supremum of UB(n,L;MMF ) across all possible vectors L

under the condition that 1≥L1 ≥ · · · ≥Ln > 0. The forthcoming proposition demonstrates that the
supremum of UB(n,L;MMF ) is also 1−1/n, which coincides with the upper bound supremum for
the price of proportional fairness. The proof can be found in the Appendix EC.7.

Proposition 11.
sup

L:Li∈(0,1],L1≥···≥Ln

UB(n,L;MMF ) = 1− 1

n
.

where the supremum is approached when L= (1− ϵ, ϵ/(n− 1), . . . , ϵ/(n− 1)) with ϵ→ 0.

Next, let BFT (n,L;MMF ) denote the BFT bound of the price of max-min fairness with input
parameters n and L. The next proposition characterizes the supremum of BFT (n,L;MMF ) over
all L such that L1 ≥L2 ≥ · · · ≥Ln > 0. Its proof can be found in the Appendix EC.7.

Proposition 12.

sup
L: 1≥L1≥···≥Ln>0

BFT (n,L;MMF ) = 1− 4

(n+1)2
= 1−O(

1

n2
).

where the supremum is approached when L= (1− ϵ, ϵ/(n− 1), . . . , ϵ/(n− 1)) with ϵ→ 0.

For all n≥ 2, 1/n> 4/(n+1)2. Thus, the supremum of the BFT bound is strictly larger than that
of our bound for all n≥ 2. When n is large, our bound, 1− 1/n, asymptotically improves the BFT
bound, which is 1−O(1/n2).

Finally, it is important to note that for the price of max-min fairness, both our bounds and the
BFT bounds approach their supremum values as L tends towards (1,0, . . . ,0). This contrasts with
the proportional fairness scenario, where our bounds and the BFT bounds reach their supremum
values under different worst-case L configurations.
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4.5. Numerical Illustration

We compare the two upper bounds for the price of max-min fairness through numerical analysis.
Similar to the PF scanario, we begin with n = 9 and where L assumes the parametric form (α+

(1−α)/n, (1−α)/n, . . . , (1−α)/n) for α within the range [0,1). Figure 6 illustrates the behaviour
of our bound and the BFT bound as α varies from 0 to 1. At α = 0, L = (1/9, . . . ,1/9), where
both bounds are tight and yield a value of 0.64. As α increases, so do both bounds. As α→ 1, each
bound approaches its respective supremum, indicated by the yellow dashed lines. The values of these
supremums are detailed in Proposition 11 and 12.

Figure 6 The two upper bounds of the price of MMF as a function of sample variance for n= 9, and a maximum
utility vector L for which L2 = · · ·=Ln.

We further evaluate the performance of the two bounds when L lacks a specific structure. Setting
n= 100, we generate 100 random vectors of maximum achievable utilities, L. Every entry of the tth

vector (t= 1, . . . ,100) is independently drawn from a truncated normal distribution with a mean of
1 and standard deviation of σt = 0.01(t− 1). We compute the BFT bound and our bound for these
100 L vectors, with the results displayed in Figure 7. At σt = 0, both bounds are tight and yield
a value of 0.961. However, as σt increases, a notable widening of the gap between the two bounds
is observed in Figure 7. We also observe that the improvement of our bound over BFT bound for
the price of max-min fairness is more significant compared to the PF scenario, which aligns with the
theoretical result that the improvement is 1/n−O(1/n1.25) in the PF scenario and 1/n−O(1/n2)

in the MMF scenario.
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Figure 7 The two upper bounds of the price of MMF.

5. Conclusion
We have derived tight bounds for the price of proportional fairness for all positive integers n and for
both the equal and the unequal maximum achievable utilities cases. As such, we improved on the
bounds derived for this case by BFT (2011). Specifically, their bound for the price of proportional
fairness is tight only when

√
n is an integer and when all players have equal maximum achievable

utilities.
We have also studied the price of the Max-Min fairness (MMF) criterion, which is a fairness in the

spirit of Rawlsian justice and is consistent with the Kalai-Smorodinsky solution for the two-player
case (see BFT 2011). BFT (2011) have derived a tight bound for the price of MMF only when the
maximum achievable utilities for all players are equal. By contrast, we have derived a tight bound
for the price of MMF for the unequal maximum achievable utilities case, which reduces to the tight
bound derived by BFT (2011) for the case of equal maximum achievable utilities.

For both fairness notions, we have also studied the sensitivity of our bounds and the BFT bounds
to the variability of the maximum achievable utilities. Both bounds increase with the variability
of the maximum achievable utilities, but the BFT bounds increase at a faster rate. The numerical
experiments reveal that for maximum utility vectors with or without a special structure, our bounds
significantly improve upon the BFT bounds for both fairness criteria.

Finally, for the unequal maximum achievable utilities case, we have introduced, for both fairness
criteria, the notion of the worst-case price of fairness in terms of the maximum achievable utilities.
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We have proven that for our bounds, both for the PF and MMF criteria, the worst-case of the
POF is 1− 1/n. In contrast, we have proven that the BFT supremum bound for the price of PF is
1−O(n1.25), and that of MMF is 1−O(n2). Therefore, our bounds asymptotically improve upon the
BFT bound for both fairness criteria when there is a large number of players. The characterization
of the worst-case maximum achievable utility vectors should also help the decision maker understand
in which scenarios it is most costly to implement a fairness solution.
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Endnotes
1. See https://optn.transplant.hrsa.gov/data/
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EC.1. Proof of Propositions 1 - 3

Proposition 1 Suppose U ⊆ {u := (u1, u2, . . . , un) |0 ≤ ui ≤ 1, i ∈ N} is a convex and compact

utility set, and max{ui |u ∈ U}= 1 for i ∈N . Then there exist ci ∈ [1/n,1], i ∈N , such that U ⊆

U ′ = {u |
∑n

i=1 ciui ≤ 1,0 ≤ ui ≤ 1, i ∈ N}, and max{
∑n

i=1 logui |u ∈ U} = max{
∑n

i=1 logui |u ∈

U ′}. Consequently, POF (U ;PF )≤ POF (U ′;PF ).

Proof. Let v denote the optimal solution to max{
∑n

i=1 logui |u ∈ U}. Define ν(u) :=∑n

i=1 logui and denote by ∇(ν(v)) the gradient of ν(·) at v. Since U is convex and compact, and

the objective function ν(·) is concave, the necessary and sufficient optimality condition is

(u−v)T∇(ν(v)) =
n∑

i=1

(
ui

vi
− 1)≤ 0⇔

n∑
i=1

ciui ≤ 1, ∀ u∈U, (EC.1)

where ci := 1/(nvi). Therefore, the optimality condition implies that U ⊆U ′ := {u |
∑n

i=1 ciui ≤ 1,0≤

ui ≤ 1, i∈N}, for ci = 1/(nvi).

We claim that v is also the optimal solution to the optimization problem to derive the PF solution

with respect to U ′, i.e., max{
∑n

i=1 logui |u∈U ′}. Indeed, since v ∈U ⊆U ′, v is feasible to this opti-

mization problem. Further, for all u ∈ U ′, we have
∑n

i=1 ciui =
∑n

i=1 ui/(nvi)≤ 1. Thus, v satisfies

the necessary and sufficient optimality condition (EC.1). Therefore, v is also the PF solution with

respect to U ′. We thus have uPF (U) =uPF (U ′).

Given that U ⊆ U ′, we have
∑

i u
∗
i (U) ≤

∑
i u

∗
i (U

′), where u∗
i (U) and u∗

i (U
′) denote player i’s

utility at the utilitarian solution with respect to U and U ′, respectively. Therefore, by the definition

of the POF, i.e., (4), we have POF (U ;PF )≤ POF (U ′;PF ).

Finally, since 0≤ vi ≤ 1, we have ci = 1/(nvi)≥ 1/n. Let ei denote a vector whose i-th element is

one and all other elements as zero. By assumptions of U , ei ∈ U and thus ei ∈ U ′ for i ∈N . Then∑n

i=1 ciui ≤ 1⇒ ci ≤ 1. ■

Proposition 2 uPF (U ′) := (1/nc1,1/nc2, . . . ,1/ncn) is the unique optimal solution to Problem (8).

Proof. Since ci ≥ 1/n, we have uPF
i (U ′)≤ 1. So uPF (U ′) is a feasible solution to (8). For any

feasible u ∈U ′, (u−uPF (U ′))T∇(ν(uPF (U ′))) =
∑n

i=1(ui − uPF
i (U ′))/uPF

i (U ′) =
∑n

i=1 nciui −n≤

0, which implies the optimality of uPF (U ′). Finally, since in (8) we maximize a strictly concave

function over a convex compact domain, the maximizer must be unique. ■

Proposition 3 Problems (9) and (10) are equivalent.
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Proof. (I) For any feasible solution, (c, l), to Problem (9), we can associate a feasible solution,
(d,y), to Problem (10) as follows:

For each i, i= 1, . . . , n, d2i−1 = d2i = ci, and yi =


1, if i≤ l,
1−

∑l
i=1 ci

cl+1
, if i= l+1,

0, if i≥ l+2.

(EC.2)

We will show that (d,y) is feasible for (10). By (EC.2), (10c) hold, and by (9b), (10b) are also
satisfied at (d,y). Further, (10d) holds since

n∑
i=1

yid2i−1 =
l∑

i=1

ci +
1−

∑l

i=1 ci
cl+1

· cl+1 = 1.

By (9c) and (9d), we have

yl+1 =
1−

∑l

i=1 ci
cl+1

∈ [0,1).

Therefore, (10e) and (10f) are satisfied at (d,y).
In addition, examining (10g), we have for any i ̸= l+1, √yi − yi = 0, so

n∑
i=1

(
√
yi − yi) =

√
yl+1 − yl+1 =

n∏
i=1

(
√
yi − yi +1)− 1.

Finally, we show that f1(d,y) = f0(c, l) for any feasible solution (c, l) to Problem (9), and the
corresponding solution (d, y) defined in (EC.2). For the numerator,

1

n

n∑
i=1

(
yi

d2i−1

+
1− yi
d2i

) =
1

n

n∑
i=1

(
yi
ci

+
1− yi
ci

) =
n∑

i=1

1

nci
,

and for the denominator,
n∑

i=1

yi = l+ yl+1 +0= l+
1−

∑l

i=1 ci
cl+1

.

(II) Next we show that for any feasible solution, (d,y), to Problem (10) we can find a corresponding
feasible solution, (c, l), to Problem (9), such that they achieve the same objective function value. By
Constraints (10e)-(10g), yi is decreasing in i, and there is at most one yi which is neither 0 nor 1.
Let yk be the last variable equal to 1, i.e., yk = 1, yk+1 < 1. Then yi = 1 for i≤ k, 0≤ yk+1 < 1 and
yi = 0 for i≥ k+2. Then, a feasible solution (c, l) of Problem (9) that corresponds to (d,y) has the
following expression:

ci = d2i−1 for i= 1,2, . . . , n, l= k.

By (10d), we have

k∑
i=1

d2i−1 =
k∑

i=1

yid2i−1 ≤
n∑

i=1

yid2i−1 = 1, and
k+1∑
i=1

d2i−1 =
k∑

i=1

yid2i−1 + d2k+1 >
n∑

i=1

yid2i−1 = 1.
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Therefore,
l∑

i=1

ci =
k∑

i=1

d2i−1 ≤ 1, and
l+1∑
i=1

ci =
k+1∑
i=1

d2i−1 > 1,

and thus (9c),(9d) are satisfied.
Finally, we show that f0(c, l) = f1(d,y). For the numerator,

n∑
i=1

1

nci
=

n∑
i=1

1

nd2i−1

=
1

n

n∑
i=1

(
yi

d2i−1

+
1− yi
d2i

),

and for the denominator,

l+
1−

∑l

i=1 ci
cl+1

= k+
1−

∑k

i=1 yid2i−1

d2k+1

= k+ yk+1 =
n∑

i=1

yi.

■

EC.2. Proof of Claims 1 - 7

Claim 1
∑n

i=1 y
∗
i ∈ [k, k+1].

Proof. First, the following two solutions are feasible to the original Problem (10):
(d′,y′) : d′1 = d′2 = · · ·= d′2k =

1
k
, d′2k+1 = · · ·= d′2n = 1, y′

1 = · · ·= y′
k = 1, y′

k+1 = y′
k+2 = · · ·= y′

n = 0.
(d′′,y′′) : d′′1 = d′′2 = · · ·= d′′2k+2 =

1
k+1

, d′′2k+3 = · · ·= d′′2n = 1, y′′
1 = · · ·= y′′

k+1 = 1, y′′
k+2 = y′′

k+3 = · · ·=

y′′
n = 0.
For convenience, we define g0(y) and gBFT (y) as follows: g0(y) := mind f1(d,y) s.t.(10b) −

(10g), gBFT (y) :=mind f1(d,y) s.t.(10b), (10d)− (10g). Therefore, g0(y) and gBFT (y) give the objec-
tive function value of the optimization problem that gives our bound and BFT bound for a given
y, respectively. Since the optimization formulation for the BFT bound includes an extra constraint
(10b), we have g0(y)≥ gBFT (y)≥ f1(d,y). Next, we will show that for any y such that

∑n

i=1 yi <k

or
∑n

i=1 yi > k+1, we have g0(y)> g0(y
′), so that y is not optimal. Thus, at the optimal solution

(d∗,y∗), we must have
∑n

i=1 y
∗
i ∈ [k, k+1].

Recall that f1(d,y) = (1/n
∑n

i=1(yi/d2i−1 +(1− yi)/d2i))/
∑n

i=1 yi. By Inequalities (12) and (13),
we have

f1(d,y)≥
1

n
(

n∑
i=1

yi +
n∑n

i=1 yi
− 1),

where equality holds when all d2i−1 variables are equal for i∈ {i : yi ̸= 0} and d2i = 1 for i∈ {i : yi ̸=

1}. For y′, these conditions are satisfied by d′. Thus, d′ ∈ argmind f1(d,y
′). Furthermore, (d′,y′)

satisfies all the constraints of Problem (10), and thus we have

g0(y
′) = gBFT (y

′) = f1(d
′,y′) =

1

n
(

n∑
i=1

y′
i +

n∑n

i=1 y
′
i

− 1) =
1

n
(k+

n

k
− 1).
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Similarly, we have

g0(y
′′) = gBFT (y

′′) = f1(d
′′,y′′) =

1

n
(

n∑
i=1

y′′
i +

n∑n

i=1 y
′′
i

− 1) =
1

n
(k+

n

k+1
).

(a) For any y such that
∑n

i=1 yi <k, we have

g0(y)≥ gBFT (y)≥
1

n
(

n∑
i=1

yi +
n∑n

i=1 yi
− 1)>

1

n
(k+

n

k
− 1) = gBFT (y

′) = g0(y
′).

(b) For any y such that
∑n

i=1 yi >k+1, we have

g0(y)≥ gBFT (y)≥
1

n
(

n∑
i=1

yi +
n∑n

i=1 yi
− 1)>

1

n
(k+

n

k+1
)= gBFT (y

′′) = g0(y
′′).

■

Claim 2 y∗
1 = y∗

2 = · · ·= y∗
k = 1, y∗

k+2 = · · ·= y∗
n = 0.

Proof. Since yi is decreasing with i, we only need to prove that y∗
k = 1 and y∗

k+2 = 0. Suppose

y∗
k ̸= 1, then if y∗

k = 0, y∗
k+1 = · · · = y∗

n = 0 because yi is decreasing with i; or if 0 < y∗
k < 1, then

y∗
k+1 = · · ·= y∗

n = 0 as Constraint (10g) ensures that at most one yi can be strictly between 0 and 1.

Thus,
∑n

i=1 y
∗
i =

∑k

i=1 y
∗
i <k, contradicting Claim 1. Therefore, we have y∗

k = 1.

Next, we claim that y∗
k+2 = 0. To show that, if y∗

k+1 = 0, the conclusion holds as yi is decreasing

with i; if 0< y∗
k+1 < 1, it holds due to Constraint (10g); if y∗

k+1 = 1, it holds because
∑n

i=1 y
∗
i must

be no larger than k+1, as required by Claim 1. ■

Claim 3 c∗i = 1 for i= k+2, . . . , n.

Proof. Suppose, on the contrary, that there exists l ∈ {k+2, . . . , n} such that c∗l < 1. Then let

c′i = c∗i for i≤ l− 1 and c′i = 1 for i≥ l. By construction, c′ satisfies (14b). Since the first k+1 terms

of c′ and c∗ coincide, c′ also satisfies (14c) and (14d), and we conclude that c′ is feasible for Problem

(14).

Since the objective function (14a) is a decreasing function of the coefficients cl for all l≥ k+2, c′

attains a strictly lower objective value than c∗, which contradicts the optimality of c∗. ■

Claim 4 c∗1 = c∗2 = · · ·= c∗k.

Proof. Suppose, on the contrary, Claim 4 does not hold. Let c′′i =
(∑k

i=1 c
∗
i

)
/k for all i ≤ k,

and let c′′i = c∗i for all i≥ k+1. Since
∑k

i=1 c
∗
i =

∑k

i=1 c
′′
i , c′′ is feasible to Problem (14).
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Using Claim 3, the objective function in Problem (14) can be reformulated as

g̃1(c1, . . . , ck+1) :=

∑k+1

i=1
1
ci
+n− k− 1

k+
1−

∑k
i=1 ci

ck+1

.

Since the harmonic mean is always no larger than the arithmetic mean, we have

g̃1(c
∗
1, . . . , c

∗
k+1) =

∑k

i=1
1
c∗i
+ 1

c∗
k+1

+n− k− 1

k+
1−

∑k
i=1 c∗i

c∗
k+1

≥
k2∑k
i=1 c∗i

+ 1
c′′
k+1

+n− k− 1

k+
1−

∑k
i=1 c′′i

c′′
k+1

=

∑k

i=1
1
c′′i

+ 1
c′′
k+1

+n− k− 1

k+
1−

∑k
i=1 c′′i

c′′
k+1

= f̃1(c
′′
1 , . . . , c

′′
k+1),

where equality holds only when c∗ = c′′. Therefore, if c∗ ̸= c′′, c′′ yields a strictly lower objective

function value than c∗, which contradicts the optimality of c∗. ■

Claim 5 c∗k+1 is either max{x,1− kx} or 1.

Proof. Recall that, after removing the constant 1/n, the objective function (14a) reduces to:

h1(x, ck+1) =

k
x
+ 1

ck+1
+n− k− 1

k+ 1−kx
ck+1

.

The partial derivative of h1(x, ck+1) with respect to ck+1 is given by

∂h1(x, ck+1)

∂ck+1

=
1

(kck+1 +1− kx)2

(
(n− k− 1+

k

x
)(1− kx)− k

)
, (EC.3)

and note that its value is independent of ck+1. That is, ∂h1(x, ck+1)/∂ck+1 is either always positive, or

always negative for all ck+1 ∈ [max{x,1− kx},1]. Thus, h1(x, ck+1) attains its minimum at one of the

two endpoints of the feasible interval for ck+1, implying that c∗k+1 is equal to either max{x,1− kx}

or 1.

■

Claim 6 When n≥ 3, h1(x, ck+1) reaches its minimum either at x= 1/(k+1), ck+1 = 1/(k+1) or

at x= 1/k, ck+1 = 1.

Proof. By Claim 5, we know that c∗k+1 is either max{x,1− kx} or 1.

(1) If c∗k+1 =max{x,1− kx}, then we can characterize x∗ as follows.
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(i) If x∈ [1/n,1/(k+1)], we have c∗k+1 = 1− kx, and

h1(x, c
∗
k+1) = h1(x,1− kx) =

( k
2

kx
+ 1

1−kx
) · (kx+1− kx)+n− k− 1

k+1
≥ (k+1)2 +n− k− 1

k+1

= k+
n

k+1
,

where equality holds when x= 1/(k+1).
(ii) If x∈ [1/(k+1),1/k], we have c∗k+1 = x, and

h1(x, c
∗
k+1) = h1(x,x) = k+1+ (n− k− 1)x≥ k+

n

k+1
,

where equality holds when x= 1/(k+1).
Thus, in this case, h1(x, ck+1) reaches its minimum at x= 1/(k+1), ck+1 = 1/(k+1).

(2) If c∗k+1 = 1, then we let h̃1(x) := h1(x,1) = (k/x+n− k)/(k+1− kx). The partial derivative of
h̃1(x) is given by

h̃′
1(x) =

k(n− k)

(k+1− kx)2x2

(
x2 +

2k

n− k
x− k+1

n− k

)
.

Note that the sign of h̃′
1(x) depends on the expression in the last bracket, denoted by h̃′

0(x).
Clearly, h̃′

0(x) increases with x. Now, we show that h̃′
0(1/k)≤ 0 when n≥ 4, and the case n= 3

will be subsequently considered. Indeed, if it is true, then h̃′
0(x)≤ 0 for all x≤ 1/k, and thus

h̃1(x) reaches its minimum at x= 1/k.
Suppose, on the contrary, that h̃′

0(1/k)> 0, which implies that

k2 +n− k > k3. (EC.4)

Let x denote the positive root of h̃′
0(x) = 0. Then h̃1(x) reaches its minimum at x, and we know

that x< 1/k.
By optimality of the solution (x,1), the value of h1(x, ck+1) at x= x, ck+1 = 1 is smaller than

that at x= 1/(k+1), ck+1 = 1/(k+1), i.e.,
k
x
+n− k

k+1− kx
≤ (k+1)2 +n− k− 1

k+1
,

which implies that
(k2 + k+n)x2 − (k+2)(k+1)x+ k+1≤ 0. (EC.5)

By (EC.4), we have

0≥ (k2 + k+n)x2 − (k+2)(k+1)x+ k+1

> (k3 +2k)x2 − (k+2)(k+1)x+ k+1

= (kx− 1)((k2 +2)x− k− 1)+ k(k− 2).

(EC.6)
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When n ≥ 4, we have k = ⌊
√
n⌋ ≥ 2. Furthermore, since x < 1/k and k ≥ 2, it follows that

kx−1< 0, (k2+2)x−k−1< 2/k−1≤ 0, and k(k−2)≥ 0, which contradicts (EC.6). Therefore,
h0(1/k)≤ 0 and thus x∗ = 1/k when n≥ 4.

We will next show that n = 3 does not fall under this case, but rather under the previous
case, i.e., c∗k+1 =max{x,1−kx}= 1/(k+1). We have k= ⌊

√
3⌋= 1. It is sufficient to show that

h1(x,1)>h1(1/2,1/2) = 5/2. Indeed,

h1(x,1)−
5

2
=

5
2
x+ 1

x
− 3

2−x
≥

√
10− 3

2−x
> 0.

■

Claim 7 When n= 2, c∗1 =
√
3− 1, c∗2 = 1.

Proof. Note that for n = 2, k = ⌊
√
2⌋ = 1. By (14b), we have x ≥ 1/2 and c2 ≤ 1. Thus, the

partial derivative of h1(x, c2) with respect to c2, as shown in EC.3, is non-positive, i.e.,

∂h1(x, c2)

∂c2
=

1− 2x

x(c2 +1−x)2
≤ 0.

Thus, we have c∗2 = 1. Then,
h̃1(x) = h1(x,1) =

1+x

x(2−x)
,

whose derivative is:

h̃′
1(x) =

x2 +2x− 2

2(2x−x2)2

{
≤ 0, x∈ [ 1

2
,
√
3− 1];

> 0, x∈ (
√
3− 1,1].

Thus, h̃1(x) reaches its minimum at x=
√
3− 1 and h̃1(x) = (2+

√
3)/4, i.e., c∗1 =

√
3− 1.

■

EC.3. Proof of Lemma 1
Lemma 1 For any a∈N+, ∆(n) reaches a local maximum when n= a(a+1).

Proof. For any integer n≥ 2, there exists a∈N+ such that n∈ [a2, (a+1)2). We will show that
when n ∈ [a2, a(a+ 1)], ∆(n) increases with respect to n; and when n ∈ [a(a+ 1), (a+ 1)2), ∆(n)

decreases with respect to n. Therefore, ∆(n) reaches a local maximum when n= a(a+1). Note that
k= ⌊

√
n⌋= a, ϵ=

√
n− a.

(1) When n∈ [a2, a(a+1)), by (16), we have ∆(n) = (
√
n−a)2/(a(n−2

√
n+1)), whose derivative

is:
∆′(n) =

(
√
n− a)(a− 1)

a
√
n(
√
n− 1)3

≥ 0.
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(2) When n∈ [a(a+1), (a+1)2), by (16), we have ∆(n) = (1−
√
n+a)2/((a+1)(

√
n−1)2), whose

derivative is:
∆′(n) =− (1−

√
n+ a)a

(a+1)
√
n(
√
n− 1)3

< 0.

■

EC.4. Proof of Propositions 6, 8 and 9
Proposition 6 Suppose U ⊆ {u |0 ≤ ui ≤ Li, i ∈ N} is a convex and compact utility set, and
maxu∈U ui = Li for i ∈ N . Then there exist ci ∈ [1/nLi,1/Li], i ∈ N , such that U ⊆ U ′ =

{u |
∑n

i=1 ciui ≤ 1, 0 ≤ ui ≤ Li, i ∈ N}, and max{
∑n

i=1 logui |u ∈ U} = max{
∑n

i=1 logui |u ∈ U ′}.
Consequently, POF (U ;PF )≤ POF (U ′;PF ).

Proof. By definition, U is a subset of a polyhedron with constraints 0≤ ui ≤ Li, i ∈N . Let K

denote a transformation of U such that K = {(k1, k2, . . . , kn) | (k1L1, k2L2, . . . , knLn) ∈ U}. Then K

is a subset of the unit cubic, i.e., K ⊆ [0,1]n.
By Proposition 1, there exist ai ∈ [1/n,1], i ∈ N , such that K ⊆ K ′ = {k := (k1, k2, . . . ,

kn) |
∑n

i=1 aiki ≤ 1,0≤ ki ≤ 1, i∈N}, and max{
∑n

i=1 logki |k ∈K}=max{
∑n

i=1 logki |k ∈K ′}.
Finally, we derive the expression of U ′ corresponding to K ′. Let ci = ai/Li ∈ [1/nLi,1/Li], i∈N .

That is, U ′ = {u | (u1/L1, u2/L2, . . . , un/Ln) ∈ K ′} = {u |
∑n

i=1 ciui ≤ 1,0 ≤ ui ≤ Li, i ∈ N}. Then,
max{

∑n

i=1 logui |u ∈ U} = max{
∑n

i=1 logki |k ∈ K} +
∑n

i=1 logLi = max{
∑n

i=1 logki |k ∈ K ′} +∑n

i=1 logLi =max{
∑n

i=1 logui |u∈U ′}. ■

Proposition 8
sup

L: 1≥L1≥...≥Ln>0

UB(n,L;PF ) = 1− 1

n
,

where the supremum is approached when L= (1− ϵ, ϵ/(n− 1), . . . , ϵ/(n− 1)) with ϵ→ 0.

Proof.
From Theorem 2, UB(n,L;PF ) has the following two possible expressions:

UB(n,L;PF ) = 1−min
l∈N

(
∑l

i=1

√
Li)

2 +
∑n

i=l+1Li

n
∑l

i=1Li

; (EC.7a)

UB(n,L;PF ) = 1−
(
√

L2
2 +2L1L2 +(L1 +L2)

∑n

i=3Li +
√
L1L2)

2

n(L1 +L2)2
(Only possible when (EC.7b)

n∑
i=1

Li ·L2 >L2
1).

(1) If UB(n,L;PF ) is given by (EC.7a), then

UB(n,L;PF ) = 1−min
l∈N

(
∑l

i=1

√
Li)

2 +
∑n

i=l+1Li

n
∑l

i=1Li

≤ 1−min
l∈N

∑l

i=1Li +
∑n

i=l+1Li

n
∑l

i=1Li

= 1− 1

n
−min

l∈N

∑n

i=l+1Li

n
∑l

i=1Li

< 1− 1

n
.

(EC.8)



e-companion to Author: Tight Bounds for The Price of Fairness ec9

(2) If UB(n,L;PF ) is given by (EC.7b), then

UB(n,L;PF ) = 1−
(
√

L2
2 +2L1L2 +(L1 +L2)

∑n

i=3Li +
√
L1L2)

2

n(L1 +L2)2

= 1−
(
√

(L1 +L2)
∑n

i=1Li −L2
1 +

√
L1L2)

2

n(L1 +L2)2

< 1−
(
√

(L1 +L2)
L2
1

L2
−L2

1 +
√
L1L2)

2

n(L1 +L2)2
(By

n∑
i=1

Li ·L2 >L2
1)

= 1−
(L1

√
L1
L2

+
√
L1L2)

2

n(L1 +L2)2

< 1− (L1 +L2)
2

n(L1 +L2)2
= 1− 1

n
.

(EC.9)

Thus, for any vector L of maximum achievable utilities, UB(n,L;PF )< 1− 1/n. We next prove
that supLUB(n,L;PF ) = 1− 1/n.

Indeed, we will show that for any positive δ and a number smaller than 1 − 1/n − δ, there
exists a vector of maximum achievable utilities L∗, for which UB(n,L∗;PF )> 1− 1/n− δ. Specif-
ically, let L∗

1 := 1 − ϵ, and L∗
i := ϵ/(n − 1), i = 2,3..., n, where ϵ is sufficiently small (e.g., ϵ ≤

(2n− 1−
√
4n− 3)/(2(n− 1))) so that

∑n

i=1L
∗
i ·L∗

2 ≤ L∗2
1 . Then, for any given δ > 0, by choosing

ϵ=min{nδ/(2+nδ), (2n− 1−
√
4n− 3)/(2(n− 1))}, we have

UB(n,L∗;PF ) = 1−min
l∈N

(
√
1− ϵ+(l− 1)

√
ϵ

n−1
)2 +(n− l) ϵ

n−1

n(1− ϵ+(l− 1)ϵ)

≥ 1− 1

n(1− ϵ)
≥ 1− 1

n
− δ

2
> 1− 1

n
− δ.

■

Proposition 9

sup
L: 1≥L1≥...≥Ln>0

BFT (n,L;PF ) = 1− 1

n
+

(
1−

√
2
√
n−1

n

)2

n− 1
= 1−O(

1

n1.25
),

where that supremum is reached when

L=

(
√
δ,

1−
√
δ

n− 1
, . . . ,

1−
√
δ

n− 1

)
and δ=

2
√
n− 1

n
.

Proof.
From BFT (2011), we have

BFT (n,L;PF ) = 1− 2
√
n− 1

n

Ln

L1

− 1

n
+

Ln∑n

i=1Li

.



ec10 e-companion to Author: Tight Bounds for The Price of Fairness

Note that we can assume, without loss of generality that
∑n

i=1Li = 1, since for a normalized vector
L′ with

∑n

i=1L
′
i = 1,BFT (n,L;PF ) =BFT (n,L′;PF ). For convenience, define δ := (2

√
n− 1)/n.

Then, we have

BFT (n,L;PF ) = 1− 1

n
+(1− δ

L1

)Ln.

By definition, since Ln is the smallest component of L, the average of L2,L3, . . . ,Ln−1 is greater
than or equal to Ln, i.e.,

1−L1 −Ln

n− 2
≥Ln ⇒L1 ≤ 1− (n− 1)Ln,

which implies that

BFT (n,L;PF ) = 1− 1

n
+(1− δ

L1

)Ln ≤ 1− 1

n
+(1− δ

1− (n− 1)Ln

)Ln. (EC.10)

To find the maximum of the right hand side of (EC.10), we use the first order condition, which
yields, at optimality, that

L1 = 1− (n− 1)Ln =
√
δ.

In addition, observe that the sum of middle Li’s, i.e.,
∑n−1

i=2 Li is exactly equal to (n − 2)Ln,
implying, since Ln is the smallest element, that L2 =L3 = · · ·=Ln.

We next verify that L1 ≥L2 =L3 = · · ·=Ln. Indeed,

L1 =
√
δ≥ 1−

√
δ

n− 1
⇔ n(2

√
n− 1)≥ 1,

where the second inequality is valid for any n≥ 1.
Thus, the vector L derived above is feasible and for which

BFT (n,L;PF ) = 1− 1

n
+

(
1−

√
2
√
n−1

n

)2

n− 1
.

Finally, we have

1

n
−

(
1−

√
2
√
n−1

n

)2

n− 1
=

−2
√
n+2n

√
2
√
n−1

n

n(n− 1)
=

−2n−0.25 +2
√
2−n−0.5

n0.25(n− 1)

≤ 2
√
2

n0.25(n− 1)
≤ 4

√
2

n1.25
=O(

1

n1.25
).

The last inequality holds when n≥ 2. Thus,

sup
L:Li∈(0,1],L1≥···≥Ln

BFT (n,L;PF ) = 1− 1

n
+

(
1−

√
2
√
n−1

n

)2

n− 1
= 1−O(

1

n1.25
).

■
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EC.5. Proof of Claims 8 - 13
Claim 8 ci = 1/Li, for i= l+2, . . . , n.

Proof.
Recall that the objective function (23a) is ∑n

i=1
1

nci∑l

i=1Li +
1−

∑l
i=1 ciLi

cl+1

.

Note that ci = 1/Li, i= l+2, . . . , n, is feasible for Problem (23), and since ci, i= l+2, . . . , n, only
appear in the nominator of the objective function, (23a), which is to be minimized, at optimality,
they should attain their upper bounds.

■

Claim 9 c1
√
L1 = c2

√
L2 = · · ·= cl

√
Ll.

Proof.
By Cauchy–Schwarz inequality, we have

l∑
i=1

1

ci
≥

(
∑l

i=1

√
Li)

2∑l

i=1 ciLi

, (EC.11)

where equality holds when c21L1 = c22L2 = · · ·= c2lLl. When adjusting the values of ci for i= 1,2, . . . , l,
while keeping

∑l

i=1 ciLi constant, the denominator of the objective function (23a) remains invariant,
and the numerator of the objective function (23a) reaches its minimum when the equality in (EC.11)
is satisfied. So, at optimality, c1

√
L1 = c2

√
L2 = · · ·= cl

√
Ll.

■

Claim 10 x∗ = 1/Ll∗+1.

Proof. Recall that

f2(x, y, l;L) =
1
y
A(l)+ 1

x
+B(l)

M(l)+ 1−yA(l)

x

, A(l) =
l∑

i=1

√
Li, B(l) =

n∑
i=l+2

Li, M(l) =
l∑

i=1

Li.

Then, the partial derivative of f2(x, y, l;L) with respect to x, is:

∂f2(x, y, l;L)

∂x
=

1
y
A(l)− yA(l)B(l)−M(l)+B(l)− (A(l))2

(xM(l)+ 1− yA(l))2
.

Note that since, by definition, A(l) and B(l) are positive, the numerator of ∂f2(x, y, l;L)/∂x,
which is independent of x, strictly decreases with y. Moreover, ∂f2(x, y, l;L)/∂x > 0 when y → 0+

and ∂f2(x, y, l;L)/∂x < 0 when y = 1/A(l). As a result, there exists y(l) ∈ (0,1/A(l)) at which



ec12 e-companion to Author: Tight Bounds for The Price of Fairness

∂f2(x, y, l;L)/∂x= 0. Thus, ∂f2(x, y, l;L)/∂x> 0 when y ∈ (0, y(l)), and ∂f2(x, y, l;L)/∂x≤ 0 when
y ∈ [y(l),1/A(l)]. Next we prove that at optimality, y∗ ∈ [y(l∗),1/A(l∗)]. Therefore, the objective
function is minimized when x reaches its upper limit, 1/Ll∗+1, which proves the claim.

We prove that y∗ ∈ [y(l∗),1/A(l∗)] by contradiction. Suppose, on the contrary, that y∗ ∈ (0, y(l∗)),
and let us focus on y ∈ (0, y(l∗)), for which we have that ∂f2(x, y, l

∗;L)/∂x > 0. Since, by (26d),
x> (1− yA(l∗))/Ll∗+1, we have

f2(x, y, l
∗;L)> f2(

1− yA(l∗)

Ll∗+1

, y, l∗;L) =
B(l∗)+ A(l∗)

y
+

Ll∗+1

1−yA(l∗)

M(l∗ +1)
.

By Cauchy–Schwarz inequality, we have

A(l∗)

y
+

Ll∗+1

1− yA(l∗)
=

(
A(l∗)2

yA(l)
+

Ll∗+1

1− yA(l∗)

)
· (yA(l∗)+ 1− yA(l∗))≥ (A(l∗)+

√
Ll∗+1)

2

=A(l∗ +1)2.

Thus,

f2(
1− yA(l∗)

Ll∗+1

, y, l∗;L)≥ B(l∗)+ (A(l∗ +1))2

M(l∗ +1)

=
(A(l∗ +1))2 +Ll∗+2 +B(l∗ +1)

M(l∗ +1)
= f2(

1

Ll∗+2

,
1

A(l∗ +1)
, l∗ +1;L).

Thus, as long as y∗ ∈ (0, y(l∗)), for all feasible x, we have f2(x, y, l
∗;L)> f2((1− yA(l∗))/Ll∗+1,

y, l∗;L) ≥ f2(1/Ll∗+2,1/A(l∗ + 1), l∗ + 1;L). Therefore, any l∗ ≤ n − 2 is sub-optimal as a lower
objective function value can be attained by replacing l∗ with l∗ +1, contradicting the optimality of
l∗. We conclude that the only possible case for y∗ ∈ (0, y(l∗)) is when l∗ = n− 1, since, in this case,
replacing l∗ with l∗ +1, would lead to l∗ = n, which is infeasible.

Next, we prove that when l∗ = n− 1, y∗ ∈ (0, y(l∗)) is also impossible.
Since B(l) =

∑n

l+2Li, we have B(n−1) = 0, and ∂f2(x, y,n−1;L)/∂x= (A(n−1)/y−M(n−1)−
(A(n−1))2)/(xM(n−1)+1−yA(n−1))2. Thus, y(n−1), the solution to ∂f2(x, y,n−1;L)/∂x= 0,
has the following expression,

y(n− 1) =
A(n− 1)

(A(n− 1))2 +M(n− 1)
.

Thus, for y ∈ [0, y(n− 1)], we have f2(x, y,n− 1;L) > f2((1− yA(n− 1))/Ln, y,n− 1;L). The
partial derivative of f2((1− yA(n− 1))/Ln, y,n− 1;L) with respect to y has the following form,

∂f2(
1−yA(n−1)

Ln
, y,n− 1;L)

∂y
=

A(n− 1) · (A(n)y− 1) · ((
√
Ln −A(n− 1))y+1)

M(n) · y2 · (A(n− 1) · y− 1)2
,

and it is negative when y ∈ (0,1/A(n)), and it is positive when y ∈ (1/A(n),1/A(n − 1)]. Thus,
f2((1− yA(l∗))/Ll∗+1, y, l

∗;L) decreases in y when y ∈ (0,1/A(n)]. We observe that

y(n− 1) =
A(n− 1)

(A(n− 1))2 +M(n− 1)
≤ A(n− 1)

(A(n− 1))2 +A(n− 1)
√
Ln

=
1

A(n− 1)+
√
Ln

=
1

A(n)
.
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Thus, f2((1− yA(n− 1))/Ln, y,n− 1;L) decreases over [0, y(n− 1)]. Consequently,

f2(x, y,n− 1;L)> f2((1− yA(n− 1))/Ln, y,n− 1;L)

≥ f2((1− y(n− 1) ·A(n− 1))/Ln, y(n− 1), n− 1;L)

=
(A(n− 1))2 +M(n− 1)

M(n− 1)
≥ (A(n− 1))2 +Ln

M(n− 1)
= f2(1/Ln,1/A(n− 1), n− 1;L),

and we conclude that, given that l∗ = n− 1, the objective function value for any feasible pair (x, y)

such that y ∈ (0, y(n − 1)) is greater than that at x = 1/Ln, y = 1/A(n − 1), which implies that
y∗ ∈ (0, y(l∗)) is impossible. Therefore, y∗ ≥ y(l∗) and x∗ = 1/Ll∗+1. ■

Claim 11 (1) y∗ = 1/A(l∗) when l∗ = 1 with
∑n

i=1Li ·L2 ≤L2
1, or when l∗ ≥ 2.

(2) y∗ = ỹ := (−
√
L1 +

√
B(0)+L1 +B(0)L1/L2)/B(0) when l∗ = 1 with

∑n

i=1Li ·L2 >L2
1.

Proof.
According to Claim 10, x∗ = 1/Ll∗+1, and thus, the objective function of Problem (26) can be

written as:

g2(y, l) := f2(
1

Ll+1

, y, l;L) =

A(l)

y
+B(l− 1)

M(l+1)− yA(l)Ll+1

.

The partial derivative of g2(y, l) with respect to y has the following form:

∂g2(y, l)

∂y
=

A(l)

y2(M(l+1)−A(l)Ll+1y)2
(
(B(l)Ll+1 +L2

l+1)y
2 +2A(l)Ll+1y−M(l+1)

)
.

Let ỹ denote the positive root of ∂g2(y, l)/∂y= 0. Then by the quadratic formula,

ỹ=
−A(l)Ll+1 +

√
(A(l))2L2

l+1 +Ll+1M(l+1)B(l− 1)

B(l− 1)Ll+1

,

and the above partial derivative ∂g2(y, l)/∂y is negative when y < ỹ, and it is positive when y > ỹ.
Thus, if ỹ≥ 1/A(l), we have, by (26c), that for all feasible y, y≤ 1/A(l), ∂g2(y, l)/∂y≤ 0, and thus
g2(y, l) attains its minimum at y = 1/A(l). If, on the other hand, ỹ < 1/A(l), then ∂g2(y, l)/∂y ≤ 0

for y ∈ (0, ỹ], and ∂g2(y, l)/∂y > 0 for y ∈ (ỹ,1/A(l)], implying that the objective function attains its
minimum at y= ỹ. Thus, we have y∗ =min{ỹ,1/A(l∗)}.

Recall that A(l) =
∑l

i=1

√
Li,M(l) =

∑l

i=1Li,B(l) =
∑n

i=l+2Li.
If l∗ = 1 with ỹ < 1/A(1)⇔

∑n

i=1Li ·L2 >L2
1, which proves Case (2) of the claim.

If l∗ = 1 with ỹ≥ 1/A(1)⇔
∑n

i=1Li ·L2 ≤L2
1, which proves Case (1) of the claim for l∗ = 1.

When l∗ ≥ 2, ỹ ≥ 1/A(l∗)⇔ (A(l∗))2 ·M(l∗) ≥ [(A(l∗))2 +B(l∗ − 1)] · Ll∗+1. We next prove this
inequality by contradiction, which would imply that y∗ = 1/A(l∗) when l∗ ≥ 2.

So, suppose, on the contrary, that

(A(l∗))2 ·M(l∗)< [(A(l∗))2 +B(l∗ − 1)] ·Ll∗+1, (EC.12)
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then ỹ < 1/A(l∗), and we have y∗ = ỹ.
Since, by definition, the objective function, g2(y, l), attains its minimum at y= y∗, l= l∗, its value

at this point is smaller than or equal to its value at y= 1/A(l∗ +1), l= l∗ +1, i.e.,
A(l∗)
y∗ +B(l∗ − 1)

M(l∗ +1)− y∗A(l∗)Ll∗+1

≤ (A(l∗ +1))2 +B(l∗)

M(l∗ +1)

⇒ [(A(l∗))2 +2A(l∗)
√

Ll∗+1 +B(l∗ − 1)]Ll∗+1y
∗2

−(A(l∗)+ 2
√

Ll∗+1) ·M(l∗ +1)·y∗ +M(l∗ +1)≤ 0.

By (EC.12), we have

0≥[(A(l∗))2 +2A(l∗)
√
Ll∗+1 +B(l∗ − 1)]Ll∗+1y

∗2 − (A(l∗)+ 2
√

Ll∗+1) ·M(l∗ +1) · y∗

+M(l∗ +1)

>[(A(l∗))2M(l∗)+ 2A(l∗)Ll∗+1

√
Ll∗+1]y

∗2 − (A(l∗)+ 2
√

Ll∗+1)M(l∗ +1) · y∗ +M(l∗ +1)

=(A(l∗)y∗ − 1)[(A(l∗)M(l∗)+ 2Ll∗+1

√
Ll∗+1)y

∗ −M(l∗ +1)]+ (A(l∗)− 2
√

Ll∗+1)M(l∗).
(EC.13)

We will next show that the bottom expression in (EC.13), denoted by Q, is positive, which reveals
that (EC.13) does not hold. Consider the first term in Q, which consists of the product of two terms,
say P1 and P2. By supposition, we know ỹ= y∗ < 1/A(l∗). Thus, P1 =A(l∗)y∗−1< 0. Next, consider
the term P2. We have P2 = (A(l∗)M(l∗) + 2Ll∗+1

√
Ll∗+1)y

∗ −M(l∗ + 1) < (A(l∗)y∗ − 1)M(l∗) +

2Ll∗+1

√
Ll∗+1y

∗ −Ll∗+1 < 2Ll∗+1

√
Ll∗+1/A(l

∗)−Ll∗+1 =Ll∗+1(2
√

Ll∗+1 −A(l∗))/A(l∗).
When l∗ ≥ 2, 2

√
Ll∗+1 − A(l∗) ≤ 0. Thus, the first product in the right-hand side of Equation

(EC.13) is positive. Also the second product is non-negative, which means (EC.13) does not hold.
We conclude that, (EC.12) does not hold, i.e., (A(l∗))2 ·M(l∗)≥ [(A(l∗))2 +B(l∗ − 1)] ·Ll∗+1.

■

Recall that

h2(l) := f2(
1

Ll+1

,
1

A(l)
, l;L) =

(A(l))2 +Ll+1 +B(l)

M(l)
=

(A(l))2 +B(l− 1)

M(l)
.

Claim 12 h2(l) is unimodal, i.e., there exists ℓ∈ [1, n−1] such that h2(l) is decreasing for l ∈ [1, ℓ],
increasing for l ∈ [ℓ,n− 1], and

ℓ=

{
1, if SP

1 =∅,

max(SP
1 ), otherwise ,

where SP
1 := {l ∈N+ ∩ [2, n− 1] |

√
Ll[(

∑l

i=1

√
Li)

2 +
∑n

i=l+1Li]≥ 2
∑l

i=1Li ·
∑l−1

i=1

√
Li}.

Proof. Since l ∈ {1,2, . . . , n− 1}, there exists an ℓ minimizing h(l). If there are multiple values
of l that minimize h(l), we define ℓ to be the largest such value. Thus, for that ℓ, we have{

h2(ℓ)<h2(ℓ+1), (EC.14)

h2(ℓ)≤ h2(ℓ− 1). (EC.15)
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From (EC.14), we have

(A(ℓ))2 +B(ℓ− 1)

M(ℓ)
<

(A(ℓ+1))2 +B(ℓ)

M(ℓ+1)
,

⇒ (M(ℓ)+Lℓ+1)[(A(ℓ))
2 +B(ℓ− 1)]<M(ℓ)[(A(ℓ)+

√
Lℓ+1)

2 +B(ℓ− 1)−Lℓ+1],

⇒
√
Lℓ+1[(A(ℓ))

2 +B(ℓ− 1)]< 2A(ℓ)M(ℓ).

Then we have

h2(ℓ+2)−h2(ℓ+1) =

√
Lℓ+2

M(ℓ+1) ·M(ℓ+2)
·
{
2A(ℓ)M(ℓ)+ 2A(ℓ)Lℓ+1 +2M(ℓ+1)

√
Lℓ+1

−[(A(ℓ))2 +2A(ℓ)
√

Lℓ+1 +B(ℓ− 1)]
√
Lℓ+2

}
>

√
Lℓ+2

M(ℓ+1) ·M(ℓ+2)
·
{
[(A(ℓ))2 +B(ℓ− 1)+2A(ℓ)

√
Lℓ+1]·

(
√
Lℓ+1 −

√
Lℓ+2)+ 2M(ℓ+1)

√
Lℓ+1

}
≥ 0.

Similarly, from (EC.15), we have

(A(ℓ))2 +B(ℓ− 1)

M(ℓ)
≤ (A(ℓ− 1))2 +B(ℓ− 2)

M(ℓ− 1)
,

⇒ (M(ℓ)−Lℓ)[(A(ℓ))2 +B(ℓ− 1)]≤M(ℓ)[(A(ℓ)−
√

Lℓ)
2 +B(ℓ− 1)+Lℓ],

⇒
√
Lℓ[(A(ℓ))

2 +B(ℓ− 1)]≥ 2M(ℓ)A(ℓ− 1). (EC.16)

Then we have

h2(ℓ− 2)−h2(ℓ− 1) =

√
Lℓ−1

M(ℓ− 1) ·M(ℓ− 2)
·
{√

Lℓ−1[(A(ℓ))
2 − 2A(ℓ)

√
Lℓ +2Lℓ +B(ℓ− 1)]

+(2
√
Lℓ−1 − 2A(ℓ− 1))M(ℓ− 1)

}
≥

√
Lℓ−1

M(ℓ− 1) ·M(ℓ− 2)
·
[
2A(ℓ− 1) · (

√
Lℓ−1 −

√
Lℓ) ·

M(ℓ− 1)√
Lℓ

+2
√
Lℓ−1 ·M(ℓ− 1)

]
≥ 0.

Thus, h2(l) is unimodal. To characterize the minimizer ℓ, we define SP
1 as the set of l’s such that

h2(l) is no larger than h2(l− 1), i.e., SP
1 := {l ∈N+ ∩ [2, n− 1] |h2(l)≤ h2(l− 1)}= {l ∈N+ ∩ [2, n−

1] |
√
Ll[(

∑l

i=1

√
Li)

2 +
∑n

i=l+1Li] ≥ 2
∑l

i=1Li ·
∑l−1

i=1

√
Li}, where the last expression follows from

(EC.16). Then, we have

ℓ=

{
1, if SP

1 =∅,

max(SP
1 ), otherwise.

■
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Claim 13 (x∗, y∗, l∗), as characterized in Claims 8-12, is feasible and thus optimal to Problem (25).

Proof. It suffices to show that the optimal solution (x∗, y∗, l∗) to Problem (26) satisfies the two
constraints in Problem (25) that were removed from Problem (26), that is,

y∗
√
Ll∗

≤ x∗, (EC.17a)

1

n
√
Ll∗

≤ y∗. (EC.17b)

When l∗ = 1 with (B(0)+L1)L2 ≤L2
1, or when l∗ ≥ 2, by Claims 10 and 11, the optimal solution

for Problem (26) is x∗ = 1/Ll∗+1, y
∗ = 1/A(l∗). Since A(l∗)

√
Ll∗ ≥Ll∗ ≥Ll∗+1, (EC.17a) holds.

Let us consider (EC.17b). Then, we have A2(l∗) =M(l∗)+ 2
∑

1≤i<j≤l∗
√

LiLj ≤ l∗M(l∗), and by
(EC.16),

A(l∗ − 1)√
Ll∗

≤ A2(l∗)+B(l∗ − 1)

2M(l∗)
≤

l∗M(l∗)+ n−l∗

l∗ M(l∗)

2M(l∗)
≤ 1

2
(l∗ +

n

l∗
− 1)≤ n− 1,

⇒A(l∗)≤ n
√
Ll∗ , ⇒ 1

n
√
Ll∗

≤ y∗.

Thus, (EC.17b) holds.
When l∗ = 1 with

∑n

i=1Li ·L2 >L2
1, by Claims 10 and 11, the optimal solution for Problem (26) is

x∗ = 1/L2, y
∗ = (−

√
L1 +

√
B(0)+L1 +B(0)L1/L2)/B(0). Since y∗ ≤ 1/

√
L1 ≤

√
L1/L2, (EC.17a)

holds. For (EC.17b), since B(0)≤ (n− 1)L2, we have

y∗ =
−
√
L1 +

√
B(0)+L1 +B(0)L1

L2

B(0)
=

1+ L1
L2√

B(0)+L1 +B(0)L1
L2

+
√
L1

≥
1+ L1

L2√
(n− 1)L2 +nL1 +

√
L1

=
1√
L1

·
1+ L1

L2√
(n− 1)L2

L1
+n+1

≥ 1

n
√
L1

,

so (EC.17b) holds. ■

EC.6. Proof of Corollary 1
Corollary 1 When the players have equal maximum achievable utilities, the bound in Theorem 2
reduces to the bound in Theorem 1.

Proof. To see that, let Li ≡ 1, for i ∈N . In this case,
∑n

i=1Li ·L2 −L2
1 = n− 1> 0. Then, by

Theorem 2, we have

UB(n,1;PF ) = 1−min

{
(
∑ℓ

i=1

√
Li)

2 +
∑n

i=ℓ+1Li

n
∑ℓ

i=1Li

,

(
√

L2
2 +2L1L2 +(L1 +L2)

∑n

i=3Li +
√
L1L2)

2

n(L1 +L2)2

}
= 1− 1

n
min

{
ℓ2 +n− ℓ

ℓ
,

√
2n− 1+n

2

}
,

(EC.18)
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where

ℓ=

{
1, if SP

1 =∅,

max(SP
1 ), otherwise ,

and SP
1 = {l ∈N+ ∩ [2, n− 1] | l(l− 1)≤ n}.

For n= 2, we have SP
1 =∅, ℓ= 1, and

UB(n,1;PF ) = 1− 1

2
min

{
2,

√
3+2

2

}
= 1− 1

2
·
√
3+2

2
=

2−
√
3

4
,

which corresponds to Case (a) in Theorem 1.
For n ≥ 3, we have SP

1 = {l ∈ N+ ∩ [2, n− 1] | l(l − 1) ≤ n}. Recall that we define k = ⌊
√
n⌋, ϵ =

√
n− k, then we have

ℓ=

{
k, if n< k(k+1);

k+1, if n≥ k(k+1),

and

UB(n,1;PF ) = 1− 1

n
min

{
ℓ2 +n− ℓ

ℓ
,

√
2n− 1+n

2

}
= 1− 1

n
(ℓ+

n

ℓ
− 1)

=


1− 1

n
(k+

n

k
− 1) = 1−

2
√
n− 1+ ϵ2

k

n
, if n≤ k(k+1);

1− 1

n
(k+

n

k+1
)= 1−

2
√
n− 1+ (1−ϵ)2

k+1

n
, if n> k(k+1),

which corresponds to Case (b) in Theorem 1. The second equality follows from Lemma EC.1, whose
proof is provided below.

Therefore, we conclude that the upper bound for the proportional POF when the maximum achiev-
able utilities by the players are not necessarily equal, given by Theorem 2, reduces to the bound
given by Theorem 1 when the maximum achievable utilities of all players are equal.

Lemma EC.1. For n≥ 3,
ℓ2 +n− ℓ

ℓ
≤

√
2n− 1+n

2
, (EC.19)

where
ℓ=

{
k, if n< k(k+1);

k+1, if n≥ k(k+1).

Proof. First consider the case where n≥ 5, and let h̃2(l) := (l2+n− l)/l. Then, h̃2(l) decreases
monotonically when l ∈ [1,

√
n] and increases monotonically when l ∈ [

√
n,n− 1]. Note that ℓ is an

integer that minimizes h̃2(l), and it is either k or k+1, where k= ⌊
√
n⌋. Also, note that there must

be an integer between
√
n and

√
n+1. So we have

ℓ2 +n− ℓ

ℓ
≤ h̃2(

√
n+1) =

√
n+

n√
n+1

.
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Let
D(n) :=

√
2n− 1+n

2
−
√
n− n√

n+1
.

We first show that for n≥ 5, D(n)≥ 0, which implies that (EC.19) holds for this case. Now, the
derivative of D(n) is:

D′(n) =
(n− 3)

√
n− 1√

n(1+
√
n)2

+
1√

2n− 1
,

which is positive for n≥ 5. Thus, D(n)≥D(5) = (21− 9
√
5)/4> 0 for n≥ 5.

It remains to consider the cases when n= 3,4.
When n= 3, ℓ= 2, ℓ2 +n− ℓ/ℓ= 2.5, (

√
2n− 1+n)/2 = (3+

√
5)/2≈ 2.62, thus (EC.19) holds.

When n= 4, ℓ= 2, ℓ2 +n− ℓ/ℓ= 3, (
√
2n− 1+n)/2 = (4+

√
7)/2≈ 3.32, thus (EC.19) holds.

■

EC.7. Proof of Propositions 10-12
Proposition 10 Suppose U ⊆ {u |0 ≤ ui ≤ Li, i ∈ N} is a convex and compact utility set, and
max{ui |u∈U}=Li for i∈N . Then there exist ci ∈R for i∈N , such that U ⊆U ′ := {u |

∑n

i=1 ciui ≤

1,0 ≤ ui ≤ Li, i ∈ N}, and max{mini∈N(ui/Li) |u ∈ U} = max{mini∈N(ui/Li) |u ∈ U ′}. Conse-
quently,

POF (U ;MMF )≤ 1−
∑n

i=1Li∑n

i=1 ciLi

∑n

i=1 u
∗
i (U

′)
.

Proof. The MMF solution first maximizes the minimum among the ratios of the players’ utilities
to their respective maximum achievable utilities, and so on. We define ki as the ratio of player i’s util-
ity to their maximum achievable utility, i.e., ki := uMMF

i (U)/Li, then uMMF (U) = (k1L1, . . . , knLn).
Let ϕ denote the maximum ratio of a player’s utility to their respective maximum achievable

utility that all players can derive simultaneously. Then ki ≥ ϕ for all i ∈ N . Since every player i

can achieve in U their maximum achievable utility, (0, . . . ,Li, . . . ,0) ∈ U , for all i ∈ N . Then, by
convexity, (L1/n, . . . ,Ln/n)∈U , so ϕ is at least 1/n. Further, since players cannot achieve a utility
that exceeds their respective maximum achievable utility, ϕ∈ [1/n,1].

Then, uMMF (U)≥ (ϕL1, . . . , ϕLn), and we have

POF (U ;MMF ) = 1−
∑n

i=1 u
MMF
i (U)∑n

i=1 u
∗
i (U)

≤ 1−
ϕ
∑n

i=1Li∑n

i=1 u
∗
i (U)

.

Since u := (ϕL1, . . . , ϕLn) is a boundary point in U , by the supporting hyperplane theorem, there
exists a vector v ̸= 0, such that

vTu≤ vTu,∀u∈U. (EC.20)

Since 0 ∈ U , we have vTu ≤ 0. We claim that vTu < 0. Indeed, suppose, on the contrary, that
vTu= 0, i.e.,

∑n

i=1 viLi = 0. Then, since (0, . . . ,Li, . . . ,0)∈U for all i, by (EC.20), we have viLi ≥ 0
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for all i, which implies that viLi = 0 for all i. However, since Li > 0, we must have that vi = 0 for all
i, contradicting the fact that v ̸= 0.

Let ci := vi/
∑n

i=1 viui = vi/
∑n

i=1 viLiϕ. Then, the supporting hyperplane can be written as∑n

i=1 ciui ≤ 1 for all u∈U , and
∑n

i=1 ciLi = 1/ϕ, implies that ϕ= 1/
∑n

i=1 ciLi.
Let U ′ = {(u1, u2, . . . , un) |

∑n

i=1 ciui ≤ 1, 0≤ ui ≤ Li, i= 1, . . . , n}. Then, U ⊆ U ′,
∑n

i=1 u
∗
i (U)≤∑n

i=1 u
∗
i (U

′), and

POF (U ;MMF )≤ 1−
ϕ
∑n

i=1Li∑n

i=1 u
∗
i (U)

≤ 1−
ϕ
∑n

i=1Li∑n

i=1 u
∗
i (U

′)
= 1−

∑n

i=1Li∑n

i=1 ciLi

∑n

i=1 u
∗
i (U

′)
. (EC.21)

■

Proposition 11
sup

L:Li∈(0,1],L1≥···≥Ln

UB(n,L;MMF ) = 1− 1

n
.

where the supremum is approached when L= (1− ϵ, ϵ/(n− 1), . . . , ϵ/(n− 1)) with ϵ→ 0.

Proof.
From Theorem 3, UB(n,L;MMF ) has the following two possible expressions:

(1) UB(n,L;MMF ) = 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
, l∗ =maxSM

1 , if SM
1 ̸=∅;

(EC.22a)

(2) UB(n,L;MMF ) = 1−
∑n

i=1Li∑l∗

i=1Li(n− l∗ +1)
, l∗ =minSM

2 , if SM
1 =∅.

(EC.22b)

where SM
1 := {l ∈ N+ | (n− l− 1)Ll+1 <

∑l

i=1Li ≤ (n− l+1)Ll+1}, SM
2 := {l ∈ N+ |

∑l

i=1Li > (n−

l+1)Ll+1}.

(1) If SM
1 ̸=∅, we have (n− l∗−1)Ll∗+1 <

∑l∗

i=1Li ≤ (n− l∗+1)Ll∗+1, and it follows from (EC.22a)
that

UB(n,L;MMF ) = 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
≤ 1−

4Ll∗+1(
∑l∗

i=1Li +Ll∗+1)

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
.

(EC.23)
For convenience, let

q(x) =
4Ll∗+1(x+Ll∗+1)

(x+(n− l∗ +1)Ll∗+1)2
.

The derivative of q(x) is:

q′(x) =
4Ll∗+1((n− l∗ − 1)Ll∗+1 −x)

(x+(n− l∗ +1)Ll∗+1)3
< 0. (By the condition of (EC.22a))

Thus,
q(x)≥

4L2
l∗+1(n− l∗ +2)

4(n− l∗ +1)2L2
l∗+1

=
(n− l∗ +2)

(n− l∗ +1)2
≥ n+1

n2
>

1

n
,
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where the second-to-last inequality follows since (n− l + 2)/(n− l + 1) is increasing with l ∈

[1, n− 1]. Thus,
UB(n,L;MMF )≤ 1− q(x)< 1− 1

n
.

(2) If SM
1 =∅, we have

∑l∗

i=1Li > (n− l∗ +1)Ll∗+1, and it follows from (EC.22b) that

UB(n,L;MMF ) = 1−
∑n

i=1Li∑l∗

i=1Li(n− l∗ +1)
< 1−

∑l∗

i=1Li∑l∗

i=1Li(n− l∗ +1)

= 1− 1

n− l∗ +1
≤ 1− 1

n
.

(EC.24)

Thus, we have UB(n,L;MMF )< 1− 1/n.
We next prove that supLUB(n,L;MMF ) = 1 − 1/n. Indeed, if there exists a strictly smaller

upper bound 1− 1/n− δ, where δ > 0, let L∗
1 = L > 0,L∗

i = ϵ for i= 2,3, . . . , n. Then, there exists
a small ϵ, say ϵ= nLδ/(2(n− 1)), such that the upper bound of the price of MMF with the given
L∗ is greater than 1− 1/n− δ. The condition

∑l

i=1L
∗
i > (n− l∗ +1)L∗

l+1 is satisfied for all possible
l when ϵ is close to 0, thus, SM

1 =∅, l∗ = 1, and

UB(n,L∗;MMF ) = 1− L+(n− 1)ϵ∑l∗

i=1Li(n− l∗ +1)
≥ 1− L+(n− 1)ϵ

nL
= 1− 1

n
− δ

2
> 1− 1

n
− δ.

■

Proposition 12

sup
L: 1≥L1≥···≥Ln>0

BFT (n,L;MMF ) = 1− 4

(n+1)2
= 1−O(

1

n2
).

where the supremum is approached when L= (1− ϵ, ϵ/(n− 1), . . . , ϵ/(n− 1)) with ϵ→ 0.

Proof. From BFT (2011), we have

BFT (n,L;MMF ) = 1− 4n

(n+1)2
1/n

∑n

i=1Li

L1

.

To achieve the supremum, we assign the term
∑n

i=1Li/L1 its lowest possible value, which is
achieved by letting

∑n

i=2Li → 0, resulting in
∑n

i=1Li/L1 → 1. Then, we obtain the supremum as
1− 4/(n+1)2. Moreover, since

4

(n+1)2
≤ 4

n2
⇒ 4

(n+1)2
=O(

1

n2
),

we have
sup

L: 1≥L1≥···≥Ln>0

BFT (n,L;MMF ) = 1− 4

(n+1)2
= 1−O(

1

n2
).

■
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EC.8. Proof of Claims 14-18
Claim 14 ci = 1/Li for i= l+2, . . . , n.

Proof. Note first that ci, i= l+2, . . . , n, solely appear in the first term of the denominator of
the objective function (33a). Therefore, to minimize (33a), these variables should be assigned their
maximum values within the feasible domain.

Next, we show that we can assume, without loss of generality, that Ll+2 ≥ Ll+3 ≥ · · · ≥ Ln.
Indeed, suppose, on the contrary, that this assumption is not satisfied, and that Lj <Lj+1, for some
j ∈ [l + 2, n − 1]. Then Constraints (33b) and (33c) imply that cj ≤ cj+1 ≤ 1/Lj+1 < 1/Lj . Thus,∑n

i=l+2 ciLi < n− l− 1. On the other hand, let L′
i = Li, i= 1, . . . , l+ 1, and let L′

i, i= l+ 2, . . . , n,
denote the partial vector derived from the partial vector (Li), i= l+2, . . . , n, after rearranging the
components of the latter in a descending order. That is, L′

l+2 ≥ L′
l+3 ≥ · · · ≥ L′

n. Similarly, let c′i =

ci, i= 1, . . . , l+1, and c′i = 1/L′
i, i= l+2, . . . , n, denote a feasible solution to the optimization Prob-

lem (33) corresponding to the parameters L′
i, i= 1, . . . , n. Thus,

∑n

i=l+2 c
′
iL

′
i = n− l−1>

∑n

i=l+2 ciLi,
while the other terms in the objective function remain invariant for these two sets of parameters and
variables. Consequently, we have f3(c

′, l;L′)≤ f3(c, l;L). Thus, we can assume Ll+2 ≥ Ll+3 ≥ · · · ≥

Ln.
This assumption ensures that ci = 1/Li, i = l + 2, . . . , n satisfies Constraint (33b) and hence is

feasible. Incorporating the above analysis that ci, i= l+2, . . . , n should be assigned their maximum
values within the feasible domain, we have c∗i = 1/Li, i= l+2, . . . , n.

■

Claim 15 If A≤ (n− l− 1)Ll+1,

x∗ ∈ [
1

A+Ll+1

,
1

Ll+1

], y∗ = 1−x∗Ll+1, g3(x
∗, y∗; l) =

1

(n− l)(A+Ll+1)
;

If (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ =
1

2

(
A

Ll+1

−n+ l+1

)
, g3(x

∗, y∗; l) =
4Ll+1

(A+(n− l+1)Ll+1)2
;

If A> (n− l+1)Ll+1,

x∗ =
1

Ll+1

, y∗ = 1, g3(x
∗, y∗; l) =

1

A(n− l+1)
.

Proof. If A ≤ (n− l− 1)Ll+1, let x∗ be any value in [1/(A+ Ll+1),1/Ll+1], y∗ = 1− x∗Ll+1,
then

g3(x
∗, y∗; l) =

x∗

(y∗ +n− l− 1+x∗Ll+1)(Ax∗ +1− y∗)
=

1

(n− l)(A+Ll+1)
.
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For any feasible x, y, we have

g3(x, y; l)−g3(x
∗, y∗; l)

=
(1− y−xLl+1)x ·A+(n− l− 1+ y)(y+xLl+1 − 1)

(n− l)(A+Ll+1)(y+n− l− 1+xLl+1)(Ax+1− y)

≥ (1− y−xLl+1)(n− l− 1)xLl+1 +(n− l− 1+ y)(y+xLl+1 − 1)

(n− l)(A+Ll+1)(y+n− l− 1+xLl+1)(Ax+1− y)

(since, by (33e), 1− y−xLl+1 < 0)

=
(y+xLl+1 − 1)((n− l− 1)(1−xLl+1)+ y)

(n− l)(A+Ll+1)(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 0.

If (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1, let x∗ = 1/Ll+1, y∗ = (A/Ll+1 −n+ l+1)/2, then

g3(x
∗, y∗; l) =

1/Ll+1

(A/Ll+1 +n− l+1)2/4
=

4Ll+1

(A+(n− l+1)Ll+1)2
.

For any feasible x, y, we have

g3(x, y; l)−g3(x
∗, y∗; l)

=
x(A−L(−3− l+n+2xLl+1 +2y))2 +4Ll+1(1−xLl+1)(xLl+1 + y− 1)

(A+(n− l+1)Ll+1)2(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 4Ll+1(1−xLl+1)(xLl+1 + y− 1)

(A+(n− l+1)Ll+1)2(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 0.

If A> (n− l+1)Ll+1, let x∗ = 1/Ll+1, y∗ = 1, then

g3(x
∗, y∗; l) =

x∗

(y∗ +n− l− 1+x∗Ll+1)(Ax∗ +1− y∗)
=

1

A(n− l+1)
.

For any feasible x, y, we have

g3(x, y; l)−g3(x
∗, y∗; l)

=
(2− y−Ll+1x)Ax− (y+xLl+1 +n− l− 1)(1− y)

A(n− l+1)(y+n− l− 1+xLl+1)(Ax+1− y)

>
(2− y−Ll+1x)(n− l+1)xLl+1 − (y+xLl+1 +n− l− 1)(1− y)

A(n− l+1)(y+n− l− 1+xLl+1)(Ax+1− y)

=
(1− y)2 +(1−xLl+1)(xLl+1 +(n− l)(xLl+1 + y− 1))

A(n− l+1)(y+n− l− 1+xLl+1)(Ax+1− y)

≥ 0.

The last inequality holds due to 1− xLl+1 ≥ 0 by (35c), xLl+1 + y− 1≥ 0 by (35e), n≥ l+1 by
definition and 1− y≥ 0 by (35d).

■

Claim 16 p(A,Ll+1; l) is decreasing both in A and Ll+1.
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Proof. We first show that p(A,Ll+1; l) decreases in A. Recall that p(A,Ll+1; l) is defined in
(36), and A=

∑l

i=1Li. Now, note that A only appears in the denominator of p(A,Ll+1; l), and in
all three ranges for which p is defined, an increase in A increases the denominator of p(A,Ll+1; l).
Thus, in each of these three ranges, p is decreasing in A.

Further, note that if A= (n− l−1)Ll+1, then 1/((n− l)(A+Ll+1)) = 4Ll+1/(A+(n− l+1)Ll+1)
2;

and if A= (n− l+1)Ll+1, then 4Ll+1/(A+(n− l+1)Ll+1)
2 = 1/(A(n− l+1)). Thus, p(A,Ll+1; l)

is continuous in A over the entire region, and we conclude that p(A,Ll+1; l) is decreasing in A.
To prove that p(A,Ll+1; l) decreases in Ll+1, we rewrite p(A,Ll+1; l) as follows:

p(A,Ll+1; l) :=


1

A(n−l+1)
, Ll+1 <

A
n−l+1

;
4Ll+1

(A+(n−l+1)Ll+1)
2 ,

A
n−l+1

≤Ll+1 <
A

n−l−1
;

1
(n−l)(A+Ll+1)

, Ll+1 ≥ A
n−l−1

.

Clearly, if Ll+1 < A/(n− l+ 1) or Ll+1 ≥ A/(n− l− 1), then p(A,Ll+1; l) is decreasing in Ll+1.
For the region where A/(n− l + 1) ≤ Ll+1 < A/(n− l − 1), we calculate the partial derivative of
p(A,Ll+1; l) with respect to Ll+1,

∂p

∂Ll+1

=
4(A− (n− l+1)Ll+1)

(A+(n− l+1)Ll+1)3
,

which is obviously negative in this region. Thus, p(A,Ll+1; l) is decreasing in Ll+1 in this region
as well. Finally, it is easy to verify that p(A,Ll+1; l) is continuous in Ll+1, and thus p(A,Ll+1; l) is
decreasing in Ll+1. ■

Claim 17 The value of p(A,Ll+1; l) is minimized with respect to the Li, i = 1, . . . , n, if they are
arranged in a descending order.

Proof. We have previously shown that the permutation of the L′
is that would minimize

p(A,Ll+1; l) should satisfy: L1 ≥L2 ≥ · · · ≥Ll ≥Ll+2, Ll+1 ≥Ll+2 and Ll+2 ≥Ll+3 ≥ · · · ≥Ln. Thus,
what remains to show is Ll+1 ≤ Ll. Suppose it is not true, then we can construct L′ which is in
descending order and for which p attains a smaller value.

Let ∆= Ll+1 − Ll > 0,L′
l+1 = Ll+1 −∆,A′ = A+ Ll+1 − L′

l+1 = A+∆. The relationship among
A′, (n − l − 1)L′

l+1 and (n − l + 1)L′
l+1, as well as the relationship among A, (n − l − 1)Ll+1 and

(n− l+ 1)Ll+1, affect which segments of the piecewise functions p(A′,L′
l+1; l) and p(A,Ll+1; l) are

valid.
The following two diagrams present the valid expressions for p(A′,L′

l+1; l) and p(A,Ll+1; l) in seven
possible different cases.
(1) If (n− l−1)Ll+1 ≤ (n− l+1)Ll+1−(n− l−2)∆, then the following five different cases, depending

on the range of A, are possible:
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(n− l− 1)Ll+1 − (n− l)∆ (n− l+1)Ll+1 − (n− l− 2)∆

(n− l− 1)Ll+1 (n− l+1)Ll+1

1
(n−l)(A+Ll+1)

4Ll+1

(A+(n−l+1)Ll+1)
2

1
A(n−l+1)

1
(n−l)(A′+L′

l+1
)

4L′
l+1

(A′+(n−l+1)L′
l+1

)2
1

A′(n−l+1)

A

p(A,Ll+1; l) =

p(A′,L′
l+1; l) =

Index 1⃝ 2⃝ 3⃝ 4⃝ 5⃝

(2) If (n− l−1)Ll+1 > (n− l+1)Ll+1−(n− l−2)∆, then the following five different cases, depending

on the range of A, are possible:

(n− l− 1)Ll+1 − (n− l)∆ (n− l− 1)Ll+1

(n− l+1)Ll+1 − (n− l− 2)∆ (n− l+1)Ll+1

1
(n−l)(A+Ll+1)

4Ll+1

(A+(n−l+1)Ll+1)
2

1
A(n−l+1)

1
(n−l)(A′+L′

l+1
)

4L′
l+1

(A′+(n−l+1)L′
l+1

)2
1

A′(n−l+1)

A

p(A,Ll+1; l) =

p(A′,L′
l+1; l) =

Index 1⃝ 2⃝ 6⃝ 7⃝ 5⃝

Next, we proceed to analyze the seven cases identified above:

1⃝ A≤ (n− l− 1)Ll+1 − (n− l)∆.

p(A′,L′
l+1; l) =

1

(n− l)(A′ +L′
l+1)

=
1

(n− l)(A+∆+Ll+1 −∆)

=
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l).

2⃝ (n− l− 1)Ll+1 − (n− l)∆<A≤min{(n− l− 1)Ll+1, (n− l+1)Ll+1 − (n− l− 2)∆}.

p(A′,L′
l+1; l) =

4L′
l+1

(A′ +(n− l+1)L′
l+1)

2
=

4(Ll+1 −∆)

(A+Ll+1 +(n− l)(Ll+1 −∆))2

≤ 4(Ll+1 −∆)

4(A+Ll+1)(n− l)(Ll+1 −∆)
=

1

(A+Ll+1)(n− l)
= p(A,Ll+1; l).

3⃝ (n− l− 1)Ll+1 <A≤ (n− l+1)Ll+1 − (n− l− 2)∆.

p(A′,L′
l+1; l) =

4L′
l+1

(A′ +(n− l+1)L′
l+1)

2
=

4(Ll+1 −∆)

(A+(n− l+1)Ll+1 − (n− l)∆)2
.
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(A+(n− l+1)Ll+1 − (n− l)∆)2Ll+1

=(A+(n− l+1)Ll+1)
2Ll+1 +(n− l)2∆2Ll+1 − 2∆(A+(n− l+1)Ll+1)(n− l)Ll+1

+∆(A+(n− l+1)Ll+1)
2 +(n− l)2L2

l+1∆−∆(A+(n− l+1)Ll+1)
2 − (n− l)2L2

l+1∆

=∆(A+Ll+1)
2 − (n− l)2∆Ll+1(Ll+1 −∆)+ (A+(n− l+1)Ll+1)

2(Ll+1 −∆)

≥∆2(n− l)2Ll+1 +(A+(n− l+1)Ll+1)
2(Ll+1 −∆)

≥(A+(n− l+1)Ll+1)
2(Ll+1 −∆).

Then

p(A′,L′
l+1; l)≤

4(Ll+1 −∆)Ll+1

(A+(n− l+1)Ll+1)2(Ll+1 −∆)
=

4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l).

4⃝ (n− l+ 1)Ll+1 − (n− l− 2)∆<A≤ (n− l+ 1)Ll+1. From the corresponding diagram of this
case, we can observe (n− l− 1)Ll+1 ≤ (n− l+1)Ll+1 − (n− l− 2)∆⇒ (n− l− 2)∆≤ 2Ll+1.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
=

1

(A+∆)(n− l+1)

=
1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

.

According to the range of A in this case, we have

(A− (n− l+1)Ll+1)
2

4Ll+1

<
(n− l− 2)2∆2

4Ll+1

≤ (n− l− 2)∆

2
,

⇒∆(n− l+1)− (A− (n− l+1)Ll+1)
2

4Ll+1

>∆(n− l+1)− (n− l− 2)∆

2
=

∆

2
(n− l+4)≥ 0.

p(A′,L′
l+1; l) =

1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

<
1

(A+(n−l+1)Ll+1)
2

4Ll+1

=
4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l).

5⃝ A> (n− l+1)Ll+1.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
<

1

A(n− l+1)
= p(A,Ll+1; l).

6⃝ (n− l+1)Ll+1 − (n− l− 2)∆<A≤ (n− l− 1)Ll+1.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
=

1

(A+∆)(n− l+1)

=
1

(A+Ll+1)(n− l)+A+Ll+1 − (n− l+1)(Ll+1 −∆)

<
1

(A+Ll+1)(n− l)+ (n− l+2)Ll+1 − (n− l− 2)∆− (n− l+1)(Ll+1 −∆)

=
1

(A+Ll+1)(n− l)+Ll+1 +3∆

<
1

(A+Ll+1)(n− l)
= p(A,Ll+1; l).
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7⃝ (n − l − 1)Ll+1 < A ≤ (n − l + 1)Ll+1. From the corresponding diagram of this case, we can
observe (n− l+1)Ll+1 − (n− l− 2)∆< (n− l− 1)Ll+1 ⇒ 2Ll+1 < (n− l− 2)∆.

p(A′,L′
l+1; l) =

1

A′(n− l+1)
=

1

(A+∆)(n− l+1)

=
1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

.

According to the range of A in this case, we have

(A− (n− l+1)Ll+1)
2

4Ll+1

<
(2Ll+1)

2

4Ll+1

=Ll+1 <
(n− l− 2)∆

2
,

⇒∆(n− l+1)− (A− (n− l+1)Ll+1)
2

4Ll+1

>∆(n− l+1)− (n− l− 2)∆

2
=

∆

2
(n− l+4)≥ 0.

p(A′,L′
l+1; l) =

1

∆(n− l+1)+
(A+(n−l+1)Ll+1)

2

4Ll+1
− (A−(n−l+1)Ll+1)

2

4Ll+1

<
1

(A+(n−l+1)Ll+1)
2

4Ll+1

=
4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l).

Thus, in each of the cases, we have p(A′,L′
l+1; l)≤ p(A,Ll+1; l), and, actually, in four of the cases,

p(A′,L′
l+1; l)< p(A,Ll+1; l), and the proof of Claim 17 is complete. ■

Claim 18 Let l∗ denote an optimal value of l. If SM
1 ̸=∅, l∗ =maxSM

1 , otherwise l∗ =minSM
2 .

Proof. By Claim 17, L1 ≥ L2 ≥ · · · ≥ Ln, and recall that SM
0 = {l ∈ N+ :

∑l

i=1Li ≤ (n− l −

1)Ll+1}, SM
1 = {l ∈N+ : (n− l− 1)Ll+1 <

∑l

i=1Li ≤ (n− l+1)Ll+1}, SM
2 = {l ∈N+ :

∑l

i=1Li > (n−

l+1)Ll+1}. Thus, the values of the boundary points defining SM
0 , SM

1 , SM
2 , i.e., (n− l− 1)Ll+1, (n−

l+1)Ll+1, decrease as l increases, while
∑l

i=1Li increases as l increases. We conclude that if l ∈ SM
0 ,

then l + 1 could belong to SM
0 , SM

1 or SM
2 ; if l ∈ SM

1 , then l + 1 could belong to SM
1 or SM

2 , and
if l ∈ SM

2 , then l+ 1 must belong to SM
2 . Furthermore, for any l0 ∈ SM

0 , l1 ∈ SM
1 , l2 ∈ SM

2 , we have
l0 < l1 < l2.

To prove Claim 18, we consider the following cases:
Case 1: If l ∈ SM

0 , then we show that p(
∑l

i=1Li,Ll+1; l) ≥ p(
∑l+1

i=1Li,Ll+2; l + 1), regardless of
which set l+1 belongs to.

Case 2: If l ∈ SM
1 , then we show that p(

∑l

i=1Li,Ll+1; l)> p(
∑l+1

i=1Li,Ll+2; l+1) when l+1∈ SM
1 ,

and p(
∑l

i=1Li,Ll+1; l)≤ p(
∑l+1

i=1Li,Ll+2; l+1) when l+1∈ SM
2 .

Case 3: If l ∈ SM
2 , then l+1∈ SM

2 , and we show that p(
∑l

i=1Li,Ll+1; l)< p(
∑l+1

i=1Li,Ll+2; l+1).
Clearly, if we prove the assertions in the above three cases, then l∗ =maxSM

1 , if SM
1 exists, and

l∗ =minSM
2 , otherwise.

Case 1: l ∈ SM
0 .
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If l+1∈ SM
0 , we have A+Ll+1 ≤ (n− l− 2)Ll+2,

p(A+Ll+1,Ll+2; l+1) =
1

(n− l− 1)(A+Ll+1 +Ll+2)

=
1

(n− l)(A+Ll+1)+ (n− l− 1)Ll+2 −A−Ll+1

<
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l);

if l+1∈ SM
1 ,

p(A+Ll+1,Ll+2; l+1) =
4Ll+2

(A+Ll+1 +(n− l)Ll+2)2

≤ 4Ll+2

4(A+Ll+1)(n− l)Ll+2

=
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l);

if l+1∈ SM
2 ,

p(A+Ll+1,Ll+2; l+1) =
1

(n− l)(A+Ll+1)
= p(A,Ll+1; l).

Case 2: l ∈ SM
1 . Then, we have (n− l)Ll+1 <A+Ll+1 ≤ (n− l+2)Ll+1.

If l+1∈ SM
1 ,

p(A+Ll+1,Ll+2; l+1) =
4Ll+2

(A+Ll+1 +(n− l)Ll+2)2
=

4Ll+2Ll+1

Ll+1(A+Ll+1 +(n− l)Ll+2)2
,

Ll+1(A+Ll+1 +(n− l)Ll+2)
2 =Ll+1((A+Ll+1)

2 +2(n− l)Ll+2(A+Ll+1)+ (n− l)2L2
l+2)

=Ll+1((A+Ll+1)
2 +(n− l)2L2

l+1)+ 2(n− l)Ll+2Ll+1(A+Ll+1)

+Ll+2((A+Ll+1)
2 +(n− l)2L2

l+1)−Ll+2((A+Ll+1)
2 +(n− l)2L2

l+1)

=Ll+2((A+Ll+1)
2 +(n− l)2L2

l+1)+ 2(n− l)Ll+2Ll+1(A+Ll+1)

+ (Ll+1 −Ll+2)((A+Ll+1)
2 − (n− l)2Ll+1Ll+2)

>Ll+2(A+(n− l+1)Ll+1)
2 +(Ll+1 −Ll+2)((n− l)2L2

l+1 − (n− l)2Ll+1Ll+2)

=Ll+2(A+(n− l+1)Ll+1)
2 +(Ll+1 −Ll+2)

2(n− l)2Ll+1

≥Ll+2(A+(n− l+1)Ll+1)
2,

p(A+Ll+1,Ll+2; l+1) =
4Ll+2Ll+1

Ll+1(A+Ll+1 +(n− l)Ll+2)2

<
4Ll+1

(A+(n− l+1)Ll+1)2
= p(A,Ll+1; l);

if l+1∈ SM
2 ,

p(A+Ll+1,Ll+2; l+1) =
1

(n− l)(A+Ll+1)
=

4Ll+1

4Ll+1(A+Ll+1)(n− l)

≥ 4Ll+1

(A+Ll+1 +(n− l)Ll+1)2
= p(A,Ll+1; l).
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Case 3: l ∈ SM
2 . Then, l+1∈ SM

2 ,A> (n− l+1)Ll+1, and we have,

p(A+Ll+1,Ll+2; l+1) =
1

(A+Ll+1)(n− l)
=

1

A(n− l+1)+Ll+1(n− l)−A

>
1

A(n− l+1)
= p(A,Ll+1; l).

■

EC.9. Proof of Corollary 2
Corollary 2 (a) For L1 =L2 = · · ·=Ln, our upper bound reduces to the BFT bound for the case

of equal maximum achievable utilities, i.e.,

UB(n,L;MMF ) = 1− 4n

(n+1)2
.

(b) For L1 = L2 = · · ·= L⌊n/2⌋+1 ≥ L⌊n/2⌋+2 ≥ · · · ≥ Ln, our upper bound reduces to the BFT bound
for the case of unequal maximum achievable utilities, i.e.,

UB(n,L;MMF ) = 1−
4
∑n

i=1Li

(n+1)2L1

.

Proof.
(a) Denote L := L1 = L2 = · · ·= Ln. We have SM

1 = {l ∈ N+ | (n− l− 1)Ll+1 <
∑l

i=1Li ≤ (n− l+

1)Ll+1}= {l ∈N+ : (n− 1)/2< l≤ (n+1)/2} ̸=∅. Then by Theorem 3, the upper bound is

UB(n,L;MMF ) = 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
= 1− 4nL

2

(n+1)2L
2 = 1− 4n

(n+1)2
,

which coincides with the BFT bound for the price of max-min fairness when all maximum
achievable utilities are equal (BFT 2011).

(b) We separately consider two cases: n odd and n even.
(1) If n is odd, let L1 = L2 = · · · = L(n+1)/2. Then, by Theorem 3, if L(n+3)/2 = L1, we have

l∗ =maxSM
1 = (n+1)/2 and the upper bound is

UB(n,L;MMF ) = 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
= 1−

4
∑n

i=1Li

(n+1)2L1

;

if L(n+3)/2 <L1, we have SM
1 =∅, l∗ =minSM

2 = (n+1)/2, and the upper bound is

UB(n,L;MMF ) = 1−
∑n

i=1Li∑l∗

i=1Li(n− l∗ +1)
= 1−

4
∑n

i=1Li

(n+1)2L1

,

which coincides with the BFT bound. 2 The BFT bound is verified in an example where n

is odd and L1 = L2 = · · ·= L(n+1)/2 ≥ 1 and L(n+3)/2 = L(n+5)/2 = · · ·= Ln = 1, which is a
stronger condition than our setting.
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(2) If n is even, we let L1 =L2 = · · ·=Ln/2+1. Then by Theorem 3, we have l∗ =maxSM
1 = n/2,

and the upper bound is

UB(n,L;MMF ) = 1−
4Ll∗+1

∑n

i=1Li

(
∑l∗

i=1Li +(n− l∗ +1)Ll∗+1)2
= 1−

4
∑n

i=1Li

(n+1)2L1

,

which coincides with the BFT bound.
■

Endnotes
2. Our notation differs from that in BFT (2011): namely, L1 = maxj∈{1,...,n} u

∗
j , and

∑n

i=1Li =∑n

i=1 u
∗
j .
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