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Introduction 

The applications of Geographic Information Systems/Science (GIS) have been instrumental in 

allowing researchers to better map, analyze, and understand coastal processes and environments. 

However, due to the dynamic nature and complexity of coastal environments, it creates a 

challenge in the applications of GIS in these systems as there are many uncertainties such as lack 

of data, and the lack of understanding of different coastal and marine systems (Mosadeghi, R et 

al, 2013).  

One of the most common and widely used data for coastal GIS applications is remote sensing 

data, in particular satellite imagery. Many studies such as coastal land-use planning (Mosadeghi, 

R et al, 2013), shoreline change assessment (El-Hadidy, S. M.,2020 and Louati, M., et al. 2015), 

coastal vulnerability studies (Beluru Jana, A., & Hegde, A. V.,2016), coastal algae bloom 

modelling (Qin, R., & Lin, L.,2019), as well as estimating coastal turbidity using MODIS images 

(Chen, S. et al. 2015) are good examples of coastal studies that relies on satellite imagery for 

their analysis.  

This paper uses a Normalized Difference Water Index (NDWI) method for coastline extraction 

as an example to showcase a type of GIS application in a coastal environment and the 

uncertainties that comes along with this methodology. In addition, this paper will also introduce 

other types of GIS applications in coastal and marine environments and possible solutions to 

address the uncertainties that comes with the respective methodologies. 

Coastline Extraction Using Landsat-8 

NDWI is a simple yet effective method in delineating between land and (sea)water surfaces. It 

uses the principle known as band ratioing, due to the differences in reflectance of certain 

wavelengths for land and water surfaces (El-Hadidy, S. M.,2020 and Louati, M., et al. 2015). 

Near-Infrared (NIR) wavebands are highly absorbed by water and strongly reflected by 

vegetation and soil, which is why we can use the different characteristic of water and land to 



classify the two surfaces using the NDWI method (El-Hadidy, S. M.,2020 and Louati, M., et al. 

2015). In this example of coastline extraction, we will mainly utilize band 3 (Green) and band 5 

(NIR) of Landsat-8 data to calculate for the NDWI. 

The detailed information of each band and their range of wavelengths for Landsat-8 is shown in 

Figure 1 below.     

  

Figure 1 Landsat-8 band spectrum table 

The ArcGIS software provides many tools and APIs that makes analysis and data extraction time 

and cost efficient, taking reference from the ArcGIS developer website1. Free Landsat-8 

multispectral satellite images are retrieved from the ArcGIS online portal, together with a 20km 

coastal buffer polygon feature of USA coastlines which will be used to define the area of interest 

for the study (New Orleans).  

The Landsat-8 tiles were first filtered by date of acquisition and percentage of cloud cover and 

ordered by cloud cover from lowest to highest to obtain the best satellite image for analysis 

(minimum cloud cover). The NIR (Figure 2) and Green (Figure 3) band raster objects were 

extracted using the extract_band tool and computed for the NDWI using the raster calculator 

tool. The NDWI raster output (Figure 4) shows that pixel value closer to -1 (black) representing 

 
1 https://developers.arcgis.com/python/sample-notebooks/coastline-extraction-usa-landsat8-

multispectral-imagery/ 



water and pixel value closer to 1 (white) representing land (El-Hadidy, S. M.,2020). The NDWI 

is calculated as follows: 

NDWI = (NIR – G) / (NIR + G)  

*Where NIR refers to Near Infrared band and G refers to Green band. 

We can clearly see the difference between land and (sea)water surfaces after the NDWI method 

was applied.  

 

Figure 2 NIR band raster 

 

Figure 3 Green band raster 



 

Figure 4 NDWI raster output 

After the NDWI raster is produced, it can then be clipped to the AOI polygon. Thereafter, it is 

converted into a polygon feature using ArcGIS convert raster to feature tool. Lastly, the coastline 

polygon feature is converted into polyline feature using Arcpy polygon to line tool. And the 

extracted coastline can be added to a basemap for visualization, as shown in Figure 5.  

 

Figure 5 Extracted Coastline example 

Although the method discussed is a time and cost-effective way of extracting coastline features 

from satellite images, it does include a couple of uncertainties. Firstly, all satellite images have a 



defined spatial resolution, in this case the Landsat-8 dataset has a spatial resolution of 30m. This 

assumes spatial uniformity within the spatial grid of 30m by 30m, and types of surfaces and 

features have the same spectral reflectance characteristics within this gird. This is acceptable for 

large areas that far exceeds the spatial resolution, however, for smaller study areas and features, 

this method might not be comprehensive. 

Georeferencing of the satellite images as well as the variable nature of shoreline position due to 

its dynamic environment and processes (e.g., coastal erosion, and sedimentation) are other 

examples of uncertainties to consider as well (Louati, M., et al.2015). It is important to consider 

seasonal and tidal effects on beach profiles at different study areas, as the shoreline profile might 

have different fluctuation ranges depending on the location of the study area. If the fluctuation of 

the shoreline profile exceeds the spatial resolution of the satellite image used, it will contribute to 

the spatial uncertainty of the analysis (Louati, M., et al.2015). Georeferencing errors should be 

accounted for and considered in-addition to the extent of shoreline shift by calculating the Root 

Mean Squared Error (RMSE) of the georeferencing errors. It is important to consider the degree 

of error that the georeferencing process introduces to the study. 

To address the issues above, Liu, Y. et al. (2017) proposed to increase the accuracy of coastline 

extraction using downscaling and pansharpening methods. The study concludes that the 

integration of downscaled Panchromatic (PAN) band from Landsat-8-Oli and the pansharpened 

Multispectral Images (30m by 30m) produces the best results and accuracy for coastline 

extraction. However, the study also mentions that this introduces its own uncertainties. For 

example, the downscaling process introduces uncertainty by using spatial interpolation methods 

(Liu, Y. et al. 2017). Pansharpening algorithms also introduces spectral distortions, which makes 

it more difficult to distinguish between water and land pixels when calculating for water index 

(Liu, Y. et al. 2017). These are uncertainties that we must consider if we are incorporating these 

methods into our analysis. 

Estimating Coastal Turbidity using MODIS  

Moderate Resolution Imaging Spectroradiometer (MODIS) data is useful for monitoring coastal 

turbidity and sediment movement due to its high temporal resolution (daily) as well as large 

number of spectral bands (36) to work with unlike Landsat. Studies have shown that the 

conversion of MODIS images to Total Suspended Solids (TSS) in coastal waters is an effective 



and cheap method to monitor or model turbidity in coastal environments (Chen, S. et al. 2015). 

The conversion of MODIS reflectance to TSS uses an algorithm which relies on the reflectance 

characteristics of suspended solids in water (Chen, S. et al. 2015). The converted TSS raster 

images can then be validated using water samples collected along the coast of the study area, or 

from Acoustic Doppler Current Profiler (ADCP) monitoring stations which measures TSS from 

backscatter readings in the water.  

However, one downside to MODIS images is its spatial resolution, which is at 250m. This makes 

it difficult for study areas which have very complex coastal profile. There is greater uncertainty 

for MODIS as compared to Landsat based on its spatial resolution. Like the Landsat coastline 

extraction example above, this method requires georeferencing of the MODIS satellite images as 

well, which introduces the same type of spatial uncertainty due to georeferencing errors. This 

method introduces a lot of uncertainties especially for waters near the coast. The converted TSS 

near the coast often results in higher concentrations, mostly due to shallow water effect as the 

zone is more susceptible to processes like resuspension of sediment, mixing of water column due 

to waves, etc. (Chen, S. et al. 2015) For study areas with a short and complicated coastline, this 

poses as an issue due to the coupling effect of the large spatial resolution of MODIS and the 

complexity of the coastal environment. 

LIDAR Land and Water Classification  

Lidar is a great alternative to satellite images as it produces higher resolution data with much 

more accurate details by using a 3D point cloud system. Airborne Multispectral Lidar data can be 

used to conduct different types of classification analysis, for example water and land in different 

coastal environments (Shaker, A et al. 2019). Lidar data can account for the georeferencing 

uncertainties and errors in the satellite image approach, due to its direct geo-referencing 

technique (Shaker, A et al. 2019). This is particularly useful and addresses the uncertainty issues 

with traditional georeferencing techniques as mentioned above. Being 3D data, Lidar also 

provides an added advantage over multispectral satellite data as studies can make use of the 3D 

point cloud to model sedimentation and erosion based on changes in elevation in a coastal 

environment (Song, D. et al. 2013).  

Although Lidar data provides high accuracy and resolution data, Lidar data is not as easily 

accessible (often not free) as compared to multispectral satellite data. Lidar being a newer 



technology also means that there is less historical data to utilize. This makes it difficult for 

certain types of analysis which requires historical data such as the studying of coastline changes 

over long periods of time (decades). Lidar data is also known to have its own uncertainties, such 

as vertical uncertainty in salt marsh environments using vegetation-induced Lidar (Rogers, J. N. 

et al. 2016). Seasonality, vegetation, interpolation, and filtering methods all contributes to the 

uncertainty in elevation from Lidar data in this type of coastal environment (Rogers, J. N. et al. 

2016). 

Uncertainties in Coastal Land use Planning  

In addition to the uncertainties that comes with Multispectral satellite or Lidar data analysis, a 

case study by Mosadeghi, R et al. (2013) shows that there are epistemic and stochastic 

uncertainties in coastal land-use planning studies, and it is important to analyze uncertainty and 

sensitivity. Epistemic uncertainty refers to the imperfect knowledge on the subject matter, and 

Stochastic uncertainty refers to the randomness of natural, cultural, social dynamics (Mosadeghi, 

R et al.2013). Although the examples mentioned above provides some solutions to deal with 

epistemic uncertainty by increase accuracy of data or reducing error, it does not address the 

chaotic nature of natural processes such as climate change or increase in frequency and severity 

of storms. 

The case study conducted a sensitivity analysis to identify the sensitivity of the different model 

outputs to the uncertainties to the model inputs (Mosadeghi, R et al.2013). The study suggest that 

uncertainty did not only affect the selection of the best option in a decision-making model but 

can also affect the spatial extent of the preferred option (Mosadeghi, R et al.2013). It is certain 

that not all uncertainties can be accounted for due to the complex and dynamic nature of natural 

systems, but the study recommends that uncertainty analysis should be conducted in these types 

of land-use planning exercises to have a better understanding of the sensitivity of the decisions 

derived (Mosadeghi, R et al.2013).  

Conclusion 

In conclusion, this paper highlights the importance and effectiveness of different GIS 

applications in different coastal environments. Multispectral satellite images are cheap (often 

free) data sources and provides a wide range of different applications and methodologies that can 



be applied. However, it does come with its own set of uncertainties to consider and account for. 

The most common spatial uncertainties associated with multispectral satellite data is the error in 

georeferencing, the spatial resolution of the data, as well as any process of interpolation and 

filtering of the satellite data.  

Lidar data is relatively new as compared to multispectral satellite data which offers a lot of 

potential to address the uncertainties associated with the multispectral satellite image approach. 

However, Lidar data is not easily accessible and if often not free. There is limited historical Lidar 

data which limits the possibility of long-term analysis is questionable. Despite being 3D data, 

Lidar has vertical uncertainty in certain environments (e.g., vegetated salt marsh).  

There are different types of uncertainties to consider (Epistemic and Stochastic) in coastal 

studies. Although GIS applications can help address issues with Epistemic uncertainty by either 

improving data accuracy and availability, or better understanding of coastal environments, it 

does not address the Stochastic uncertainties which refers to the dynamic and complex nature of 

natural environments or processes. 
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