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City of Buffalo, New York

e Second largest city in the State of New York
e Population: ~ 250k

e High poverty rate (~29% in 2011), high
unemployment rate (5.9% in 2015)

e Known for high violent crime rate
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Dataset




Crime Incident Dataset

Source: Department of Police, City of
Buffalo, New York

Date Range: 2009 - 2018

Other attributes:

Crime Incidents Over Time
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Crime type
Location R v AT

Count of Case Numbe
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2008 2009 2010 2011 2012 2013 2014 2015 2016

Week of Incident Datetime #

2017




311 Call Data

311: Municipal service hotline
Date range: 2008 - 2020

Residents/businesses/visitors make calls to City
government request for services or
information/provide feedback on municipal
issues

Each call log comes with:

o  Service number/Unique ID

Issue description/category

311 Call over time

o
o  Case open/close time
o Location of issue
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Neighbourhood Metrics

- Socioeconomic information of each

neighbourhood, including:

Household structure
Education level

Car ownership

House type

Racial group breakdown
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Census data

Demographic information

- Spatial unit: census block
- Population breakdown by racial groups
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Data Preprocessing




Crime Incident Data & 311 Call Log Data

Incident Datetime
Incident_Type lonthofIn..| 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
MANSLAUGHTER i

Both are point dataset pomicide

Digitisation + geocoding
Clean up crime type / call reason and category

Classify crime incident into Part I Crimes and RO

Others
Spatial Clip to study area
Part I Crimes include the violent crimes of:

O

o O O O

Homicide “Manslaughter” and “Homicide” not used after 2010 —
Rape renamed all to “Homicide” for standardization
Robbery Crime Incidents By Year

Aggravated Assault

and the property crimes of: Burglary, Larceny-Theft,
Motor Vehicle Theft

2010 2011 2012 20

- .
0 . . . .
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Neighbourhood and Census Block Data

e Additional indices calculated
o Crime count within area
o Crime rate within area (count/area)
o  Call count within area
o Racial Diversity Index: Probability of
getting two person from the same racial

group



Overview of GIS Application in Crime Pattern Analysis

Mapping & Visualisation
Analysis Technology

Space-Time Correlation Investigative

Pattern . :
Mini Modelling Analysis Police
e Density Ining ® Environmental e Incident Track

e Clustering Space-Time Factors Path/Incident Depl i Suspects
e 80-20 Hotspots ® Socioeconomi Sequence eploymen
Repeat/Near-

Repeat

Spatial

Analysis

Force

Principles ¢ Factors




Clustering

Uncovering the scale of spatial processes
shaping crime locations




Understanding clustering of crimes at different spatial scale

Features might display a Clustered or Dispersed pattern based on the spatial resolution that we look at

Different types of spatial scales:

E.g Census Block > Street > Neighbourhood > Municipal




Understanding clustering of crimes at different spatial scale

ArcGIS tool: Multi-Distance Spatial Clustering Analysis (Ripley's K Function)
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C:\W=ers\ZA PC\Desktop\Buffalo Data'Buffalo_Data.gdb\Crime

Output Table

| C:\W=sers\ZA PC\DocumentsYArcGIS\Default. gdb\Crime_MultiDistanceSpatialCl

Mumber of Distance Bands

Compute Confidence Envelope (optional)

| 9_PERMUTATIONS
Digplay Results Graphically {optional)

Weight Field {optional)

Beginning Distance (optional)

Distance Increment {optional)

Boundary Correction Method {optional)

| RIPLEY EDGE_CORRECTION FORMULA
Study Area Method (optional)

| USER_PROVIDED _STUDY _AREA_FEATURE_CLASS
Study Area Feature Class (optional)

| C:\Users\ZA PC\Desktop\Buffalo Data\Buffalo_Data.gdb\Boundary
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<« Hide Help

Multi-Distance Spatial Cluster Analysis A
(Ripleys K Function)

Determines whether features, or the values
associated with features, exhibit statistically
significant clustering or dispersion over a range of
distances.
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Understanding clustering of crimes at different spatial scale

Distance
Band
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Distinct Patterns of Clustering Exhibited by Different Crime
Types

Felony Crimes

Homicide

Property Crimes

Burglary Robbery
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Possible explanations and implications
e  Spatial processes operate at different scales: Different motivations and external
factors that may encourage/discourage such crimes
e The need for differentiated data treatment for subsequent analysis



Spatiotemporal

H 0 tS p 0 t Everything happens somewhere and

occurs at some point in time

Assisting resource allocation and police force
deployment




Space-Time Gube Analysis

e Generate statistical hot and cold spots
within a set study area

e Identify the change and predict where the
crime pattern may appear

A LOCATION A LOCATION
LOCATIONS OVER TIME WITH DATA

O

Use the Mann-Kendall Trend Test to analyse

trend
o The Mann-Kendell statistic is a rank
correlation analysis for the bin count or
value and their time sequence.
o Analyzes difference in signs between earlier
and later data points.
m X1<X2—+]
m XI>X2—>-1
m XI=X2-0

(Kendall & Gibbons, 1990)



Distance and Time Interval

The Distance Interval The Time Step Interval
e Determines the size used to aggregate the e Specifies the time span for each bin
data points. e Aggregate points using attribute “date”

e Fishnet/Hexagon Grid




Emerging Hot Spot Analysis

Create Space Time Cube by
Aggregating Points

e Generate netCDF (Network Common
Data Form) to store summarized point

data in the space-time bins.

e Parameters:

(@)

(@)

Input: Crime Type

Output: Space Time Cube in
netCDF

Time Field: Date

Time Step Interval: 1 Year
Aggregation Shape Type: Hexagon
Grid

Distance Interval: 500m

Create Space
M Time Cube By .
BURGLARY Y Aggregating i stc_burglary.nc
Points

|

Emerging Hot o~
Spot Analysis A CTEELLIGETY

Emerging Hot Spot Analysis

e Spot trends in the clustering of point densities
or values in a space-time cube

e Parameters:
o Input: Space Time Cube of Crime Incident
o Output: Hot Spot & Cold Spot 2D Map
o Analysis Var: Count
o Neighborhood Distance: 500m



Hot Spot Patterns

New Hot Spot Intensifying Hot Spot

The most recent time step interval is hot for the first At least 90% of the time step intervals are hot, and
time. becoming hotter over time.

Consecutive Hot Spot Persistent Hot Spot

A single uninterrupted run of hot time step intervals, At least 90% of the time step intervals are hot, with no
comprised of less than 90% of all intervals. trend up or down.
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Emerging Hot Spot Analysis
for Each Crime Type

== New Hot Spot
B Consecutive Hot Spot

e Distance interval: 500m

e e e e .
', “ ™ Intensifying Hot Spot
e e _ el B Persistent Hot Spot e Time Interval: 1 year
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Modelling

Establishing correlation with environmental
and socioeconomic factors that might
encourage Part I Crimes




Classifying 311 Call Reason/Type

THE BROKEN WINDOW THEORY
e Correlation between disorder and incivility, and criminal
activities

Konkel, Ratkowski & Tapp (2019) tested the hypothesis on
crime incidents in Milwaukee, Wisconsin. A few categories of
“civil disorder” behaviours were devised:

e Social Disorder: people loitering, drinking in public,
buying/selling drugs, gambling, physical fights

e Public Space Disorder: graffiti, trash/litter, broken glass
on the street/sidewalk, abandoned cars

e Housing Disorder: houses with falling/detached
siding/gutters, houses with chipping/peeling paint,
parcels with unkempt/overgrown lawns etc.

311 Call Reason/Type manually classified into:

e  Public Space Disorder
e  Housing Disorder
e  Social Disorder

CallType

Reason
ADA

Adjudication - Ordinance Violation

Administration
Animal Shelter

Assessment
Assessment & Taxation

BFD

BMHA
Buffalo Sewer Authority

Buffalo Water Authority

Buildings Division

Citizen Services - Good Neighbor
Citizen Services - Graffiti




Exploratory Regression

What might explain Part I Crimes at Neighbourhood Scale?

A data mining tool that:
e  Receives user-specified OLS diagnostics

e  Tests all combinations of explanatory variables to fit OLS
regression model

e  Generates a report of model suitability

Exploratory Regression is suitable when working with a
large number of explanatory variables.

“Best” OLS model to explain PartI Crime in

neighbourhoods 77z,

0.72 -429.0

- Employment Rate (+)

- Poverty Rate (+)

- % Age >65 (-)

- % Renter Tenure (+)

- Median value for Rent-burdened renters (+)
- % Single-person household (+)

- Diversity Index (+)

- Social Disorder (-)

- Public Space Disorder (+)

Assess Explanatory

Multicollinearity

Variable

v Search Criteria

Maximum Number of
Explanatory Variables

Minimum Number of

Explanatory Variables

Minimum Acceptable Adj R

Squared

Maximum Coefficient p

value Cutoff

Maximum VIF Value Cutoff

Minimum Acceptable
Jarque Bera p value

Minimum Acceptable

Spatial Autocorrelation p

value

Min Jarque-Bera p-value
Min Spatial Autocorrelation p-value

1odel

EMPLOYMENT_RATE*** +POVERTY_RATE***
6 22 4,86 57 +EMPLOYMENT_RATE*** +POVERTY_RATE***
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371450

@.1@ 371450
@.1e 12

194580
12

100.00

9.86 ©.40 2.72 0.60 +EMPLOYMENT_RATE*** +POVERTY_RATE**

Summary of Ve

PERCENT_BLACK
DIVERSITYINDEX
MEDIAN_VALUE_FOR_RENT_BURDENED_RENTERS
PERCENT_SINGLE_PERSON_HOUSEHOLDS
PERCENT_AGE_65__

COUNTGRAFFITT
PERCENT_HIGH_SCHOOL_EDUCATION

AGE__ 24
PERCENT_20_OR_MORE_UNIT_STRUCTURE
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COUNTHSDISORDER
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.18
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~
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Ordinary Least Square (OLS) Regression

Multicollinearity
What might explain Part I Crimes at Neighbourhood Scale?

Establish a global OLS regression model with explanatory variables recommended Adjust Model Perform OLS
Parameters Regression

by Explanatory Regression:

Employment Rate (*)

Poverty Rate (*) Assess Model
% Age > 65 (*) Performance &
% Rental property (*) Variable Covariance

Median value of rent-burdened renters (*) Assess Final Model
% Single person household Performance
Diversity Index (*)

Social Disorder (*)

Public Space Disorder (*)

Number of Observations: 35 Akaike's Information Criterion (AlCc) [d] -429.331248
Multiple R-Squared [d]: 0.795686 Adjusted R-Squared [d]: 0.722133
Joint F-Statistic [e]: 10.817857 Prob{>F), {9,25) degrees of freedom: 0.000001*
Joint Wald Statistic [e]: 247.842448 Prob{=chi-squared), (9) degrees of freedom: 0.000000%

Koenker (BP) Statistic [f]: 10.837608 Prob{=chi-squared), (9) degrees of freedom: 0.287005

Jarque-Bera Statistic [g]: 0.183326 Prob{=chi-squared), (2) degrees of freedom: 0.912413

Results suggest:

Low multicollinearity among explanatory variables

Model performance is relatively good (R2 and adjusted R2 > 0.7)
Stationary relationship

Residues are randomly distributed - non-bias

Results from OLS regression suggest random distribution of residue



Local Bivariate Relationship

What if the relationship changes form spatially?

e  What s the relationship between Burglary Rate and Percentage
Rental Properties?
e s the relationship consistent across the study area?

Bivariate relationship determined by:

e  Assessing the statistical significance of the null hypothesis that
the two variables are independent, based on comparison of S 5 : 0.911438
Joint entropy and sum of individual entropies -

e  Construct random permutations of x & y and and test for local
spatial relationships

e  (lassify the local relationships

Dependent Variable
burglaryRate =

Explanatory Variable
percRental =

Number of Neighbors

30
Number of Permutations 199 ~
Type of Relationship
. : . . - Positive Linear
Entropy (Information Theory): a measure of uncertainty in a variable mpT e
- High uncertainty — high entropy M concave
- High dependency between two variables — low joint entropy [l Convex
- Assessed using power-weighted minimum spanning trees Bl Undcfined Complex

- Not Significant



For discussion

Choosing suitable scales (with suitable segmentation of data)

e  Spatial processes operate in different scales for different phenomenon
e Aggregating the phenomenon - unclear patterns of spatial autocorrelation
(assumption: 1st law of geography)

Correlation =/= Causation: some cautions with Exploratory Regression

e Data mining approach in Exploratory Regression disregards any meaning of the
relationship: an exercise of numbers; overfitting?

e Plausible mechanisms between explanatory variables and dependent variables
should be discussed based on domain knowledge and theories

How do we account for time in spatial analysis, especially in modelling?

e  Step-wise / time intervals?
e How to account for long-term or lagged dependency between variables?



Thank You
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