Geospatial-Temporal Analysis of the COVID-19 Pandemic in Malaysia

Group 1 Chew Zheng Xiong (A0167003R) Lim Zhu An (A0224991X) Shermaine Neo Xuan Min (A0172500W)

Presentation Outline

- Background
- Data Description
- Exploratory Data Analysis
- Exploratory Spatial Data Analysis
- Spatial Data Analysis
- Spatial-Temporal Analysis
- Discussion

Background (1) Governmental Restrictions

Background (2)

Governmental Restrictions in Relation to COVID-19 Cases

Hypothesis:

We hypothesize that the **3rd wave of COVID-19** and **population dynamics** are essential in determining the outbreak of the 4th wave of COVID-19 cases and its spatial distribution over time.

Data Description

Datasets used

Dataset	Source
COVID-19 Data	Ministry of Health, Malaysia
Socioeconomic Data	Department of Statistics, Malaysia
Migration Data	Department of Statistics, Malaysia
Government Response Indices	Oxford COVID-19 Government Response Tracker

Exploratory Data Analysis

Empirical Spatial Mean

Empirical Temporal Mean

Cumulative Sum of Monthly New Case Rate per 100,000

Further temporal analysis based on state

Temporal
Dependence
(Autocorrelation)

	Covid_new_cases	lag_new_cases
Covid_new_cases	1.0000000	0.9882381
lag_new_cases	0.9882381	1.0000000

Correlation coefficient between time (t) and lag measured at time(t-1) of 0.988 shows that there is high positive autocorrelation; I.e. high (low) past numbers of new COVID-19 cases per 100,000 people tend to correlate with higher (lower) present numbers of new COVID-19 cases

Malaysia Domestic Travel Flight Data

4. Exploratory Spatial Data Analysis

States with the highest population density:

- 1. Kuala Lumpur
- 2. Pulau Pinang
- 3. Putrajaya
- 4. Melaka
- 5. Selangor

States with the highest COVID-19 Cases per 100,000

- 1. Labuan
- 2. Kuala Lumpur
- 3. Selangor
- 4. Negeri Sembilan
- 5. Melaka

Spatio-Temporal Visualisation of COVID-19 cases at the district level

Malaysia COVID-19 Cases by District

States with the highest COVID-19 Deaths per 100,000

- 1. Labuan
- 2. Kuala Lumpur
- 3. Selangor
- 4. Negeri Sembilan
- 5. Melaka

Spatio-Temporal Visualisation of COVID-19 deaths at the district level

Malaysia COVID-19 Deaths by District

Spatial Data Analysis

- Moran's I

Spatial Clustering of cases at the national scale

Spatial Clustering of cases at the national scale

Spatial Clustering of cases in Western Malaysia

Spatial Clustering of cases in Western Malaysia

Temporal trend of Global Moran's I

- 6.
 Spatial D
 - **Spatial Data Analysis**
 - Spatial-Autoregression Models

Correlation matrix of chosen predictor variables

Case rate spatial-autoregression results

More minorities = More cases

More males = More cases

Predictor variables	Estimate	Std. Error	z value	p-value
Indians %	7.0894e+01	2.7525e+01	2.5756	0.010007
Others %	1.2891e+03	1.8170e+02	7.0945	1.298e-12
Sex ratio	3.6720e+02	3.2530e+01	11.2878	< 2.2e-16
Gini coefficient	2.2046e+04	6.7802e+03	3.2515	0.001148
Income share %	-4.0484e+02	3.7302e+01	-10.8532	< 2.2e-16
Rel poverty	5.6470e+02	8.4012e+01	6.7217	1.796e-11
Vacc rate	1.0423e-01	4.9812e-03	20.9236	< 2.2e-16

Death rate spatial-autoregression results

Predictor variables	Estimate	Std. Error	z value	p-value
Indians %	-2.2769e+00	1.0535e+00	-2.1614	0.0306677
Old age dependency	8.5925e+00	1.5420e+00	5.5722	2.516e-08
Immigrants	3.4654e-01	1.1510e-01	3.0107	0.0026067
Gini coefficient	-6.9314e+02	1.7429e+02	-3.9769	6.982e-05
Income share %	-1.1359e+00	3.7091e-01	-3.0625	0.0021949
Abs poverty	2.9754e+00	7.0197e-01	4.2387	2.248e-05
Relative poverty	1.2916e+01	2.1267e+00	6.0732	1.254e-09
Vaccination rate	1.3924e-03	2.2198e-04	6.2725	3.552e-10
Bed availability rate	5.5877e-03	7.3157e-04	7.6380	2.198e-14
ICU availability rate	2.3527e-02	6.8924e-03	3.4134	0.0006415

Spatial-Temporal Analysis

- OLS Regression Model

$$y(s_i, t_j) = \beta_0 + \beta_k x(s_i, t_j) + e(s_i, t_j)$$

OLS Regression Model Features – New COVID-19 Cases Model

Independent Variables:

- State Polygon Centroid Coordinates
- Day
- Week
- Month
- Year
- Vaccination Rate per 100,000 population
- COVID-19 Test Rate per 100,000 population

Dependent variable = new COVID-19 cases per 100,000 population

OLS Regression Model Results Summary (Cases)

Vaccination

COVID-19

Testing Rate

Rate

```
Residuals:
   Min
            10 Median
                         30
                                 Max
-61.722 -3.964 -1.079 1.659 237.567
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.283e+04 7.351e+02 -31.051 < 2e-16
            1.484e-01
                     2.688e-02 5.523 3.43e-08
           -3.674e-01 1.044e-01 -3.519 0.000436 ***
day
           -6.460e-02 7.062e-02 -0.915 0.360318
week
           1.041e+00 4.810e-01 2.165 0.030448 *
           -3.887e+00 2.093e+00 -1.857 0.063373 .
month
         1.129e+01 3.639e-01 31.031 < 2e-16 ***
vear
n_vax_r 1.526e-02 7.213e-04 21.155 < 2e-16 ***
n_covtest_r 1.002e-01 2.785e-03 35.999 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 13.95 on 9351 degrees of freedom
Multiple R-squared: 0.518, Adjusted R-squared: 0.5176
F-statistic: 1256 on 8 and 9351 DF, p-value: < 2.2e-16
```

OLS Regression Model Features – Death Model

Independent Variables:

- State Polygon Centroid Coordinates
- Day
- Week
- Month
- Year
- New COVID-19 Cases per 100,000 population
- Vaccination Rate per 100,000 population
- Hospital bed Rate per 100,000 population
- ICU bed Rate per 100,000 population
- COVID-19 Test Rate per 100,000 population

Dependent variable = COVID-19 Deaths per 100,000 population

OLS Regression Model Results Summary (Deaths)

New COVID-19 Cases

Vaccination Rate -

Hospital Bed Rate

ICU Bed Rate -

COVID-19 Test Rate

```
Residuals:
   Min
            10 Median
                           30
                                 Max
-2.2221 -0.0278 0.0049 0.0373 6.0134
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
            2.982e+02 1.557e+01 19.161 < 2e-16 ***
           -3.004e-03 5.441e-04 -5.522 3.44e-08 ***
           -1.213e-03 1.863e-03 -0.651
                                         0.515
           4.664e-04 1.246e-03 0.374 0.708
dav
week
           -8.887e-03 8.489e-03 -1.047 0.295
           2.981e-02 3.694e-02 0.807 0.420
month
           -1.475e-01 7.698e-03 -19.159 < 2e-16
vear
n_covid19_r 1.152e-02 1.904e-04 60.514
                                        < 2e-16
         6.261e-05 1.381e-05 4.534 5.85e-06
n vax r
n_beds_r 2.400e-04 3.773e-05 6.361 2.09e-10
            2.180e-02 1.454e-03 14.996 < 2e-16
n_icu_r
n_covtest_r -3.860e-04
                      5.247e-05
                                -7.357 2.04e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.2461 on 9348 degrees of freedom
Multiple R-squared: 0.4904, Adjusted R-squared: 0.4898
F-statistic: 817.7 on 11 and 9348 DF, p-value: < 2.2e-16
```

Future steps and considerations for Spatio-Temporal Model...

- A key issue to note is that the dependent variable (deaths/cases) is a count and is highly skewed, and the Vaccination, ICU bed, hospital bed data all has no data for earlier portion of the time period in the dataset
- Consider lagged variables, some relationship between covariates might have delayed effect.
- More socio-economic variables might be instrumental in building a more robust model, provided they are important features.

COVID-19 Propagation

Population Density

- Densely populated areas as a catalyst for 3rd and 4th Wave
- Politically linked territories but considerations to be made a smaller scales - district/states
- Aligning with governmental restrictions at the time for analysis - Urban Planning*

Hospital Capacity

- Hospital Bed Space and ICUs as important indicators
- Positive Estimates for Bed Space/ICU predictors in spatial autoregression model and spatiotemporal model
- Spatial Data Accuracy on ICU and Bed space availability

9. Conclusion

- 1. Importance of spatially accurate data for further analysis
- 1. Socio-economic factors such as population density are important factors for consideration
- Local community levels of implementation to enhance adherence to government restrictions