Tag Archives: carbon dioxide

Mitigating Climate Change: Carbon Capture

Climate change is the change of weather and the rise of sea levels on the planet Earth. Climate change is an extremely relevant global issue since it can lead to flooding and extreme weather conditions which can endanger life on earth. As a result, it is of utmost importance to find solutions that can help mitigate the effects of climate change. One of the main causes of climate change is the release of excess carbon dioxide into the atmosphere, due to the burning of fossil fuels.

Image: Climate Change
Source: CC0 Public Domain

A solution to climate change

One solution that scientists have proposed in order to reduce the amount of atmospheric carbon dioxide is to capture carbon dioxide in the air and use the captured carbon dioxide as a source of chemical carbon for other processes. This process is known as “carbon capture and utilization” (CCU). Although the potential benefits of CCU are very promising, changing the carbon dioxide into a different form and using it in other chemical processes has been proven to be difficult, mainly due to the thermodynamic stability of carbon dioxide. Although CCU has gained major traction over the past few years, it will still require a lot of time before it can be used industrially worldwide. Scientists are currently in the process of trying to find the least costly, and most efficient means of capturing carbon emissions to reduce climate change. 

YouTube Preview Image                                                      Video: Carbon Capture Plant in Squamish, BC

Carbon capture methods

One of the carbon capturing methods that has been showing promise in recent scientific studies, is the adsorption of carbon dioxide through the use of solid sorbents. Adsorption is the adhesion or the clinging of gas molecules onto a surface. In this case, the carbon dioxide molecules will stick to the solid surface of the sorbent, which leads to successful carbon capturing. The solid sorbents used in this method can be made of “porous carbonaceous materials, zeolites, alumina, silica, (or) metal-organic frameworks.” Adsorption of carbon dioxide can be categorized into two variations; physical and chemical adsorption. In physical adsorption, the transfer of carbon dioxide into the solid sorbent occurs due to the van der Waals interactions between the sorbent and the carbon dioxide. The issue with these physical sorbents is that they have “poor selectivity for CO2, and low CO2 adsorption capacities.A means of improving both the carbon dioxide selectivity and the carbon dioxide adsorption capacities of these sorbents is by adding basic groups to the sorbent surface, which can strengthen its interactions with the acidic carbon dioxide. These sorbents primarily use alkalis to act as basic groups. In terms of alkali-based sorbents, scientists have been favouring the use of potassium carbonate and sodium carbonate. Although carbon dioxide absorption via solid sorbents is very promising, more scientific work needs to be done to improve the adsorption capabilities of sorbents.

Another carbon capturing method that scientists have been favouring is the separation of carbon dioxide via membranes. These membranes are selectively permeable to carbon dioxide which leads to separation of carbon dioxide from other chemicals.

All in all, the development of these innovative carbon capturing mechanisms is helping to mitigate climate change and scientists are working hard to refine these techniques. 

– Yoshinao Matsubara

Excess carbon dioxide: How can we combat this problem, and why is it problematic for marine organisms?

Did you know that excess carbon dioxide poses a significant problem for marine life? Although CO2 is naturally occurring and acts as an important heat-trapping gas in moderate amounts, human activities have pumped lots of excess CO2 into the atmosphere.

Exhaust fumes from an industrial plant, which includes carbon dioxide (as well as other chemicals). Photo by Damian Bakarcic.

Too much carbon dioxide not only contributes to more extreme weather and global warming, but it also made oceans 30% more acidic since the beginning of the Industrial Revolution.

Today, CO2 makes up 84% of all greenhouse gases from human activity, with around 40 billion tons being produced per year.

Numerous climate scientists, such as climatologist Dr. James Hansen, state that to avoid the impacts of climate change, the levels need to be reduced to at maximum 350 ppm. However, CO2 levels have already exceeded 400 ppm in 2019.

Across the world, many different marine species, such as barnacles, experience the chemical effects of lowered pH levels. This comes in the form of problems with shell formation/ adhesion and lower survival rates, as demonstrated in a laboratory study by the Northeast Coastal Acidification Network.

Ocean acidification has an especially adverse impact for animals that are sensitive to changes in carbonate chemistry. For example, shellfish use carbonate in the ocean to make their protective shell structures. With a low pH, calcium carbonate is in short supply because it will react with acidic solutions.

An infographic depicting the chemistry behind ocean acidification, and why it is harmful for marine life. Source: Climate Commission (RIP)

One remedy involves catalysis. This uses catalysts to convert CO2 into useful goods – fertilizers and plastics. Doing so would convert the polluting waste product into useful molecules, and simultaneously lessen our need to use fossil fuels to generate such products.

A way this can be achieved is with an electrolysis cell, which employs electrical energy to run a non-spontaneous redox (i.e. oxidation-reduction) reaction. A non-spontaneous redox reaction occurs only when an external voltage is applied, whereas a spontaneous one would generate a voltage itself.

On the electrode surface, the CO2 is reduced – meaning the addition of hydrogen, the removal of oxygen, or both (oxidation is the opposite: lose hydrogen/ gain oxygen). Depending on the number of electrons transferred, many different molecules could be produced. The products form in the electrolyte, and move to a separation system.

Catalysis involving carbon dioxide and hydrogen, with a Cu/ZnO catalyst. CO2 is reduced, producing methanol and carbon monoxide. Source: a drawing by myself.

Any unreacted CO2 and the electrolyte are recycled. Tin is a metallic catalyst used to make formic acid via catalysis. More complex molecules can be formed as well, such as the ethanol found in hand sanitizers.

In conclusion, too much carbon dioxide is a significant threat to marine life, and catalysis is one solution that scientists are investigating to recycle CO2. Are there other potential solutions for excess CO2 that you know of?

– Jacqueline (Wai Ting) Chan