Tag Archives: chemistry

Does an Obesity Gene Exist?

Genes play a big role in determining how a person looks including our eye color, hair color, and height, but can your genes also determine your waistline? As of now, 61% of Canadians are overweight or obese and that number is even higher in America, with 66% of its citizens overweight or obese.  While these numbers can be attributed to a more sedentary lifestyle and poor diet, genetics has been shown to be a factor. A study in 1986 found that adopted children’s BMI more closely matched their biological parents than adoptive parents. While environmental factors play a huge role in a person’s weight, the importance of genetics cannot be understated.

One of the first genes to be linked to obesity was the melanocortin-4-receptor gene (MC4R). In 1998 a study found that mutations in MC4R would lead to early-onset obesity in children. However, this mutation is extremely rare, affecting less than 5% of those suffering from obesity leading researchers to search for more common genetic variations. Starting in 2002 scientists began to perform genome-wide association studies (GWAS). Instead of looking at genomes of a few hundred people, scientists could now look at entire DNA sequences of hundreds of thousands of people in order to find links between certain genes and illness.  A GWAS in 2007 led to the discovery that variations in the fat mass and obesity (FTO) gene were associated with higher BMI’s. These variations were much more common with 43% of the population carrying this “risky” allele of the FTO gene.  The study found that individuals with certain variations of this gene were 1.67 times as likely to be obese. Despite this, the FTO gene itself only raised BMI .4 kg/m^2 an amount much too small to lead to the increase in BMI observed (3 kg/M^2). This is why the majority of obesity in the population is caused by many genes, not just one. Since 2006 GWAS has led to the discovery of more than 50 genes associated with obesity.

The discovery of these genes not only can tell us who is predisposed to becoming obese, but who is also more likely to suffer from metabolic diseases associated with obesity like heart disease, stroke, and type 2 diabetes. This video from the University of Michigan explains some of the surprises that came from studying genes related to obesity and how we can use this information to benefit people.

YouTube Preview Image

 

 

However, just discovering these genes isn’t enough. In order to treat these variations, we have to better understand the mechanism of these genes. Recent studies have revealed that variations of the FTO can cause alterations in satiety that people feel, but the exact mechanism of these effects are still largely unknown. For now, proper exercise and nutrition can counter the effects of most of these “fat” genes. In the future, people may be able to find the best way to prevent weight gain based on their genetic makeup. Only time will tell if future discoveries can reverse this obesity epidemic.

 

By Dylan Chambers

“Signs of Life Found in Space?!?” – A Media Misnomer

Whenever I find myself reading through the science headlines of any mainstream news website, it is not uncommon to find an article with a clickbait title like “Signs of Life Found on Venus”. To the average reader, this seems like huge news, as it’s not every day that we discover alien life in our own solar system. But, like many headlines today, this is far from the truth that this scientific discovery is presenting.

An example of not-so-true headlines

An example of a clickbait headline from scitechdaily.com regarding life on Venus

What was actually discovered?

While it is true that recently a team of astronomers from around the globe announced the discovery of a rare molecule called phosphine in the clouds of Venus, this does not mean that life as we know it was found on Venus. This recent discovery showed that in the higher atmosphere of Venus, there were detections of molecules of phosphine at a rate of twenty phosphine molecules per billion molecules in the atmosphere. The reason this is interesting is that phosphine (PH3) is mainly produced on earth by chemical reductions of phosphate in organic matter such as bacteria that have died and are decaying.

This discovery showed that somehow, there are chemical signs of decaying organic matter on Venus despite its harsh acidic atmosphere and high planetary temperatures. Here is a scientist from the Royal Astronomical Society detailing the findings in full:

YouTube Preview Image

What is the media getting wrong?

Even though scientists are extremely excited about this discovery, it’s not because they have definitively found life outside of our planet. Rather, scientists are excited about this discovery because it raises a lot of questions about how phosphine got to where it is on Venus. This is an important scientific discovery because it opens doors to new areas of research that can be done on determining where the phosphine in Venus’ atmosphere comes from.

The fact that there is this huge piece of evidence that goes against what we know regarding phosphine and conditions for life to exist is a huge stepping stone towards learning more about both subjects.

Photo of Venus. Photo Credit: NASA/JPL

So what other explanations are there?

There are lots of alternative explanations for where this phosphine could have come from besides organic life. For example, it’s possible that there is some unknown chemical process occurring on Venus that is creating these phosphine molecules. But even after extensive scientific review, astronomers are still unsure of where these molecules are coming from. So, unfortunately, we will not know the truth about these molecules’ origin until we go out and discover it for ourselves.

Until we have real, solid, observable evidence that the phosphine molecules we are discovering in our solar system (along with any other biomarkers) are actually being created by alien life forms, don’t believe any headlines you see reading “Signs of Life Found In Space!”, as they really should read “Potential Biomarker Molecules Found in the Upper Atmosphere of Venus”!

  • Written by Ryan Reiss, Nov. 2020

Failure to Communicate

Introduction 

Right now communicating science to the general public is more important than ever, and we are failing. Less than 50% of Americans say they would receive a vaccine for COVID-19. This shows the eroding trust that the public has for their once highly esteemed scientist. This is the result of breakdowns in the scientific method that have led to conflicting information being shared with the public.

Mask  Wearing

Perhaps the most notable slip up was the controversy surrounding masks.  While recommended now, it was not until April 3rd, three months into the pandemic, that the CDC began recommending the general public to wear a mask. This was in direct conflict with their earlier statements that only healthcare workers needed masks.  Scientists rushed conclusions that could not be properly verified before being shared with the public. The public demanded answers from a process that can take years, in a matter of weeks. By caving in to public demand, the CDC and World Health Organization were inevitably set up for failure as the pandemic progressed and more data was collected leading to new developments. Tweets from the U.S surgeon general like this

Tweet by Surgeon General Feb 29

only serve to fuel distrust when compared with tweets he makes a few months later.

Tweet by Surgeon General June 14

 

I do not fault scientists for changing their opinion as new data became available, but I do fault (some) scientists for stating their answers with confidence when the proper research and review had not been conducted.

 

Treatment

Image: flickr

Scientists have been under enormous pressure to find treatments for COVID-19 that can reduce mortality and infection rate. This has created haste in the scientific method and has allowed some treatments to receive emergency authorization from the FDA such as remdesivir. Even these emergency authorizations are accompanied by randomized, double-blind, placebo-controlled clinical trials that assure treatments are safe. These methods for testing were not present in the study of Hydroxychloroquine that led to its eventual emergency authorization.  The original study involved only 26 patients treated with Hydroxychloroquine that were compared to 16 untreated patients at a different hospital. Later studies conducted on Hydroxychloroquine would question its effectiveness as a treatment for COVID-19 and thus the scientific process was able to correct itself and the FDA revoked the use of Hydroxychloroquine. However, the public once again lost its trust in doctors. This opened the door to rumors and conspiracy theories to dominate the public view. In a pandemic where time is everything the spread of misinformation costs lives

By allowing leniency in the scientific method, we have opened the flood gates to all types of information being thrust onto the pedestal once reserved for the conclusion from the scientific method. Your uncle’s Facebook post about the healing power of Clorox bleach carries as much weight as the cutting edge research on COVID-19. Scientists have lost credibility with the public. This is not the first time this has happened, but it may be the most damaging.

 

Dylan Chambers

“Signs of Life Found in Space?!?” – A Media Misnomer

Almost every time without fail, when I find myself reading through the science section of mainstream news websites, I will inexplicably find an article with a headline like “Signs of Life Found on Venus”. To the average reader, this seems like huge news, as it’s not every day that we discover alien life. But, like many headlines today, this is far from the truth that this scientific discovery is presenting.

Photo of Venus. Photo Credit: NASA/JPL

What was actually discovered?

While it is true that recently a team of astronomers from around the globe announced the discovery of a rare molecule called phosphine in the clouds of Venus, this does not mean that life as we know it was found on Venus. This recent discovery showed that in the higher atmosphere of Venus, there were detections of molecules of phosphine, about a rate of about twenty phosphine molecules in a sample of a billion molecules in the atmosphere. The reason this is interesting is that phosphine (PH3) is an element that is mainly produced on earth by chemical reductions of phosphate in decaying organic matter such as bacteria. 

This discovery showed that somehow, there are chemical signs of decaying organic matter on Venus despite its harsh acidic atmosphere and high planetary temperatures. Here is a scientist from the Royal Astronomical Society detailing the findings in full:

YouTube Preview Image

 

What is the media getting wrong?

Even though scientists are extremely excited about this discovery, it’s not because they have certainly found life outside of our planet. Rather, scientists are excited about this discovery because it raises a lot of questions about how phosphine got to where it is on Venus. This is an important scientific discovery because it opens doors to new areas of research that can be done on determining where the phosphine in Venus’ atmosphere comes from.

The fact that there is this huge piece of evidence that goes against what we know regarding phosphine and conditions for life to exist is a huge stepping stone towards learning more about both subjects.

So what other explanations are there?

There are lots of alternative explanations for where this phosphine could have come from besides organic life. For example, it’s possible that there is some unknown chemical process occurring on Venus that is creating these phosphine molecules. Or maybe it is, in fact, the case that these phosphine molecules are created by some sort of life. Even after extensive scientific review, astronomers are still unsure of where these molecules are coming from. So, unfortunately, we will not know the truth about these molecules’ origin until we go out and discover it for ourselves.

Until we have real, solid, scientific proof that the phosphine molecules we are discovering in our solar system (along with any other biomarkers) are actually being created by alien life forms, don’t believe any headlines you see reading “Signs of Life Found In Space!”, as they really should read “Potential Biomarker Molecules Found in the Upper Atmosphere of Venus”.

Excess carbon dioxide: How can we combat this problem, and why is it problematic for marine organisms?

Did you know that excess carbon dioxide poses a significant problem for marine life? Although CO2 is naturally occurring and acts as an important heat-trapping gas in moderate amounts, human activities have pumped lots of excess CO2 into the atmosphere.

Exhaust fumes from an industrial plant, which includes carbon dioxide (as well as other chemicals). Photo by Damian Bakarcic.

Too much carbon dioxide not only contributes to more extreme weather and global warming, but it also made oceans 30% more acidic since the beginning of the Industrial Revolution.

Today, CO2 makes up 84% of all greenhouse gases from human activity, with around 40 billion tons being produced per year.

Numerous climate scientists, such as climatologist Dr. James Hansen, state that to avoid the impacts of climate change, the levels need to be reduced to at maximum 350 ppm. However, CO2 levels have already exceeded 400 ppm in 2019.

Across the world, many different marine species, such as barnacles, experience the chemical effects of lowered pH levels. This comes in the form of problems with shell formation/ adhesion and lower survival rates, as demonstrated in a laboratory study by the Northeast Coastal Acidification Network.

Ocean acidification has an especially adverse impact for animals that are sensitive to changes in carbonate chemistry. For example, shellfish use carbonate in the ocean to make their protective shell structures. With a low pH, calcium carbonate is in short supply because it will react with acidic solutions.

An infographic depicting the chemistry behind ocean acidification, and why it is harmful for marine life. Source: Climate Commission (RIP)

One remedy involves catalysis. This uses catalysts to convert CO2 into useful goods – fertilizers and plastics. Doing so would convert the polluting waste product into useful molecules, and simultaneously lessen our need to use fossil fuels to generate such products.

A way this can be achieved is with an electrolysis cell, which employs electrical energy to run a non-spontaneous redox (i.e. oxidation-reduction) reaction. A non-spontaneous redox reaction occurs only when an external voltage is applied, whereas a spontaneous one would generate a voltage itself.

On the electrode surface, the CO2 is reduced – meaning the addition of hydrogen, the removal of oxygen, or both (oxidation is the opposite: lose hydrogen/ gain oxygen). Depending on the number of electrons transferred, many different molecules could be produced. The products form in the electrolyte, and move to a separation system.

Catalysis involving carbon dioxide and hydrogen, with a Cu/ZnO catalyst. CO2 is reduced, producing methanol and carbon monoxide. Source: a drawing by myself.

Any unreacted CO2 and the electrolyte are recycled. Tin is a metallic catalyst used to make formic acid via catalysis. More complex molecules can be formed as well, such as the ethanol found in hand sanitizers.

In conclusion, too much carbon dioxide is a significant threat to marine life, and catalysis is one solution that scientists are investigating to recycle CO2. Are there other potential solutions for excess CO2 that you know of?

– Jacqueline (Wai Ting) Chan