19. Eichhorn SJ, Etale A, Wang J, Berglund LA, Li Y, Cai Y, Chen C, Cranston ED, Johns MA, Fang Z, Li G, Hu L, Khandelwal M, Lee K-Y, Oksman K, Pinitsoontorn S, Quero F, Sebastian A, Titirici MM, Xu Z, Vignolini S, Frka-Petesic B (2022) Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci., 57:5697. doi.org/10.1007/s10853-022-06903-8
Contribution: Wrote section on alignment of cells using nanocellulose within tissue engineering scaffolds
18. Santos IF, Moraes RM, Medeiros SF, Kular JK, Johns MA, Sharma R, Santos AM (2021) Enhanced ligand-free attachment of osteoblast to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles. Int. J. Biol. Macromol., 189:528. doi.org/10.1016/j.ijbiomac.2021.08.120
Contribution: Cell studies and analysis
17. Johns MA, Nigmatullin R, Cranston ED, Eichhorn SJ (2021) The physicochemical effect of sugar alcohol plasticisers on oxidised nanocellulose gels and extruded filaments. Cellulose, 28:7829. doi.org/10.1007/s10570-021-03991-8
16. Margoutidis G, Johns MA, Kerton FM (2021) Dissolution studies of α-chitin fibers in freezing NaOH(aq). Cellulose, 28:1885. doi.org/10.1007/s10570-021-03679-z
Contribution: Input into discussion
15. de Andrade P, Muñoz García JC, Pergolizzi G, Nepogodiev SA, Gabrielli V, Iuga D, Nigmatullin R, Johns MA, Harniman R, Eichhorn SJ, Angulo J, Khimyak YZ, Field RA (2020) Chemoenzymatic synthesis of fluorinated cellodextrins identifies a new allomorph for cellulose‐like materials. Chem. Eur. J., 27:1374. doi.org/10.1002/chem.202003604
Contribution: Raman spectroscopy analysis
14. Nigmatullin R, Johns MA, Eichhorn, SJ (2020) Hydrophobized cellulose nanocrystals enhance locust bean and xanthan gum network properties in gels and emulsions. Carbohydr. Polym., 250:116953 (invited submission for “Century of CELL” special edition) doi.org/10.1016/j.carbpol.2020.116953
Contribution: Fluorescent spectroscopy analysis and additional draft writing
13. Johns MA, Lewandowska AE, Green E, Eichhorn SJ (2020) Employing photoluminescence to rapidly follow aggregation and dispersion of cellulose nanofibrils. Analyst. 145: 4836-4843. doi.org/10.1039/D0AN00868K
12. Nigmatullin R, Johns MA, Muñoz García JC, Gabrielli V, Schmitt J, Angulo J, Khimyak YZ, Scott JL, Edler K, Eichhorn SJ (2020) Hydrophobization of cellulose nanocrystals for aqueous colloidal suspensions and gels. Biomacromolecules, 21(5): 1812-1823. doi.org/10.1021/acs.biomac.9b01721
Contribution: Fluorescent spectroscopy analysis
11. Palange C, Johns MA, Scurr DJ, Phipps JS, Eichhorn SJ (2019) The Effect of the Dispersion of Microfibrillated Cellulose on the Mechanical Properties of Melt-Compounded Polypropylene-Polyethylene copolymer. Cellulose., 26(18): 9645-9659. doi.org/10.1007/s10570-019-02756-8
Contribution: Fluorescent spectroscopy analysis
10. Johns MA, Lewandowska AE, Eichhorn SJ (2019) Rapid determination of the distribution of cellulose nanomaterial aggregates in composites enabled by multi-channel spectral confocal microscopy. Microsc. Microanal., 25(3): 682-689. doi.org/10.1017/S1431927619000527
9. Scott JL, Johns MA (in press) Designing and Synthesizing Materials with Appropriate Lifetimes. In: Meyers RA (ed), Encyclopaedia of Sustainability Science and Technology 2nd Springer-Verlag, New York.
8. Bernardes A, Pellegrini VOA, Curtolo F, Camilo CM, Mello BL, Johns MA, Scott JL, Guimaraes FEG, Polikarpov I (2019) Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate. Carbohydr. Polym., 211: 57-68. doi.org/10.1016/j.carbpol.2019.01.108
Contribution: Statistical analysis and input into discussion
7. Johns MA, Bae YH, Guimarães FEG, Lanzoni EM, Costa CA, Murray P, Deneke C, Galembeck F, Scott JL, Sharma RI (2018) Predicting Ligand-Free Cell Attachment on Next Generation Cellulose-Chitosan Hydrogels. ACS Omega, 3(1): 937-945. doi.org/10.1021/acsomega.7b01583
6. Aaronson BDB, Wigmore D, Johns MA, Scott JL, Polikarpov I, Marken F (2017) Cellulose Ionics: Switching Ionic Diode Polarity by Chitosan Doping of Reconstituted Cellulose Films. Analyst, 142(19): 3707-3714. doi.org/10.1039/C7AN00918F
Contribution: Production of materials
5. Gale E‡, Johns MA‡, Wirawan R, Scott JL (2017) Combining random walk and regression models to understand solvation in multi-component solvent systems. Phys. Chem., Chem. Phys., 19(27): 17805-17815. doi.org/10.1039/C7CP02873C
Contribution: Development of regression model and analysis
4. Johns MA, Bernardes A, Guimarães FEG, Lowe J, Ribeiro De Azevedo E, Gale E, Polikarpov I, Scott JL, Sharma RI (2017) On the Subtle Tuneability of Cellulose Hydrogels: Implications for Binding of Biomolecules Demonstrated for CBM 1. J. Mater. Chem. B, 5(21): 3879-3887. doi.org/10.1039/C7TB00176B
3. Aaronson BDB, He D, Madrid E, Johns MA, Scott JL, Fan L, Doughty J, Kadowaki MAS, Polikarpov I, McKeown NB, Marken F (2017) Ionic Diodes Based on Regenerated α-Cellulose Films Deposited Asymmetrically onto a Microhole. Chem. Select., 2(3): 871-875. doi.org/10.1002/slct.201601974
Contribution: Production of materials
2. Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni EM, Costa CA, Scott JL, Sharma RI (2017) Surface Modified Cellulose Scaffolds for Tissue Engineering. Cellulose, 24(1): 253-267. doi.org/10.1007/s10570-016-1111-y
Contribution: Originally suggested comparison of cationic and anionic cellulose surfaces; performed preliminary work
1. Gale E, Wirawan R, Silveira R, Pereira C, Johns MA, Skaf M, Scott JL (2016) Directed discovery of greener cosolvents: new cosolvents for use in ionic liquid based organic electrolyte solutions for cellulose dissolution. ACS Sustain. Chem. Eng., 4(11): 6200-6207. doi.org/10.1021/acssuschemeng.6b02020
Contribution: Originally suggested investigating range of cosolvents and performed preliminary work; provided original figure comparing amount of cellulose dissolved per unit of ionic liquid to ionic liquid:cosolvent ratio.
‡ equal authorship