IDP: Use of Virtual Reality

The term virtual reality (VR) can be interpreted in different ways depending on the context. In the building industry it is most commonly used for computer mediated systems, environments, and experiences. In other words it is used to create 3D models of projects that are supposed to aid the design process. VR tools are still Very rarely used in practice, despite the fact that many benefits have already been identified.

Advantages

The combination of VR tools and VR immersive display systems can bring real value to the design review, the communication of the design intent, and it can increase the meeting efficiency. The use of this technology enables users to walk through a 3D model of a given project and by doing so helps to understand the aesthetics of the design because it gives the viewer a more direct feel of depth and volume of the space, which is more difficult by just looking at a static layout.

Furthermore meetings and discussions gain a new level of efficiency, because participants are more engaged and act more professional. The use of VR models brings external people up to speed to the current status easier and faster, leveling the expertise and familiarity with the design between different disciplines. This keeps participants more engaged in issues, that not necessarily regard their own discipline. This provides a holistic and diverse input, which then can spark deep questions and lead to unexpected discoveries, that otherwise might not have been detected until building turnover.

Challenges

This is not to say that VR tools do not pose difficulties or challenges. When using VR the appropriate level of detail has to be considered, as too many trivial issues might arose from a too detailed model. Similarly sometimes less is more when it comes to the modeled environment. Often intermediate designs are filled with placeholders, which will be redesigned in a later state of the process. Are those placeholders to detailed they might convey a wrong image of the design and could create a misinterpretation for those not familiar with the design process.

The preparation of  VR models requires a significant amount of preparation and coordination effort, a process that usually takes up several days. By the time the model is finished the design might have already changed.

Conclusion

To sum up, VR tools give opportunities to improve the design process by increasing meetings efficiency, and helping to keep all participants engaged, so that maybe even hidden issues can be identified. But at the same time very careful planning in preparing is necessary to avoid misinterpretations due to a unfit level of detail in the model. Today Virtual Reality is still underutilized, but one can hope that as the industry develops and becomes better defined the use those tools will increase and improve the design process.

Sources:

“Virtual Reality to Support the Integrated Design Process: A Retrofit case Study”
Yifan Liu, Jennifer Lather, John Messner, 2014

In Detail: The Mosaic Centre

In south Edmonton, you can find Canada’s first net-zero commercial building. The Mosaic Centre is 30,000 square feet and it generates as much energy on site as it consumes in a year. Sustainable practices and technology are showcased in this structure. The project scope has included considerations such as incorporating geo-thermal technology, installing photovoltaic panels and using the framework of Low Impact Development as they marked its place in the public realm. In many ways, this construction project had implemented many of the strategies outlined in this weeks lesson. [Quick Statistics: The Mosaic Centre – Complete in 2015, 10.5 million dollar project, 3 months ahead of schedule and 5% under budget]

Construction Practices – Integrated Design Process.  The design team focused on a collaborative approach to execute this project. This is crucial to sustainable design. Intersecting systems can support and accentuate benefits of the technology, and reduce the likelihood that the systems clash with one another.

Energy Conservation and Energy Efficiency – To make such a large project come in Net-Zero, substantial amounts of work was put into making affordable, and energy efficient features throughout the building. This allows operations to continue within the building using less power. Both passive and mechanical systems are used to naturally light the space. Rather than feeding off the energy grid, this building produces the necessary energy to run on a daily basis. Since supply and demand of energy fluctuates throughout the year, excess energy produced on site is fed back into the utility grid (described as seasonal storage). This method of storage within the grid eliminates the need for battery banks. Those amounts of energy are fed back to the building when supply is low, but demand exists. This exchange between building and grid is incorporated into the net-zero analysis of the building.

Sustainable Power Supply and Renewable Energy Use – The generation of electricity can often time be very disruptive to the surrounding environment, and overall has a net output of carbon emissions. Carbon emissions from industry and commercial practices hugely contribute to these harmful emissions. The south west exterior wall and a portion of the roof have photovoltaic panels mounted for solar energy collection. This form of renewable energy was chosen after investigation of the multiple forms of renewable energy. Wind energy was not ideal, given the location, and thus solar energy became the single type used in this project.

Geo-thermal Heating and Cooling – Within the mechanical room, connections between external boreholes and the internal pipe system exist to make use of the geo-thermal system. The majority of the northern parking area is a geo-thermal field which helps to regulate the buildings temperature. In colder months, use of a high pressure glycol mixture allows access to available heat energy produced through the soil. Conversely, this same system serves to dissipate warm air during the hot months. Overall, the use of geo-thermal energy greatly decreased the number of solar modules needed for on-site electricity production.

Materials and Natural/Eco-Services – Wood was used as the primary building material for the Mosaic Centre. Wood features are presented well aesthetically and are exposed as architectural features to inspire future sustainable projects. Aside from the looks, use of wood sequesters carbon, reducing what would result in carbon emissions. Natural lighting and heat from the direct sunlight are also used to maintain a comfortable and well lit interior. Rainwater is collected on-site in a 25,000 litre storage tank. The water catchment design is not intended to fully cover the water demand, however it does supplement by contributing to the water supply. The main atrium also has a living wall,

Building Envelope –  High performance building design is used to optimize the intersecting systems within the building. A high quality building envelope allows air conditions to remain at the desired temperature. Other strategies, such as targeted shading and the reduction of interior structural loads, are in place to increase occupant comfort.

Education; Precedent Example and Presence in the Community – The structure itself is living proof that sustainable projects can be aesthetically pleasing, economically feasible, and socially conscious. Aims for certification (LEED Platinum and Certified Living Building) and recognition have also increased the visibility and credibility of this remarkable structure. It continues to contribute to environmental efforts while in service by the use of collaborative spaces built right into the structure. These spaces are used to hold and facilitate meetings for integrated teams working on projects with a sustainable focus. Its functionality, and accessibility in terms of transportation also point towards the buildings overall goal; to address sustainability in all design decisions. In analyzing and learning about this project, we can gain wisdom and momentum to initialize and effectively carry out the construction of net-zero commercial buildings.

Sources:
http://themosaiccentre.ca/how-we-did-it/
http://www.greenenergyfutures.ca/episode/first-net-zero-office-building

IDP: The Integrated Design Process

The IDP was first used in the early 1990s, by Canada’s C-2000 program (program supporting advanced, energy-efficient commercial building design) and IDEAS Challenge competition (multi-unit residential buildings challenge) to describe a more holistic approach to building design. In profesional practice, IDP has a significant impact on the makeup and role-playing of the initial design team. The client takes a more active role than usual, the architect becomes a team leader rather than the sole form-giver, and the structural, mechanical and electrical engineers take on active roles at early design stages. The team includes an energy specialist (simulator) and possibly a bio-climatic engineer. Depending on the nature of the project, a series of additional consultants may also join the project team from the outset.

Some of the key advantages of the IDP are cited below:

  • Goal-driven with the primary goal being sustainability, but with explicit subsidiary goals, objectives and targets set as a means to get there.
  • Facilitated by someone whose primary role is not to produce the building design or parts of it, but to be accountable for the process of design.
  • Structured to deal with issues and decisions in the right order, to avoid locking in bad performance by making non-reversible decisions with incomplete input or information.
  • Clear decision-making for a clearly understood methodology for making decisions and resolving critical conflicts.
  • Inclusive—everyone, from the owner to the operator, has something critical to contribute to the design and everyone must be heard.
  • Collaborative so that the architect is not simply the form-giver, but more the leader of a broader team collaboration with additional active roles earlier in the process.
  • Holistic or systemic thinking with the intent of producing something where the whole is greater than the sum of the parts, and which may even be more economic.
  • Whole-building budget setting—allows financial trade-offs, so money is spent where it is most beneficial when a holistic solution is found.

Below is a graphic representation of the IDP Process:

2016-10-17

References:

http://www.nrcan.gc.ca/energy/efficiency/buildings/eenb/integrated-design-process/4047

http://iisbe.org/down/gbc2005/Other_presentations/IDP_overview.pdf

http://www.infrastructure.alberta.ca/content/doctype486/production/leed_pd_appendix_7a.pdf

MEASURES OF SUSTAINIBILITY APPLIED TO THE CIRS BUILDING AT UBC

MEASURE 1: Design & Innovation

CIRS is aimed at being a regenerative building whose existence will improve the quality of the environment. This building contributes to reducing the energy use and carbon emissions. The building sequesters more carbon than the construction and decommissioning of the building will produce overtime.

MEASURE 2: Regional/ Community Design

Roof of the building is designed to be a self sustaining ecosystem where the vegetation includes indigenous plants for local birds and insects.

MEASURE 3: Land use and site ecology

The area of land that CIRS is built on improves the quality of the surrounding environment. It cleans the water it receives, captures heat that would otherwise be emitted to the environment and harbours vegetation that enriches the surrounding ecosystem.

MEASURE 4: Bio-climatic Design

Much of the heating in CIRS comes from the ground and from the heat exhausts from the building next door. Significant amount of the ventilation is from wind and a large part of the electricity is from the sun. This is really a building that survives within the natural flows of the environment.

MEASURE 5: Light and Air

Building is oriented to make optimal use of the daylight received by the site. The higher location of the windows allows for deeper penetration of the daylight into the interior spaces of the building. Solar shades and spandrel panels help control the glare and heat gain from the sun.

MEASURE 6: Water Cycle

All the water used in the building comes from the rain and the water leaving the building is of a better quality than the rain that is received on the roof. CIRS cleans the quality of the water and achieves a net positive in terms of water quality.

MEASURE 7: Energy flows and future energy

Uses geo exchange and solar energy. Uses waste heat from the Earth and Ocean Sciences building next door and captures the energy that would other wise be emitted to the environment.

MEASURE 8: Materials and construction

Wood used for the main structure of the building sequesters 600 tonnes of carbon. This is more carbon than the emissions from all the other construction materials, construction processes and decommissioning and the end of the lifetime of the building.

MEASURE 9: Long life, loose fit

CIRS is designed with ecological, social and economic rationale. Not only does it aim to improve the quality of the environment overtime it also aims to improve the health of its occupant. Flexibility, modularity, adaptability and expandability principles were included in the design of CIRS to ensure that it can adapt to new uses and respond to future space configuration requirements without the need of expensive and wasteful renovations.

MEASURE 10: Collective wisdom and feedback loops

In many ways CIRS is a research project that is intended to identify which processes and techniques work well and which ones have more scope for improvement. Research and observations of the way the building functions and interacts with the environment are ongoing and this knowledge will be used to improve sustainable designs of buildings in the future.

Exploration of Sonoma Mountain Village

The overarching goal of the Sonoma Mountain Village development is to provide a place for work and play within the community, while simultaneously promoting as much re-use as possible. Concepts such as, walking as the main mode of transportation, renewable energy, innovative use of building material, and natural heating/cooling systems will be explored.

Walking as the main mode of Transportation

The Sonoma Mountain Village development is designed in such a way where reliance on vehicles and busses are reduced or eliminated altogether. By building a core of places to shop and work within the centre of the development, the marketplace and theatre are more accessible than before. This approach can reduce the carbon footprint by approximately 90%.

Renewable Energy Source

Solar panels are used extensively at the Sonoma Mountain Village development. To provide a sense of scale, currently Sonoma Mountain Village provides 3 Megawatt (MW) of power, which is enough to sufficiently power approximately 1000 homes. Subsequently, the solar power extracted can be utilized to provide heating and cooling via a geo-exchange system. The natural temperature within the ground stays consistent around the year; heating is provided when the temperature of the home is cooler than the sub surface, and cooling is provided when the temperature of the home is warmer than the sub surface. The heating/cooling is then pumped into the building powered by solar energy; as a result, no burning of fossil fuels is required and thus further lowering carbon emissions.

Innovative Use of Building Material

Prior to construction at the Sonoma Mountain Village development, the main building material was required to be renewable, and had to have high constructability. Metal from cars could be recycled and remodeled into modular panels, and eventually the building that was created from these panels could be remolded for future use on another project. It takes approximately 8 recycled vehicles to build a single-detached family home.

Modular panels are also easier to transport, and because they are pre-fabricated in the factory, the actual construction process will be easier on site. Not only will construction be faster, but sediment and debris control on construction sites will be greatly reduced, which will reduce downstream contamination due to stormwater runoff.

By utilizing large existing buildings – such as the existing technology campus – the Sonoma Mountain Village already begins the project with sustainability in mind prior to construction. This will reduce a significant amount of waste from demolition, transportation of un-useable, and transportation of new material.

Spam prevention powered by Akismet