Monthly Archives: September 2016

Course Review: CHIN 101

Basic Chinese I: Part 1 (Non-Heritage)

“bā lā kè  ào bā mǎ (Barack Obama)!”

Text: Integrated Chinese: Simplified Characters Textbook & Workbook, Level 1, Part 1 by  Yuehua Liu

Prof:  Lee (An-Yi) Laoshi

Lee Laoshi is super funny and passionate. The class was the most enjoyable class I took that term because of interactive nature of the lessons. It was the only class that I didn’t occasionally look at the clock to see when it was ending. She was also very helpful and understanding. Unfortunately, she was only hired as a Visiting Lecturer and will be leaving UBC soon.


The workload was a lot. Weekly quizzes, character sheets, and the occasional workbook chapter created an onslaught of homework, even when there wasn’t a midterm. Most of it was memorization, so it was just a matter of spending the time. Most of the stuff was on the computer. Unfortunately, my computer packed up on the final, so I didn’t do as well as I did during the rest of the course and I lost a letter grade.

Key Concepts

Pinyin (pronunciation) with tones

Character reading

Character writing

Understanding oral Chinese

 Hard Concepts


Recognising pinyin orally: Really hard, be sure to get a lot of practice before the final. I advise recruiting a first language speaker friend to help out.

Writing characters: Quite painstaking, especially if you are not the best artist. Lots of practice.


Fun classes, exhausting homework and worthwhile introduction to one of the world’s most widely spoken languages.

Course Review: MATH 215

Elementary Differential Equations I

“UBC is a very progressive place…Because you get to learn Linear Algebra before Differential Equations!”

Text: Notes on Diffy Qs: Differential Equations for Engineers, by Jiri Lebl

Prof: Dr Dan Coombs

Dr Dan Coombs has great British accent, and a wry sense of humour which helps to keep interest in the class. He tries to balance between tolerating conceptual questions and making progress in the more recipe-oriented curriculum. He spent a lot of effort restructuring the curriculum to be based on Linear Algebra, so as to make the class more conceptual and slightly less “formula-up-my-sleeve” math, though it still is.


The homework is really exhausting. The hand calculations have awful numbers in them, making them really tedious. The Matlab is … Matlab. As a CS student I thought Matlab would be a breeze, but that was not the case, as the language has a lot of quirks. The number of questions in a homework set is a lot considering the time each one takes. With the exception of the first homework, where we were given real world problems and had to come with models for them, I didn’t feel I got a lot out of the homework, except learning a few random facts about Matlab after trial and error.

Key Concepts

Modelling nature as a differential equation

First order linear equations

Linear systems of differential equations

Laplace transform

Non-linear systems

 Hard Concepts

Partial fractions: Thought they were pretty easy, but had a really gross one on the final

Non-linear classification of fixed points: Can get a bit confused between different fixed points

Classification of 2nd order linear systems: If you don’t want to re-derive them, need to be able to recall them quickly.


Homework was a schlep. Interesting topic, but recipe-driven curriculum almost kills it. IMHO, focus should be modelling natural phenomenon. The problem with the recipe driven approach, even for non-math students, is that (1) Engineers will probably just use Wolfram/computer system to solve it anyway. (2) While it might be helpful for them to classify what can/cannot be solved etc, odds are if it is non-linear you will try your luck, or use a linear approximation anyway.