Tag Archives: inquiry learning

Financial Literacy for the Elementary Student – Coin Box Simulator Through Anchored Instruction

Background:

Financial literacy is highlighted throughout the elementary grade levels in the Content area of BC’s New Curriculum. Most paper-pencil curricula address money identification, counting coin and dollar amounts, and one or two step word problems connected to money. However, these paper-pencil activities minimally equip students for financial literacy skills and applications. While exploring the information visualization simulators during this past week, the elementary and middle school simulations from Illuminations were easy to understand and seemed quite plausible to implement into already developed curriculum.


Literature Support for Lesson Cornerstones: 

In a study conducted by Srinivasan, Pérez, Palmer, Brooks, Wilson and Fowler (2006), engineering freshman students who completed learning using MATLAB did not experience what they perceive as an authentic experience. The students felt that their experience was disconnected from real expert experience because they manipulated a simulated system rather than a real-life system. The researchers conclude that a probable reason for this disconnect is that the students “need/want authenticity to be able to make connections the experts make with the simulation” (Srinivasan, 2006, p.140).  This perception from the students leads educators to consider the value of real-life experiences in connection with simulated experiences.

Transferring simulated experiences to real-life experiences is supported through the study completed by Finkelstein, Adams, Keller, Kohl, Perkins, Podolefsky and Reid (2005). In their study, students in a second semester introductory physics course, who had used a simulation first to design a circuit system, were more successful later in designing real-life models. These same students also achieved greater success on related exam material that was completed two months after the simulated and real-life circuit building experience (Finkelstein, 2005). Due to these findings, authenticity of learning through the transferring of knowledge from simulation to real-life experience is a main cornerstone of the following lesson design.

In addition to authenticity, two lesser cornerstones, rich content and goal challenge motivation, are also incorporated into the lesson design as supported through the writings of Srinivasan et al. (2006). A pre-test assessment begins the lesson in order to determine prior knowledge and the optimal area of learning for the individual student. As well, this pre-test assessment can be used to determine pairings/groupings throughout the lesson activities. By providing rich content within the lesson plan, this affords opportunity for students with less prior knowledge to acquire new knowledge before exploring the simulated and real-life experiences. Building prior knowledge within students is critical for their success as Srinivasan et al. (2006) state, “Prior knowledge accounts for the largest amount of variance when predicting the likelihood of success with learning new material” (p.138). In regards to gaining knowledge of the student’s optimal area of learning, this connects closely to Vygotsky’s zone of proximal development, but is also supported by goal oriented motivation when learning goals are neither too steep, nor too simple: “If learning goals are too steep for a learner’s current context, learning is not successful. On the other hand, when learning is simple for the learner, the instruction can become over-designed and lead to diminished performance” (Srinivasan, 2006, p. 139).


Lesson Overview: 

The following lesson incorporates the instructional framework of anchored instruction. This has been accomplished through a narrative multi-step problem solving feature. The three cornerstones highlighted in the section above are evident within the lesson: goal challenge motivation {decided by pre-test assessment}, content-rich material, and authenticity through real-life application.


LESSON

Pre-test Assessment:

Provide paper-pencil assessment including photos of Canadian coins asking students to identify individual coins.

Addition questions for pre-test assessment may include:

  • How many quarters makes a dollar? How many dimes? How many nickels?
  • Show 3 different ways of making one dollar using a mix of coin types. Draw coins with labelled amounts to share learning.

 Include two ‘making change’ questions that require student to calculate amount of change from $1.

Content-rich Material: 

Read and discuss Dave Ramsay’s book entitled, My Fantastic Fieldtrip on saving money.

Provide pairs of students with real sets of Canadian coins with accompanying anchored money solving problems. Problems may require students to interact with other students in the class or with the teacher. An example of an anchored money problem solving scenario follows:

Macey has been saving her allowance for seven weeks. She has a saving goal of $20.00. Each week she receives $1.50. Three weeks ago, Macey decided to buy her sister a rubber ball for her birthday which cost $1.00.  She used a loony from her savings . After seven weeks, Macey wanted to exchange all of her quarters for loonies, but she also wanted to keep half a dozen quarters for when she visited the candy machine at the grocery store when she went shopping with her mom.  She knew that several of her classmates had loonies that they could exchange for her quarters. (At this time, go around to your classmates and exchange your quarters for loonies just like Macey wanted to.) Once Macey exchanged her quarters for loonies with her classmates, how many loonies does Macey have? How much money does Macey have all together? How much more money will Macey need to save to reach her saving goal?

Simulation  Activity:

Illuminations –  Coin Box {elementary level}: Initially, direct instruction is required to demonstrate how by clicking on the cent icon in the bottom right corner, the student can see the amount of each coin as they are  US coins and difficult to decipher visually. Direct instruction should also be provided to guide the student to the “Instructions” tab and show the subtitled areas “Modes”. Student can then have time exploring the “Activity” section using the dropdown menu in the top left corner. Student should have ample time to explore all five activities including: “Count”, “Collect”, “Exchange”, “Change from Coins”, and “Change from Value”.

Transfer to ‘Real-Life’ Context: Students should have opportunity to transfer the simulated learning to a real-life context. An example of a real-life context is provided below, however adapting this to uniqueness of the learning community is recommended:

Cookie Sale –  Each student bakes one dozen cookies to sell to classmates and other students at the school. Pricing: 1 cookie = $0.40, 2 cookies = $0.75, 3 cookies = $1.00, 4 cookies = $1.25, 5 cookies = $1.45, 6 cookies = $1.70. This activity allows for assessment by the teacher through observation. Student’s accuracy and ease of providing change could be assessed using a simple checklist. Students should work in pairs  or small groups to help ensure that change to buyer is accurate.

Self Assessment/Reflection: A reflection activity is to be completed by each student. This activity requires the student to reflect on and share about growth and relevancy of learning. A self assessment printable is here:

Self Assessment


Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., Podolefsky, N., & Reid, S. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physics Education Research,1(1), 1-8.

Srinivasan, S., Pérez, L.C., Palmer, R.D., Brooks, D.W., Wilson, K., & Fowler, D. (2006). Reality versus simulation. Journal of Science Education and Technology15(2), 137-141. doi: 10.1007/sl0956-006-9007-5

1 Comment

Filed under Information Visualization, TPCK

TPCK and Learner Activity – A Synthesis of Four Foundational TELEs

Following is a collection of visual syntheses comparing and contrasting T-GEM/Chemland with the following technology-enhanced learning environments: Learning for Use (LfU)/My World, Scaffolded Knowledge Integration (SKI)/WISE, and Anchored Instruction/Jasper. The visual syntheses contain a focus on TPCK and learner activity with the guiding TELE being T-GEM/Chemland, and all other TELEs being compared and contrasted through alignment with the T-GEM/Chemland framework.

Each one of these TELEs is developed on inquiry instruction and learning, with T-GEM/Chemland consisting of specifically model-based inquiry. Each one of these TELEs promotes a community of inquiry with purposeful teacher-student and student-student interactions. To emphasize the non-linear processes of inquiry, each visual synthesis is designed in a circular format.

Unique to T-GEM is the cyclical progress that the learner takes moving through the steps of the learning theory. Arrows are placed in each TELE’s visual representation to elicit the learner’s movement in comparison to the T-GEM’s model.


As a general mathematics and science teacher for elementary grade levels, the process of exploring, analyzing and synthesizing  the four foundational TELEs presented in this course has been transformational in my development of TPCK. Initially, the importance of CK (Schulman, 1986), and my self-diagnosed lack of CK, was convicting as I tend towards growing in pedagogical ideas and creative ways of implementing them. To further this conviction, my understanding of inquiry processes and the intricate role that the teacher facilitates in conducting a community of inquiry began to become clearer throughout the readings and discussions of Module B. Skillful inquiry instruction requires a facilitator who is saturated in CK, being equipped to prepare, respond, question, prompt, and guide with carefully considered PK. At this time, I am challenged as an educator to begin with one brave adventure in mathematics using an anchored instructional approach, and another brave lesson in physical science using a T-GEM approach. I am certain that I will be generating, evaluating and modifying all along the way.  

 



Cognition and Technology Group at Vanderbilt (1992). The jasper experiment: An exploration of issues in learning and instructional design. Educational Technology Research and Development, (40), 1, pp.65-80

Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching,38(3), 355-385.

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.

Linn, M. C., Clark, D. and Slotta, J. D. (2003), WISE design for knowledge integration . Sci. Ed., 87: 517–538. doi:10.1002/sce.10086

Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4 -14.

Leave a Comment

Filed under Anchored Instruction, SKI, T-GEM, TELE, TPCK, WISE

Finding One’s Place Through Inquiry

Edelson’s (2001) writing on the framework of Learning for Use (LfU) model requires the teacher and learner to situate inquiry-based learning within a context of technology use and relevant future use. LfU is designed with three processes of learning, each incorporating the use of technology and causing the student to recognize the “usefulness of the content beyond the learning environment” (p.373). These three processes are defined as motivation, construction and refinement.

Edelson goes into significant depth about the LfU design strategies and elements contained within the Create-a-World Project, as well as a reasoning description of the purpose for including technology into the LfU model. For each strategy supporting a learning process, Edelson states the purpose behind the technology. These purposes include: a way of affording constructive learning , “improv[ing] upon the real world for discrepant events [i.e.] phenomena that are too small or too large, too fast or too slow, too hot or too cold for direct observation can all be reproduced using recording or simulation technologies” (p.376),  offering students participation in “guided discovery by allowing them to conduct investigations with data … [and] by providing simulations of physical phenomena that students can directly interact with” (p.377). Furthermore, technology provides “[t]he ability to present information in a wide variety of formats …  [i.e.] text, graphics, audio, and interactive computational objects” (p.378) as well as support the act of record keeping during inquiries for student reflection. Edelson’s intentional use of technology within the LfU framework, offers a standard for designers when considering the inclusion of technology within a learning framework. Does the technology enhance knowledge construction by affording practical tools for inquiry? Edelson’s inclusion of technology is extended in necessitating use and application: “Because knowledge application requires meaningful, goal-directed tasks, the technologies that can support knowledge application are the technologies that will allow learners to conduct meaningful tasks” (p.380).

Within both Edelson’s example of students using Create-a-World Project and Perkins, Hazelton, Erickson and Allen’s (2010)  study on students using a GIS (Geographic Information Systems), there is a connection to what David Sobel (2004) refers to as place-based learning. Sobel describes place-based education as “the process of using the local community and environment as a starting point to teach concepts … emphasizing hands-on, real-world learning, enhanc[ing] students’ appreciation for the natural world, and creat[ing] a heightened commitment to serving as active, contributing citizens” (Sobel, 2004).

The connection between LfU and place-based learning is worth consideration as GIS tools afford the opportunity for students to interact initially within their community and then beyond. Interestingly, the practice of place-based learning is promoted within the BC Ministry’s curriculum in relation to indigenous learning. Combining place-based learning with GIS tools offers opportunity for indigenous and western learners to gain a deeper understanding of their local world, and intuitively of the world beyond them. Inquiries related to physical environmental changes, population increase or decline of species, migration patterns and weather patterns are all relevant areas of situated learning for both indigenous and western learners.

In Perkins’ et al (2010) study, there is support for the inclusion of place-based learning with GIS tools as middle school students participate in mapping their school yard using My World GIS curriculum. Perkins et al (2010) find a significant increase in students’ spatial skills after only three days of working with the GIS and GPS tools. They partially attribute this increase in skills to the inclusion of place-based learning: “Introducing GIS and GPS in the students’ familiar and immediate surroundings more easily bridges the gap between the real and digital worlds. Each student has tangible experience with their schoolyard and, therefore, some sense of that space that will allow them to construct new knowledge in the context of a place that they know”(p.217).

In closing, the LfU model requires highly structured inquiry-based processes such as “hypothesizing, collecting and evaluating evidence, and defending conclusions based on evidence” (Edelson, 2001, p. 362). Furtak (2006) describes guided scientific inquiry as inquiry when the teacher knows the answer, but is cautious with the power of suggestion. In Linn, Clarke and Slotta’s (2003) article on WISE, a more structured approach to inquiry is also suggested: “If inquiry steps are too precise, resembling a recipe, then students will fail to engage in inquiry. If steps are too broad, then students will flounder and become distracted. Finding the right level of detail requires trial and refinement and, in some cases, customization to local conditions and knowledge” (p.522). Through the explorations of various technology-based inquiry environments, it is evident that the teacher and/or designer is an expert in processes and in content, allowing for processes of inquiry to be experienced and developed, while supporting inquiry problem-solving and refinements through in-depth knowledge of content.


Aboriginal Education, (n.d.). https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/pdf/aboriginal_education_bc.pdf
Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching,38(3), 355-385.
Furtak, E. M. (2006), The problem with answers: An exploration of guided scientific inquiry teaching. Sci. Ed., 90: 453–467. doi:10.1002/sce.20130
Linn, M. C., Clark, D. and Slotta, J. D. (2003), WISE design for knowledge integration . Sci. Ed., 87: 517–538. doi:10.1002/sce.10086

2 Comments

Filed under LfU

Wise Instruction – Inquiry, WISE and Model-Based Learning

The following posting is guided by the the following process questions:
  • What broader questions about learning and technology have provoked WISE research and the development of SKI?
  • Describe the authors’ pedagogical design considerations that shaped the development of “What’s on your Plate?” How and where was WISE integrated into a larger sequence of activities?
  • Analyze the evidence and author’s conclusions. Are the conclusions justified? In what ways does WISE support the processes commonly associated with “inquiry” in science? How might these processes be used to support math instruction?
  • What might be the cognitive and social affordances of the WISE TELE for students? Use “What’s on your Plate?” as an example to support your hypotheses.

 

Inquiry is the newest trend in pedagogical design and curriculum and infiltrates BCs New Curriculum established for K-9 students. As described in the following video on the BC Ministry of Education website, inquiry requires students to ask questions, hypothesize, investigate, experiment, create, reflect and revise. These actions are intended to help students to learn the processes of science, and not solely the content, while building skills in communication, collaboration, critical thinking, vocabulary building and analysis.

Linn, Clark and Slotta (2003) offer a deeper definition of inquiry and describe it as “engaging students in the intentional process of diagnosing problems, critiquing experiments, distinguishing alternatives, planning investigations, revising views, researching conjectures, searching for information, constructing models, debating with peers, communicating to diverse audiences, and forming coherent arguments (p.518). The designers of WISE (Web-based Inquiry Science Environment) have taken this latter definition, placed it into the Scaffolded Knowledge Integration network (SKI), while asking questions of how to design a technology-based learning environment that “scaffold[s] designers in creating inquiry curriculum projects and designing patterns of activities to promote knowledge integration for students and teachers” (Linn et al., 2003, p.518). The designing of WISE is an evolving inquiry as the design team, including science teachers, pedagogical specialists, scientists and technology designers, engage in inquiry processes through its continuous designing and revising. The designers of WISE are not simply interested in inquiry, but in the intersection of inquiry and technology and the enhancement of learning as a result. A considerable statistic cited by Linn et al. (2003) describing the participation level of students through asynchronous communication in comparison to face-to-face discussion is convincing: “Online asynchronous discussions enable students to make their ideas visible and inspectable by their teachers and peers and give students sufficient time to reflect before making contributions. Hsi (1997) reports that under these circumstances, students warrant their assertions with two or more pieces of evidence and over ninety percent of the students participate. In contrast, Hsi observed that only about 15% of the students participate in a typical class discussion, and that few statements are warranted by evidence” (p.530). Other WISE related studies also reveal enhanced learning as a result of students learning through a technology-based environment. One such design study is conducted by Gobert, Snyder and Houghton (2002) using a WISE project entitled, “What’s on your Plate” – a geology focussed project.

Gobert et al. (2002) pursue a design study “to investigate the impact of decisions about curricular materials with the express goal of redesigning them in accordance with the findings obtained” (p.7). More specifically, they ask, “[I]n what ways does model-building, learning with dynamic runnable visual models in WISE, and the process of critiquing peer’s models promote a deeper understanding of the nature of science as a dynamic process?” (p.7). The two areas of SKI that are focussed on in this study are: 1) making thinking visible and 2) learning from others. Gobert et al.(2002) are also interested in observing changes in students’ epistemologies as they work through the WISE project. Specifically, they asked these questions: “How can we use the technology effectively to promote deep learning in line with epistemic goals? and How can we identify change in students’ epistemic understanding?” (p.2). In order to measure these epistemic changes, pre and post tests are conducted indicating significant increases in student understanding and reasoning related to model-based learning. Student post test responses include significantly more detail, scientific vocabulary and accurate knowledge, while peer critiques include reasoning and communicative understanding. Gobert et al. (2002) state established research for integrating model-based learning within science education, both models to learn from and model construction assignments. Positive effects of model-based learning integration are described here: “It is believed that having students construct and work with their own models engages them in authentic scientific inquiry, and that such activities promote scientific literacy, understanding of the nature of science, and lifelong learning” (Gobert et al., 2002, p.3). These positive effects of model-based learning are evidenced in the conclusions of the design study by Gobert et al. (2002). While model-based learning through WISE indicates significant growth in the students’ understanding of the use of dynamic visual models and the nature of science,  can this model-based learning also be effective in the acquisition of mathematics?

WISE supports the processes of inquiry through the “What’s on Your Plate” project including diagnosing, planning, researching, constructing, critiquing, revising, communicating and reasoning. Through these inquiry processes, students successfully make their thinking visible through the construction of models which are then critiqued by peers, and then revised through reasoning. Model-based learning in mathematics could be structured similarly using inquiry processes that require students to diagnose a problem, research the information necessary to solve the problem, construct a model using software or hands-on materials, and share their model with an explanation for peer critique. {This process is evident in The Jasper Series.} Reasoning and further research follow the critique leading to a revised model construction. In essence, model-based learning affords the student to become a “teacher” through the construction of a teachable model. In mathematics, model-based learning could predictably enhance understanding in areas of geometry, patterning and problem solving. Models could include simulations, diagram representations, symbolic data, or three-dimensional constructions.

After brief research, this following resource seems valuable in inquiring further inquiry into model-based learning: Model-Based Approaches to Learning: Using Systems Models and Simulations to Improve Understanding and Problem Solving in Complex Domains by Patrick Blumschein, Woei Hung, David Jonassen, and Johannes Stroebel (2009).

 

References
Blumschein,P., Hung, W., Jonassen, D., & Stroebel, J. (2009). Model-based approaches to learning: Using systems models and simulations to improve understanding and problem solving in complex domains. Rotterdam, The Netherlands: Sense Publishers.
Gobert, J., Snyder, J., & Houghton, C. (2002, April). The influence of students’ understanding of models on model-based reasoning. Paper presented at the Annual Meeting of the American Educational Research Association (AERA), New Orleans, Louisiana. This is a conference paper. Retrieved conference paper Saturday, October 29, 2013 from: http://mtv.concord.org/publications/epistimology_paper.pdf
Linn, M. C., Clark, D. and Slotta, J. D. (2003), WISE design for knowledge integration . Sci. Ed., 87: 517–538. doi:10.1002/sce.10086
McAleer,N. (2005, June 21). Getting started with student inquiry in science. [Video file]. Retrieved from https://www.youtube.com/watch?v=KYGawWpiDOE

Leave a Comment

Filed under Inquiry, SKI, WISE

Plate Tectonics: Reshaping the Ground Below Us

Web-based Science Inquiry Environment (WISE)

Project: Plate Tectonics – 

Renamed: Plate Tectonics: Reshaping the Ground Below Us – ID 19738

WISE is theoretically based on the Scaffolded Knowledge Integration network (SKI) which includes the following four tenets: 1) accessibility to science, 2) making knowledge visible, 3) learning from others and 4) promoting autonomy (Linn, Clark, & Slotta, 2003). In piecing together a unit study for middle school students (grade 6-8), incorporating these four tenets of SKI into the non-technology based areas of learning is intentional to enhance visibility of knowledge and opportunities for peer review and critique. The WISE Plate Tectonic project is being used as a final assignment within a geology unit based on the structure of the earth, the surface of the earth, plate tectonics, and earthquakes and volcanoes. A few authorship changes have been made to the Plate Tectonic project mainly to include a Canadian perspective. These changes include the addition of Canadian map images showing placement of volcanoes, earthquakes and mountain ranges, along with appropriate text. As well, small alterations have occurred in the subtitles of the lesson outline.

The geology unit includes three resources, two non-technology based texts and one project from WISE. The two non-technology based resources that have been chosen are faith-based resources as the school that I work for is an independent religious school. The Geology Book by Dr. John D. Morris is a textbook, but includes detailed and colourful diagrams illustrating the inside of the earth and side views of how the earth’s surface is formed. A Child’s Geography: Volume 1 by Ann Voskamp includes conversational style writing, hands-on activities, real world extensions and a living book list of extension readings. Talking about thinking is incorporated into both of these resources through oral narrations, discussions and the sharing of written work for peer critique. Learning is made visible through notebooking and hands-on model making.The table below illustrates the order of the unit with how resources will be completed in conjunction with each other.

In designing this unit, the four tenets of SKI are intentionally incorporated in addition to, or through the use of each resource. These four tenets provide a framework for students to work through an inquiry process as described in Inquiry and the National Educational Standards with students thinking “about what we know, why we know, and how we have come to know” (Center for Science, Mathematics, and Engineering Education, 2000, p.6). Linn, Clark and Slotta (2013) more specifically define inquiry “as engaging students in the intentional process of diagnosing problems, critiquing experiments, distinguishing alternatives, planning investigations, revising views, researching conjectures, searching for information, constructing models, debating with peers, communicating to diverse audiences, and forming coherent arguments” (p.518). The following table analyses each of the three resources and aligns them with the four tenets of SKI as well as the inquiry processes described by Linn, Clark and Slotta in the above definition.

Scaffolded Integration Knowledge Network Processes of Inquiry Geology Unit Resource
Accessibility to Science – {content, relevancy, real-life application} Diagnosing problems

Planning investigations

Revising views

Researching conjectures

Searching for information

WISE Plate Tectonics
Researching conjectures

Searching for information

Revising views

The Geology Book
Revising views

Researching conjectures

Searching for information

A Child’s Geography
Making Thinking Visible Constructing models

Communicating to diverse audiences

Forming coherent arguments

WISE Plate Tectonics
Constructing models The Geology Book
Constructing models A Child’s Geography
Learning From Others Diagnosing problems

Critiquing experiments

Distinguishing alternatives

Revising views

Debating with peers

WISE Plate Tectonics
Critiquing by peers

Revising views

The Geology Book
Critiquing by peers

Revising views

A Child’s Geography
Promote Autonomy Diagnosing problems

Critiquing experiments

Distinguishing alternatives

Planning investigations

Revising views

Researching conjectures

Searching for information

WISE Plate Tectonics
Researching conjectures

Searching for information

Critiquing by peers

Revising views

The Geology Book
Researching conjectures

Searching for information

Critiquing by peers

Revising views

A Child’s Geography

Center for Science, Mathematics, and Engineering Education. (2000) Inquiry and the national science education standards. Washington, DC: Author.
Linn, M. C., Clark, D. and Slotta, J. D. (2003), WISE design for knowledge integration . Sci. Ed., 87: 517–538. doi:10.1002/sce.10086
Slotta, J. D. & Linn, M. C. (in press). WISE Science: Inquiry and the Internet in the Science Classroom. Teachers College Press. Retrieved from https://edx-lti.org/assets/courseware/v1/634b53c10b5a97e0c4c68e6c09f3f1b6/asset-v1:UBC+ETEC533+2016W2+type@asset+block/WISEBookCh1-30209.pdf
Web-based Inquiry Science Environment.(1996-2016). Retrieved from https://wise.berkeley.edu/

2 Comments

Filed under Implementing Technology, Inquiry, WISE