Monthly Archives: January 2017

Exploring Technology in Math and Science Learning Spaces – Interviews


Teacher L is a distance learning teacher working for an independent school in British Columbia. In the past, she has taught high school math and science courses in both public and private brick and mortar schools. She has also spent two years teaching overseas. Teacher L is presently working with students from grades eight to twelve, facilitating math, science, physics and chemistry courses. She has been working as a distance learning teacher for the past eleven years and through her job has the opportunity to work from home.

This interview was conducted through a synchronous Zoom meeting session, using video and audio features. Teacher L was situated during the interview at her home work space in the Lower Mainland in British Columbia, while I was in a quiet conference room at a nearby library in Edmonton, Alberta. 

When considering three keywords that could summarize Teacher L’s teaching experience intersected with the implementation of technology, the following words and phrases surfaced: isolated, stretched-thin, and low-risk. All three of these descriptors have a tinge of negativity associated with them, but through the interview with Teacher L, the negativity is balanced with a positive outlook towards future possibilities.


As a distance learning teacher, Teacher L faces some issues of isolation. Throughout the interview there is little indication of collaboration efforts with colleagues or professional development in the area of technology. When asked how she has learned to incorporate referenced types of technology into her learning space, she admits that it is largely “through trial and error” and that “you just need to jump in”. When prodded to share if colleagues have been a useful resource in helping learn new technologies, she seemed unsure and responded with “I guess” and then mentioned that she has “emailed the Zoom people to see how to make things work” when initially setting up a Zoom conference room for her students. Although Teacher L does not seem to have much collaboration with other teachers, she is self motivated to learn new technologies, but feels that her teaching assignment is too broad and is too demanding of her time and energy. She states, “I think there are definitely programs, and like I said these labs and stuff out there, that could enhance it [student learning experience], but this is my own shortcoming that I need to find, or spend time researching and getting those programs, or finding those websites that would do more. When I think of technology enhancing learning, I think of those things that you can send the student to help them in a more practical way. Ultimately that is what I would love to add more of to the courses.” From an earlier portion of the interview she shares some hopes and frustrations: “One thing that I haven’t used, but I would like to use but it’s challenging, and to be honest because I have so many courses I haven’t been able to look into it as much, but there are online labs that are for chemistry and physics, but I haven’t implemented them as much as I would like. I feel like I haven’t implemented a lot.” 

Teacher L has implemented some use of technology within her teaching, course delivery and student learning requirements, however this implementation of technology is mainly used to instruct students through a delivery system. For communication with students, Teacher L mainly uses email, Skype and Zoom meetings. Her preference is now Zoom as she can “have a face-to-face and … hold up a diagram, but there is also the whiteboard option”. She describes the whiteboard option as one of the most beneficial technology teaching tools that she uses “because the ones [students] who are struggling need that more visual back and forth … that we can actually do with the whiteboard to go through the problems”. As well, Teacher L is using a Learning Management System called Canvas which allows her to set up courses for students to access content and assignments and then submit assignments, complete tests and receive feedback. As described in the interview, the younger grade eight and nine students require some teaching time to learn how to use Canvas, whereas the grades ten to twelve students were able to use it more intuitively. In response to challenges of use by the grade eight and nine she states, “Initially with Canvas, a lot of them were having issues putting the right thing in the right place and knowing how to use it. Next year, I need to start out differently with the students. Let’s take some time to learn to use this well.”

At this time in Teacher L’s career, ease of use of technology for both herself and her students is the key to a successful learning space. Perhaps our interview may spur her on to incorporating more complex uses of technology into her course design, but for now she asserts that a new technology must be “easy for them [the students] to open …, and see what they need to do, and easy for me to implement.”

The following Interview Analysis document includes portions of the interview transcript aligned with analysis. The analysis connects patterns and ideas from other teacher interviews presented through the ETEC 533 lesson.

Interview Analysis

A Poetic Reflection:

There can be a lot of talk about lack of accessibility,

a lot of complaining about unpredictable connections.

There can be the fear of the unknown,

of not knowing where to start,

or knowing what it means.

Fearing failure

 from the lack of control.

There can be the giving up and the giving in,

or there can be the G0-getter that keeps on giving

and persevering

and struggling

and reconnecting

and disconnecting

and redirecting. 

The onus is put on whom?

Who will accept the responsibility?

Who is willing to move beyond ease and the conventional

And take a risk beyond what is now? 

What is placed in this learning space?

Not rows of pupils facing front – 

with a sage on the stage  

and a static page at hand.

There’s integration and intersection

of mind and machine, 

of hand and tool, 

of sight and sound,

There’s learning the rules

of not right and wrong,

but of how and why.

There’s discourse and recourse

and collaboration and cooperation.

There’s inquiry and error

and trying again.

And assessment is not so quantified, as qualified

not needing to be scored,

but needing to be shared. 

Leave a Comment

Filed under Interview

Video Cases – A Synthesis

It is Teacher E (Case 8), the science instructor of teacher candidates, who summarizes well educational technology as it weaves itself through many of the case video samples. He asserts that technology use within the classroom should be used to enhance student learning and should be integrated with other subject content. These goals of technology use can be seen throughout the case videos, as both students and teachers share that their experience with technology enables students to understand content more easily and more in depth. Although ideally, technology should be integrated with other subject areas, students and teachers admit that there is a significant learning curve that occurs in order to efficiently and meaningfully use the technology. In Case 2, Teacher M communicates that he introduces the graphing calculator to students in grade eight. By the time the students are enrolled in grade eleven, they are able to use the technology to learn content, rather than use time to learn the technology. In Case 3, a grade 12 Physics student admits that it took her a year to move through the frustration of learning the new technology. However, now that she has developed the necessary skills to implement the technology, she is able to complete the learning more easily and with a deeper understanding. This understanding is evident through her engagement and problem solving abilities within the video.

In Case 1, a reference is made to the New BC Curriculum that is beginning to be implemented in 2016/17 for grades 10-12. One of the teachers mentions that the Content of the new curriculum is the topics through which to practice the Competencies. As the Physics 12 teacher (Case 3) describes technology as evolving his teaching from being transmissive to transactive, this idea of practicing the competencies through using technology, while gaining a deeper understanding of content is highly evident. Students are collaborating with peers who are not necessarily their friends, managing their time and resources, problem solving and integrating technology appropriately – all of these activities are considered both competencies and important life skills!

A final observation is that of the educators who are implementing technology within their learning spaces. There is almost a tangible enthusiasm expressed through the screen as they share about the activity occurring among their students. All of these educators are experienced educators with at least a decade of teaching experience, and all of them have been willing to invest in learning meaningful technology either on their own, through collaboration with other teachers, or through professional development opportunities. These educators were willing to take risks and challenge the status quo of a traditional learning space. They faced challenges, but were willing to work through the challenges, viewing them as part of the learning process and keeping a positive perspective. Conversely, most of the preservice teachers and new teachers shared hesitant or even negative perspectives on using technology in significant ways in their classroom. The two most common reasons for hesitancy were lack of knowledge regarding the technology – how to implement and how to problem solve, and the amount of time necessary to teach students how to use the technology efficiently and effectively. I found this interesting because I would have assumed that the newer, and typically younger, teachers would be more capable and confident in exploring new technology than older teachers, but this is not evident within the videos, overall.


Leave a Comment

Filed under Uncategorized

Unpacking Assumptions – Theory and Design Intersecting Technology

When considering student misconceptions and conceptual challenges in science and mathematics, the use of digital technology can offer educators a tool through which to challenge previously acquired misconceptions. Initially, educators may choose to take an approach based on Vygotsky’s zone of proximal development by developing an online multiple choice test consisting of specific questions designed to reveal the common misconceptions that students bring to the learning environment. Once misconceptions are determined, technology may be used to reshape students’ conceptual ideas through varied presentation and inquiry tools. Keeping in mind Gardner’s theory of multiple intelligences, varied digital technology approaches to exploring a concept can be chosen that focus on oral, auditory, visual, interactive and constructive ways of learning.

WISE (Web-based Inquiry Science Environment) is an online science space that was explored from a constructivist perspective in ETEC 510: Design of Technology Supported Learning Environments. This digital technology tool is a space that students are required to be critical thinkers, problem solvers and role players. As students work through their relevant inquiry, they are encouraged to collaborate through problem solving and anonymous critiquing. Frequent feedback is available from the teacher as the students move through interactive activities to construct their final solution. Although I have not used this site as an educator, I continue to hold it in the back of my mind as an “ideal” in design for effective use of digital technology due to its collaborative, critical thinking and constructivist focus.

Leave a Comment

Filed under Unpacking Assumptions, WISE

A Private Universe – A Synthesis

Although my posting this week has been delayed slightly beyond the target date, I have spent some time thinking on Heather and the responses of the randomly selected students and faculty at Harvard. Although some of Heather’s explanations seems quite “out there” i.e. orbit of the Earth and definition of indirect rays from the sun, I realized that no long ago I would have fit in with the twenty-three incorrect Harvard respondents quite comfortably. I can attest that the only reason I have an understanding of the reason for seasons, moon phases and sun ray activity is because I have homeschooled my own children through the elementary school grades. When teaching them about the seasons and moon phases, an orange with a skewer stuck through it, a ping pong ball and a lamp were brought out to physically model how the sun’s light strikes the earth during its yearly orbit, and the moon during its monthly phases. In Heather’s experience, it would seem that no such modelling experience had been a part of her learning. Surprisingly, even when the science teacher presented learning with a model, the sun didn’t seem to contain a light source, so students didn’t get to physically see the light shining on various sections of the earth and moon spheres. The other day I asked my grade eight daughter, whom I am presently homeschooling, to explain the seasons, the moon phases and the difference between indirect and direct light. She confidently did so, accurately without any prompting. All of these concepts were explored during her mid-elementary home learning years, so I find it intriguing that they have stayed with her – we must have done something right!

The article that I chose to explore this past week is entitled “Children’s Ideas About Weather: A Review of the Literature” (Henriques, 2002) from Social Science and Mathematics. This article reviews literature and studies connected to student misconceptions on topics of weather mainly on the water cycle, properties of water, movement of air, climates versus weather and the greenhouse effect. The Appendices include charts with topics related to weather and scientist perspectives aside student perspectives and potentials reasons for student misconceptions. One of the key purposes of the review is to provide teachers with a comprehensive list of common misconceptions in order to help them plan effectively in how to present their instruction. As well, individualized assessment of student understanding, or lack of understanding, is critical as supported by Driver, Guesne and Tiberghien (1985) call for teachers to take into consideration the prior knowledge of students when planning concepts, experience and presentations to included within their lessons. Relating back to Heather, one of her large misconceptions was her figure eight version of the earth’s orbit around the sun. When probed, she said that she must have confused a diagram from another textbook with the diagram of the earth’s orbits. Similarly, in Henriques review, diagrams of the water cycle showing the ocean as the sole source from where water evaporates seemingly led students to believe that water only evaporates from oceans and not from any other water bodies or sources of water i.e. plants on earth. These examples related to misconceptions emphasize the importance of accuracy in visual representations for young students. This is an area in which digital technology can help students visually see or design representations of science concepts through videos and interactive websites.

To close, a comment worth considering that Henriques offers is that often what is considered a “misconception” can actually be an incomplete or limited conception, or simply unknown information (2002). Again, individual assessment and further probing is necessary in order to define what is known and what is unknown, and to help guide future learning. This, I believe, is a key aspect in effective education in all areas, yet is often neglected due to time demands and assumptions. As educators, there is room for improvement.

Driver, R., Guesne, E., & Tiberghien, A.  (1985).  Children’s ideas and the learning of science.  Children’s Ideas in Science (pp. 1-9).  Milton Keynes [Buckinghamshire]; Philadelphia: Open University Press.

Harvard-Smithsonian Center for Astrophysics (Producer).  (1987).  A Private Universe [online video].  Retrieved 6 January, 2017, from:

Henriques, L.  (2002, May). Children’s misconceptions about weather: A review of the literature. Social Science and Mathematics, 102 (5), 202-214.

Leave a Comment

Filed under Misconceptions, Unpacking Assumptions