Tag Archives: TPCK

Plate Tectonics: Reshaping the Ground Below Us

Web-based Science Inquiry Environment (WISE)

Project: Plate Tectonics – 

Renamed: Plate Tectonics: Reshaping the Ground Below Us – ID 19738

WISE is theoretically based on the Scaffolded Knowledge Integration network (SKI) which includes the following four tenets: 1) accessibility to science, 2) making knowledge visible, 3) learning from others and 4) promoting autonomy (Linn, Clark, & Slotta, 2003). In piecing together a unit study for middle school students (grade 6-8), incorporating these four tenets of SKI into the non-technology based areas of learning is intentional to enhance visibility of knowledge and opportunities for peer review and critique. The WISE Plate Tectonic project is being used as a final assignment within a geology unit based on the structure of the earth, the surface of the earth, plate tectonics, and earthquakes and volcanoes. A few authorship changes have been made to the Plate Tectonic project mainly to include a Canadian perspective. These changes include the addition of Canadian map images showing placement of volcanoes, earthquakes and mountain ranges, along with appropriate text. As well, small alterations have occurred in the subtitles of the lesson outline.

The geology unit includes three resources, two non-technology based texts and one project from WISE. The two non-technology based resources that have been chosen are faith-based resources as the school that I work for is an independent religious school. The Geology Book by Dr. John D. Morris is a textbook, but includes detailed and colourful diagrams illustrating the inside of the earth and side views of how the earth’s surface is formed. A Child’s Geography: Volume 1 by Ann Voskamp includes conversational style writing, hands-on activities, real world extensions and a living book list of extension readings. Talking about thinking is incorporated into both of these resources through oral narrations, discussions and the sharing of written work for peer critique. Learning is made visible through notebooking and hands-on model making.The table below illustrates the order of the unit with how resources will be completed in conjunction with each other.

In designing this unit, the four tenets of SKI are intentionally incorporated in addition to, or through the use of each resource. These four tenets provide a framework for students to work through an inquiry process as described in Inquiry and the National Educational Standards with students thinking “about what we know, why we know, and how we have come to know” (Center for Science, Mathematics, and Engineering Education, 2000, p.6). Linn, Clark and Slotta (2013) more specifically define inquiry “as engaging students in the intentional process of diagnosing problems, critiquing experiments, distinguishing alternatives, planning investigations, revising views, researching conjectures, searching for information, constructing models, debating with peers, communicating to diverse audiences, and forming coherent arguments” (p.518). The following table analyses each of the three resources and aligns them with the four tenets of SKI as well as the inquiry processes described by Linn, Clark and Slotta in the above definition.

Scaffolded Integration Knowledge Network Processes of Inquiry Geology Unit Resource
Accessibility to Science – {content, relevancy, real-life application} Diagnosing problems

Planning investigations

Revising views

Researching conjectures

Searching for information

WISE Plate Tectonics
Researching conjectures

Searching for information

Revising views

The Geology Book
Revising views

Researching conjectures

Searching for information

A Child’s Geography
Making Thinking Visible Constructing models

Communicating to diverse audiences

Forming coherent arguments

WISE Plate Tectonics
Constructing models The Geology Book
Constructing models A Child’s Geography
Learning From Others Diagnosing problems

Critiquing experiments

Distinguishing alternatives

Revising views

Debating with peers

WISE Plate Tectonics
Critiquing by peers

Revising views

The Geology Book
Critiquing by peers

Revising views

A Child’s Geography
Promote Autonomy Diagnosing problems

Critiquing experiments

Distinguishing alternatives

Planning investigations

Revising views

Researching conjectures

Searching for information

WISE Plate Tectonics
Researching conjectures

Searching for information

Critiquing by peers

Revising views

The Geology Book
Researching conjectures

Searching for information

Critiquing by peers

Revising views

A Child’s Geography

Center for Science, Mathematics, and Engineering Education. (2000) Inquiry and the national science education standards. Washington, DC: Author.
Linn, M. C., Clark, D. and Slotta, J. D. (2003), WISE design for knowledge integration . Sci. Ed., 87: 517–538. doi:10.1002/sce.10086
Slotta, J. D. & Linn, M. C. (in press). WISE Science: Inquiry and the Internet in the Science Classroom. Teachers College Press. Retrieved from https://edx-lti.org/assets/courseware/v1/634b53c10b5a97e0c4c68e6c09f3f1b6/asset-v1:UBC+ETEC533+2016W2+type@asset+block/WISEBookCh1-30209.pdf
Web-based Inquiry Science Environment.(1996-2016). Retrieved from https://wise.berkeley.edu/

2 Comments

Filed under Implementing Technology, Inquiry, WISE

Thinking Out Loud – A Conversation on Anchored Instruction

Alongside the writing on The Jasper Series by Cognition and Technology Group at Vanderbilt (1992) Shyu’s (2000) research on implementing video-based anchored instruction in Taiwan, and Vye, Goldman, Voss, Hmelo and Williams’ (1997) research on middle school students and college students working through The Big Splash, are considered in the following response.

**********

Anchored instruction is based on the theories of situated learning, cognitive apprenticeship and cooperative learning with the aim to enhance student problem-solving skills (Shyu, 2000). Anchored instruction largely involves generative learning. CTGV (1992) describes generative learning, by quoting Resnick and Resnick, as necessary for effective learning. Concepts and principles “have to be called upon over and over again as ways to link, interpret, and explain new information” (p.67). Anchored instruction situates “the instruction in meaningful problem-solving contexts that allow one to simulate in the classroom some of the advantages of apprenticeship learning (CTGV, 1992, p.67).  As well, anchored instruction focuses on cooperative learning which allows for the construction of ‘communities of inquiry’ – a space for students to grow understanding through discussion, explaining, and reasoning or argumentation (CTGV, 1992; Vye et al., 1997).

One of the important nuances of anchored instruction specifically evident in the research of Vye et al. (1997) is the effectiveness of thinking out loud. In their research, two experiments were completed, the first with individual students and the second with dyads or partner groupings. In both experiments, the students were asked to perform their thinking out loud. In the first experiment, the student did not participate in any dialogue with another student, instead verbalizing ideas in monologue style. In the second experiment, the students participated in reasoning, or arguments, to reach a solution, consisting of both agreements and disagreement. The success of problem-solving through reasoning in a dyad setting is attributed speculatively to the active expressing of ideas and thinking verbally, and the monitoring of reasoning and problem solving ideas by the partner. Furthermore, the data showing goal and argument linkages indicates that “goals tend to be followed by arguments and argumentation often leads to new goals” (p.472). Interestingly, the data related to the types of arguments indicated that 33% of the arguments were positive in agreement, while 67% were negative, or disagreements, both of which often lead to a new goal (Vye et al., 1997). Considering this thinking out loud aspect of anchored instruction is transformational for math instruction in general, as math problem solving traditionally is completed visually on paper, on a technology screen, or mentally – in silence.  One math resource by Sherry Parrish (2014) that I have recently acquired is entitled Number Talks: Helping Children Build Mental Math and Computation Strategies. Although digital technology is not a component of this K-5 curriculum {except for a CD-Rom with number talk sessions to instruct teachers on how to implement number talks), the physical act of talking, communicating ideas, reasoning and recognizing that there are many ways to solve a problem are premised throughout. A similar resource for grades 4-10 by Cathy Humphreys and Ruth Parker (2015) is entitled Making Number Talks Matter. Both of these resources do incorporate problem solving, but not in the same way as the video-based anchored instruction highlighted in the readings – problem solving is very much computational, rather than real-life scenarios and these math talk conversations and problem solving are dependent on access to previous knowledge, rather than generating knowledge through the problem solving. However, both math talks and anchored instruction do include ‘talking about math’, allowing for misconceptions to come to light and for students to better understand the whywhen and how of mathematics. When a student is able to speak their understanding, that understanding becomes theirs to own, and becomes a tool through which they are now learning.

In closing, Vye et al. (1997) mention other problem solving enrichments that have been established by others. Following is a collected list of further inquiry readings. These readings are referenced on p.479.

Problem Solving Reading List

References

Cognition and Technology Group at Vanderbilt (1992). The jasper experiment: An exploration of issues in learning and instructional design. Educational Technology Research and Development, (40), 1, pp.65-80.

Humphries, C. & Parker, R. (2015). Making number talks matter: Developing mathematical practices and deepening understanding, grades 4-10. United States of America: Stenhouse Publishers.

Parrish, S. (2014). Number talks: Helping Children Build Mental Math and Computation Strategies. Sausalito, California: Math Solutions.

Shyu, H.-Y. C. (2000). Using video-based anchored instruction to enhance learning: Taiwan’s experience. British Journal of Educational Technology, 31: 57–69. doi:10.1111/1467-8535.00135

Vye, N., Goldman, S., Voss, J., Hmelo, C., Williams, S., & Cognition and Technology Group at Vanderbilt. (1997). Complex Mathematical Problem Solving by Individuals and Dyads. Cognition and Instruction, 15(4), 435-484. Retrieved from http://www.jstor.org/stable/3233775

Leave a Comment

Filed under Anchored Instruction

Transforming Teaching and Learning Through Pro-D

During Module A discussion, the need for educational technology related professional development for teachers was highlighted as necessary in equipping teachers for technology use in their classroom. The specifications of professional development were not thoroughly described in the discussions, which welcomes Mishra and Koehler’s (2006) detailed explanation of effective professional development using a “learning-technology-by-approach design” (p.1035). This approach incorporates TPCK and focuses “on learning by doing, and less so on overt lecturing and traditional teaching. Design is learned by becoming a practitioner, albeit for the duration of the course, not merely by learning about practice (Mishra & Koehler, 2006, p.1035). TPCK encourages professional development in an alternative process than is typical through workshops; professional development needs to be an integration of learning about the technology (content) and learning to use the technology in an authentic learning context (pedagogy). “Standard techniques of teacher professional development or faculty development, such as workshops or stand-alone technology courses, are based on the view that technology is self-contained and emphasize this divide between how and where skills are learned (e.g., workshops) and where they are to be applied (e.g., class- rooms)” (Mishra & Koehler, 2006, p. 31). Also key to TPCK, is the learning not of specific programs – software or hardware, but of the underlying principles of technology use. This is essential as “newer technologies often disrupt the status quo, requiring teachers to reconfigure not just their understanding of technology but of all three components [i.e. content, knowledge, pedagogy]” (Mishra & Koehler, 2016, p.1030). Developing a repertoire as described by Wasley, Hampel and Clark (1997) and quoted by Mishra and Koehler (2006) as ‘‘a variety of techniques, skills, and approaches in all dimensions of education that teachers have at their fingertips’’ (p. 45) helps to equip teachers to move from a professional development experience into their classrooms and choose the technology tools that will best meet the needs of their students. This supports Petrie’s (1986) extension of Schulman’s aphorism, “those who can, do; those who understand, teach” (Shulman, 1986b, p. 14) as he describes understanding as needing to be “linked to judgment and action, to the proper uses of understanding in the forg­ing of wise pedagogical decisions” (as quoted in Schulman, 1987, p.14).

The term “transformation” that Schulman (1987) uses to refer to the experience that occurs as content knowledge is passed from teacher to student provides an effective visual image. He describes this transformation as “the capacity of a teacher to transform the content knowledge he or she possesses into forms that are pedagogically power­ful and yet adaptive to the variations in ability and background presented by the students (p.15). This transformation offers opportunity for individualized learning, teaching for the student rather than at the student, and aligns well with my teaching experience at present:

One example of incorporating PCK in my own teaching is in constructing individualized student learning plans for each of my students. As a distance learning teacher, I work with each student individually rather than offering a standard course or program. Conversations are held prior to the start of the learning year to design a student learning plan that consists of curriculum, resources, activities, etc. that cover the content area prescribed for the student’s grade level, but also adheres to the student’s interests, abilities, learning environment and effective ways of learning. Throughout the year, the student learning plan evolves as necessary, but again with the individual student’s needs guiding the changes. As students share their learning with me throughout the year, I provide specific feedback often suggesting areas that they can grow in their representation of ideas, as well as designing or recommending specific assignments to further their learning experiences. Although the forms of transformation may look different in a distance learning context, the process of moving from “personal comprehension to preparing for the comprehension of others” (Schulman, 1987, p.16) still occurs through preparation, representation, instructional selections, adaptations and tailoring (Schulman, 1987).

 

Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017-1054.
Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4 -14.
Shulman, L.S. (1987). Knowledge and teaching. The foundations of a new reform. Harvard Educational Review, 57(1)1-23.

Leave a Comment

Filed under PCK, TPCK