Do You Understand Lupine Ways of Knowing? The value of reductio ad absurdum in scientific debate.

This week I thought I would raise the rather contentious  issue of the reductio ad absurdum argument (also known as argumentum ad absurdum). This is the ancient form of logical argument that seeks to demonstrate that an argument or idea is nonsense by showing that a false, ludicrous, absurd result follows from its acceptance, or alternatively that  an argument is sound as a false, untenable, or absurd result follows from its denial.

The nature of this argument has venerable roots and it is well documented as a form of logic in ancient Greece, used by such luminaries as Xenophranes, Socrates, and Plato . However, in modern academia there seem to be rather polarized views on it. 1) that it trivializes an argument and belittles the person taking a particular position or 2) that is is a valid and reasonable way of demonstrating that an idea is unsound. There also seems to be a cultural aspect in that I have found it used more frequently in Europe, whereas in North America it is somewhat frowned upon in many academic circles.

Naturally, as Rog and I are somewhat subversive and agitative academics (I use the term loosly) we are in full support of it, and to this end have just published a paper in Nursing Inquiry using exactly this form of argument to challenge the established wisdom of a specific postmodern argument for alternative ways of knowing. This paper was based on an earlier blogpost on this very blog site. Here, we use the ad absurdum argument to note that the principles used to support Carper’s  four ways of knowing can equally well be used to support a more creative typology (in this case including, arcane knowing, and lupine knowing).

Naturally, as with any form of intellectual rationale the argument is only as good as the fundamental data and facts it is based upon. Therefore, an ad absurdium argument can be misused, or poorly constructed. It is also often used erroneously as a Straw Man argument.

Considering what is absurd and what isn’t is a tricky thing for anyone, and particularly problematic in science.  For example, many Victorian scientists scoffed at the thought of powered flight, and even Einstein had issues with the notion of black-holes. Therefore, identifying absurdity is not something easily undertaken, as it may simply be the ideas presented are highly original or unconventional. The bacteria Helicobacter Pylori being suggested as a cause of gastric ulceration is a good example, as this theory was not readily accepted by the medical community for several years, despite good evidence.

Also, this is not the same as absurdity as used in common parlance. Commonly absurd positions are seen as ridiculous, or foolhardy, but an argument ad absurdum does not suggest the person making the argument should be ridiculed or lampooned. After all, we have all believed ridiculous things at one time or another; for western children the notion that Santa Clause brings all the children in the world toys on one night a year is a case in point! For the purpose of scientific thinking, for something to be demonstrated as absurd here we really need to see that there is inconsistency in the arguments presented. An absurd position may be considered one that is contrary to reason, irrational, or ludicrous to follow due to the practical implications of believing it. Unfortunately, several concepts now accepted and used in modern science arose in exactly this fashion: Quantum physics for example. However, repeated scientific observation and empirical data have proved quantum theory correct. So, paradigms change with time and we should be cautious about suggesting any position is ridiculous.

From a pragmatic position, I would argue an argument that can be demonstrated as fallacious by analysing its components, and demonstrating inconsistencies, or that you can demonstrate by accepting it you are also supporting associated positions that make no sense and have no practical value, then an ad absurdum position can be used effectively to demonstrate these weaknesses.

At the end of the day the sensitivities invoked by this form of argument are worth considering, and it is a form of rationale that is not easy to develop effectively. However, as long as the use of it involves demonstrating the nonsense an idea or position presents, rather than attacking the person making the argument, I would suggest it is a useful form of analysis. As a scientist if you are prepared to make any case, hypothesis or argument, you should be prepared to have it challenged and debated, and defend it. If the position is sound it will survive this critique, and win through. That is what good science is all about, but to make sound ad absurdum arguments you have to have a good working knowledge of the logical fallacies to start with.  They can also be a lot of fun too, and if this form was good enough for Socrates…



Carper B.A. (1978), “Fundamental Patterns of Knowing in Nursing”, Advances in Nursing Science 1(1), 13–24

Garrett B.M. & Cutting R.L. (2014) Ways of knowing: realism, non-realism, nominalism and a typology revisited with a counter perspective for nursing science. Nursing Inquiry. Retrieved 21 May 2014.

Rescher N. (2009) Reductio ad absurdumThe Internet Encyclopedia of Philosophy. Retrieved 21 May 2014.




Seasons Greetings: The wonders of integrative science

Hello all,

As usual Roger and I have put together a little something extra for our holiday blog. This year we have tackled the brave new world of integrative science. Now many of you may have noticed a growing trend in integrative science which combines traditional scientific methodologies with other more spiritual and intuitive forms of inquiry. So to avoid any confusion we have created a video scribble to explain the intricacies of this important subject.

So kick back, grab a savoury snack and a beverage (or an iced drink, for readers in the southern hemisphere), and click on the link to enjoy this short video presentation that will explain all. We proudly present: the Wonders of Integrative Science…

Happy Holidays all!

Roger and Bernie

P.S. It has been suggested that there may be some issues with our critical reasoning here, so in the spirit of good science we will award a fabulous prize to any reader who can identify all of the logical fallacies, and problems in the video!

Memory, falsity and how we know what isn’t so.

In the week that Totness seems to have become the CAM capital of the UK (apparently it’s twinned with Narnia), my mind turned to the ways in which we can so easily believe in things that are on reflection, obviously not so.

The media certainly has its share of the blame here, often whipping up a sensationalist frenzy of interest in stories that turn out to be untrue. An interesting one this side of the Atlantic was the 2008 case of a reported “pregnancy pact” between 17 teenage girls in Gloucester, MA. This stirred up considerable media interest and has spawned two movies and at least one book I know of. Nevertheless, it was actually not true, and the teenage pregnancy rate in Gloucester was really lower than many other towns in the USA.

However, our own brains can easily mislead us too, as cognitive psychological research frequently tells us. I have also found this area fascinating, and the following example is a great brain twister that illustrates the point.

One area of reasoning can easily give rise to erroneous results is that of memory and illusory inference. The brain uses specific parts of the brain to process and store information (such as the hippocampus for working memory and cerebellum for motor skills). Psychological research has suggested that we can only actually think about seven things at once before we overload our working memory capacity (Miller, 1956). This working or so-called “short-term” memory limits our reasoning ability, but the theory is, has evolved to represent more-than-sufficient working memory for everyday life (Johnson-Laird, 2008).

Indeed. Some people with hippocampus and other brain-injuries have demonstrated short-term memory loss, whilst some “memory athletes’ train to improve their memory capacity for competitions and achieve some remarkable results remembering names, cards, faces and numbers (Foer, 2011). Nevertheless, the memory athletes use techniques that help store information in areas outside of working memory and all appear bounded by the same cognitive processing limitations as the rest of us. We also know there are conscious (declarative) and unconscious (non-declarative) processes that result in memorization, but as yet we still do not fully understand the complex inner workings of memory processing and cognition in the brain.

The limit of about seven things to process at a time seems fairly consistent, and more recent work suggests the human mind also tends to ignore things that are false (also known as falsity).

Falsity involves leaving out or ignoring information in the reasoning process to leave a proposition that is false. Mary Newsome and Philip Johnson-Laird of Princeton University reported in a 2006 experimental study that for certain sorts of premise individuals reliably infer invalid conclusions (Newsome & Johnson-Laird, 2006).  Complex propositions may confuse us into making the wrong decision. Lets take an example, only one of the following statements is true for a hand of two cards:

  1. If there is a king in the hand, then there is an ace
  2. If there is not a king in the hand, then there is an ace

Which is more likely the king or the ace in the hand of cards?  You might want to try and figure out your own answer before reading further.

We generally mentally map out this problem of probability as follows on the basis that we consider each separate statement as true:

  • King & Ace
  • Not King & Ace

So the answer most of us come up with is the ace. It seems we would more likely have a ace in the hand without a king compared to having no king and an ace, as the ace occurs in both sets of statements whereas the king only in the first.  However, this is an illusory response as what we overlook is that when one conditional statement is true, the other must be false i.e. there is an exclusive disjunction in the statements (only one of them can be true). We can see this if we fully map out the problem more explicitly:

EITHER: If “King then Ace” is true, and “Not King then Ace” is false,

OR: If “Not King then Ace” is true and “King then Ace” is false,

Using the mutually exclusive nature of the two statements the two possible models are:

  • Not King & Not Ace  (where the first statement is true and second false)
  • King & Not Ace (where the second statement is true and first false).

In this above rationale we can now see the Ace is not only less likely to occur, but an ace is also logically impossible in the hand given the requirement that the other statement must be false. This is actually the correct solution.

Lastly, let us consider a third option, what if both statements could be true?

This is what is technically known as a bi-conditional interpretation of two conditionals and if we write out all the possible hands using an “and” rule: (that is to say if and only if “king then ace,” and if and only if “no king than ace” we would get these possibilities:

  • King & Ace
  • Not King & Ace
  • Not King and Not Ace
  • King & Not Ace.

In this case there would be an equal chance of holding a king or an ace, but again this answer is also incorrect as it ignores our conditional “either or” statement in the initial premise. In an experiment by Johnson-Laird and Savary experiment in 1996, using this problem administered to students, 79% of participants gave the initial response that an ace was more likely, 13% got the correct answer that the king was more likely, and 8% also incorrectly thought they had an equal chance (Johnson-Laird & Savary, 1996).

They suggested people reason from a mental model that is constructed according to a “principle of truth”, i.e. a model of a possibility representing clauses in the premises only when these clauses are considered true, i.e. we ignore things that are not explicitly stated as false (Johnson-Laird, 2008; Newsome & Johnson-Laird, 2006). This form of reasoning arises from our prior knowledge and experience and reduces the mental processing load, but for this type of problem the consequence is an erroneous result.

Confused yet? Well, that is the point. There are lots of other examples of cognitve and sensory issues that can mislead our brain, but I quite like this one. If you got all this on the first reading I suggest you immediately grab an application form for MENSA and get working on your acceptance speech for an inevitable Nobel prize. However, for the rest of us this serves to indicate why science remains an important epistemological approach.

Anyone can challenge anything in science and the peer review and verification processes (although flawed) are powerful tools in discriminating evidence. Scientists, as much as anyone else, certainly hold things to be true now that will be proven otherwise in future, but the beauty of science is it encourages us to do so. Modern science recognizes the dynamic, and changing nature of our knowledge, and more importantly, our ability to be deceived by our own thinking.



Foer, J. (2011) Moonwalking with Einstein: The art and science of remembering everything . New York, NY: Penguin Press.

Johnson-Laird, P. N. (2008). How we reason: A view from psychology. The Reasoner, 2, 4-5.

Johnson-Laird, P. N., & Savary, F. (1996). Illusory inferences about probabilities. Acta Psychologica, 93, 69–90.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information”. Psychological Review, 63(2), 81-97.

Newsome, M. R., & Johnson-Laird, P. N. (2006). Falsity dispels fallacies. Thinking and Reasoning, 12(2), 214 – 23.