Tag Archives: plastic pollution

Breaking Down Plastic, One Worm at a Time

A 2022 study by Sanluis-Verdes et al. has found that wax worm saliva is able to break down plastic in just a few hours.

The researchers collected saliva from Galleria mellonella worms and applied it to polyethylene (PE) films. After a few hours, the films had visibly deteriorated and analysis of the films determined that the plastic had oxidized and released additives, evidence that it had degraded.

Credit: Catherine Sheila

Generally, plastics require decades or even centuries to completely degrade through natural exposure to the environment. Because of humanity’s high consumption of plastic, simply dumping them in landfills or waterways only leads to an accumulation that smothers habitats and leaks toxic substances into the soil and water.

This makes finding a safe and quick way of breaking down plastic crucial for sustainable waste management.

Scientists in recent years have been particularly interested in biodegradation, in which naturally-produced enzymes from bacteria, fungi, or animals are used to decompose plastic.

However, scientists have only identified a handful of enzymes that are capable of this, and these enzymes still require years to degrade plastic. They are unable to accomplish the first step of degradation – oxidizing the polymer – and still rely on exposure to UV light and other environmental factors to do it, which usually takes years.

Currently known process of plastic degradation. Credit: Rebecca Yang

Sanluis-Verdes et al.’s experiment demonstrated that the enzymes in wax worm saliva are in fact able to accomplish this crucial step under normal physiological conditions – room temperature, neutral pH, typical background levels of UV – in just a few hours rather than years. The researchers identified an increased presence of ketones in the PE after only applying the saliva a few times, proof that it had been oxidized by the enzymes alone. 

The researchers also tried to identify the enzymes responsible. They were able to pick out two enzymes in the saliva that had a significant effect on PE degradation. Until now, it was believed that bacteria in the gut of wax worms were primarily responsible for plastic degradation, but this discovery indicated that it was the wax worms themselves that oxidized and broke down PE enough for it to then be completely decomposed by bacteria. The researchers also noted that the two enzymes were functionally different from known bacterial enzymes. This suggests that there may be other methods of biodegradation than what is currently known for bacteria.

The exact mechanism will require further studies to determine. If this can be identified and if the enzymes involved can be easily extracted or mass produced, using the enzymes found in wax worms may become a feasible way to naturally and quickly manage plastic waste.

Enzymes – A Solution in the War Against Plastics

It should not be a surprise to people that it can take over 500 years for UV radiation – light from the sun to break down a piece of plastic. But what if there is a faster way to break down single-use plastics?

Researchers at the University of California, Berkeley invented a new way to decompose consumer plastics in a short amount of time, simply with heat, water, and nano-dispersed enzymes.

Plastic waste covering the shoreline. Source

UC Berkeley professor Dr. Ting Xu and her research group  developed a nanoscale enzyme that can eat away at the polymers in plastics. These nanoscale polymer-eating enzymes can be embedded into plastics during manufacturing. The enzymes were wrapped around plastic resin beads. These beads are melted and can be manufactured into single use consumer plastics. To prevent the enzymes from activating when not required, a random heteropolymer (RHP) coating is applied to hold enzymes without restricting the flexibility of tensicity of the plastics.

Xu likened this process to organic composting. By adding water and heat, the RHP polymers is removed and starts eating away the polymers into smaller subunits.

The research conducted by Xu and her group found that the enzymes took about a week to degrade most of the plastics. Polylactic acid (PLA) and polycaprolactone (PCL) based plastics embedded with nanoscale polymer eating enzymes are able to break down the polymer chains into smaller molecules, such as lactic acid.

Plastic cups made from biodegradable plastics. Source

It is clear there is still more research needed in this field. Currently, Xu is developing other modified RHP-wrapped enzymes that can stop the degradation process at specific points in it’s degradation so that the polymers can be recycled into new plastics.

“[Humans] are taking things from the Earth at a faster rate than we return them,” said Xu. “Don’t go back to Earth to mine for these materials, but mine whatever you have, and then convert it to something else.”

As consumers, we can play an important role reducing our consumption on single use plastics and create a more sustainable environment for ourselves and future generations.

 

Raymond Tang