[22] Deventer M, Jiao Y, Rhew R, Turnipseed A, Knox S, Lewis J, Anderson F, Miller B. (2018). Ecosystem Scale Measurements of Methyl Halide Fluxes from a Brackish Tidal Marsh Invaded with Perennial Pepperweed (Lepidium latifolium). Journal of Geophysical Research: Biogeosciences (accepted).

[21] Knox S, Windham-Myers L, Anderson F, Bergamaschi B, Sturtevant C. (2018). Direct and indirect effects of tides on ecosystem-scale CO2 exchange in a brackish tidal marsh in Northern California. Journal of Geophysical Research: Biogeosciences. 123(3): 787-806.

[20] Hemes K Chamberlain S, Eichelmann E, Knox S, Baldocchi D. (2018). A biogeochemical compromise: The high methane cost of sequestering carbon in restored wetlands. Geophysical Research Letters (accepted)

[19] Windham-Myers L, Wei-Jun C, Megonigal P, Hopkinson C, Anderson A, Hinson A, Lagomasino D, Peteet D, Howard J, Pidgeon E, Wang Z, Crosswell J, Dunton K, Kroeger K, Paulsen M, Alin S, Hu X, Hernandez-Ayon J, Tzortziou M, Watson E, Najjar R, Herrmann M, Knox S, Schafer K. (2018). Chapter 15. Tidal Wetlands and Estuaries. 33. U.S. Global Change Research Program.

[18] Hemes K, Eichelmann E, Chamberlain S, Knox S, Oikawa P, Sturtevant C, Verfaillie J, Baldocchi D. (2018). A unique combination of aerodynamic and surface properties contribute to surface cooling in restored wetlands of the Sacramento-San Joaquin Delta, California. Journal of Geophysical Research: Biogeosciences (accepted).

[17] Eichelmann E, Hemes K, Knox S, Oikawa P, Chamberlain S, Sturtevant S, Verfaillie J, Baldocchi D. (2018). The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento–San Joaquin River Delta, California. Agriculture and Forest Meteorology. 256-257: 179-195.

[16] Windham-Myers L, Bergamaschi B, Anderson F, Knox S, Miller R, Fujii R. (2018). Potential for negative emissions of greenhouse gases (CO2, CH4 and N2O) through coastal peatland re-establishment: Novel insights from high frequency flux data at meter and kilometer scales. Environmental Research Letters. 13(4)

[15] Oikawa, P, Jenerette G, Knox S, Sturtevant C, Verfaillie J, Dronova I, Poindexter C, Eichelmann E, Baldocchi D. (2017). Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. Journal of Geophysical Research: Biogeosciences. 122(1): 145-167.

[14] Oikawa, P, Sturtevant C, Knox S, Verfaillie J, Huang Y, Baldocchi D. (2017). Revisiting the partitioning of net ecosystem exchange of CO2 into photosynthesis and respiration with simultaneous flux measurements of 13CO2 and CO2, soil respiration and a biophysical model, CANVEG. Agricultural and Forest Meteorology. 234–235: 149-163.

[13] Knox S, Dronova I, Sturtevant C, Oikawa P, Matthes J, Verfaillie J, Baldocchi D. (2017). Using digital camera and Landsat imagery with eddy covariance data to model gross primary production in restored wetlands. Agricultural and Forest Meteorology. 237-238: 233-245.

[12] McNicol G, Sturtevant C, Knox S, Dronova I, Baldocchi D, Silver W. (2017). Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Global Change Biology. 23(7): 2768-2782.

[11] Xin F, Xiao X, Zhao B, Miyata A, Baldocchi D, Knox S, Shim K, Chen B, Li X, Wang J, Dong J, Biradar C. (2017). Modeling gross primary production of paddy rice cropland through analyses of data from CO2 eddy flux tower sites and MODIS images. Remote Sensing of Environment. 190: 42-55.

[10] Baldocchi D, Knox S, Dronova I, Verfaillie J, Oikawa P, Sturtevant C, Matthes J, Detto M. (2016). The impact of expanding flooded land area on the annual evaporation of rice. Agricultural and Forest Meteorology. 223: 181-193.

[9] Anderson F, Bergamaschi B, Sturtevant C, Knox S, Hastings L, Windham-Myers L, Detto M, Hestir E, Drexler J, Miller R, Matthes J, Verfaillie J, Baldocchi D, Snyder R, Fujii R. (2016). Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols. Journal of Geophysical Research: Biogeosciences. 121(3): 777-795.

[8] Sturtevant C, Ruddell B, Knox S, Verfaillie J, Matthes J, Oikawa P, Baldocchi D. (2016). Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange. Journal of Geophysical Research: Biogeosciences. 121(1): 188-204.

[7] Knox S, Matthes J, Sturtevant C, Oikawa P, Verfaillie J, Baldocchi D. (2016). Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research: Biogeosciences. 121(3): 978-1001.

[6] Poindexter C, Baldocchi D, Matthes J, Knox S, Variano E. (2016). The contribution of an overlooked transport process to a wetland’ʹs methane emissions. Geophysical Research Letters. 43(12): 6276-6284.

[5] Matthes J, Knox S, Sturtevant C, Sonnentag O, Verfaillie J, Baldocchi D. (2015). Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements. Biogeosciences. 12: 4577-4594.

[4] Knox S, Sturtevant C, Matthes J, Koteen L, Verfaillie J, Baldocchi D. (2015). Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biology. 21(2): 750-765.

[3] Matthes J, Sturtevant C, Verfaillie J, Knox S, Baldocchi D. (2014). Parsing the variability in CH4 flux at a spatially heterogeneous wetland: Integrating multiple eddy covariance towers with high-resolution flux footprint analysis. Journal of Geophysical Research: Biogeosciences. 119(7): 1322-1339.

[2] Baraer M, McKenzie J, Mark B, Gordon R, Bury J, Condom T, Gomez J, Knox S, Fortner S. (2014). Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrological Processes. 29(11): 2561-2581.

[1] Knox S, Carey S, Humphreys E. (2012). Snow surface energy exchanges and snowmelt in a shrub-covered bog in eastern Ontario, Canada. Hydrological Processes. 26(12): 1876-1890.