References & Links

Data Sources:

UBC Forestry CFCG

UBC Department of Geography

Environment Canada’s Wind Energy Atlas


ArcGIS (version 10.2.2 & 10.2)

QGIS (version 2.6.0)

SAS 9.4

Microsoft Excel (with SAS Add-In 7.1 for Microsoft Office)

ClimateBC (version 5.03) – We discovered a bug in the 5.03 version and the bug is now fixed in version 5.04

MATLAB (2014a & 2013a Student Version)



Ali, A. a, Blarquez, O., Girardin, M. P., Hély, C., Tinquaut, F., El Guellab, A., … Bergeron, Y. (2012). Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proceedings of the National Academy of Sciences of the United States of America, 109(51), 20966–70. doi:10.1073/pnas.1203467109

BC Ministry of Forests and Range Wildfire Management Branch. (2009). Climate Change and Fire Management Research Strategy. Retrieved on Octbober 26th, 2014 from

Beaty, R.M. and Taylor, A.H. (2001). Spatial and Temporal Variation of Fire Regimes in a Mixed Conifer Forest Landscape, Southern Cascades, California, USA. Journal of biogeography, 28(8): 955-966.

Bourbonnais, M. L., Nelson, T. A., & Wulder, M. A. (2014). Geographic analysis of the impacts of mountain pine beetle infestation on forest fire ignition. Canadian Geographer, 58, 188–202. doi:10.1111/j.1541-0064.2013.12057.x

Box, GEP. (1953). Non-normality and tests on variances. Biometrika 40:318-335.

Centre for Forest Conservation and Genetics (n.d.). ClimateBC/WNA. Retrieved on November 23rd, (2014) from

Chen, H., Jackson, P.L., Ott, P.K. and Spittlehouse, D.L. (2014). A spatiotemporal pattern analysis of potential mountain pine beetle emergence in British Columbia, Canada. Forest Ecology and Management, 337 (2015): 11-19.

Environment Canada (2011). Welcome to the Atlas. Retrieved on November 23rd, (2014) from

Flannigan, M.D., Stocks, B.J., Wotton, B.M. (2000). Climate change and forest fires. Science of The Total Environment, 262(3): 221-229. Doi:10.1016/S0048-9697(00)00524-6.

Grey, R.W. and Blackwell, B.A. (2005). Forest Health, Fuels, and Wildfire: Implications for Long-Term Ecosystem Health – A Report Commissioned by the BC Forest Practices Board. Retrieved from

Heyerdahl, E. K., Brubaker, L. B., Agee, J. K., Ecology, S., and Mar, N. (2001). SPATIAL CONTROLS OF HISTORICAL FIRE REGIMES: A MULTISCALE EXAMPLE FROM THE INTERIOR WEST, USA. Ecology, 82(3), 660–678. Retrieved from

Hirsch, K. (1996). Canadian Forest Fire Behavior Prediction (FBP) system: user’s guide. Edmonton, AB, CAN: Canadian Forestry Service. Retrieved from

Jenkins, M. J., Runyon, J. B., Fettig, C. J., Page, W. G., and Bentz, B. J. (2014). Interactions Among the Mountain Pine Beetle, Fires, and Fuels, 60(x), 1–13.

Kipfmueller, K. F., Swetnam, T. W., and Morgan, P. (2002). Climate and Mountain Pine Beetle-Induced Tree Mortality in the Selway-Bitterroot Wilderness Area.

Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., … and Safranyik, L. (2008). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190), 987-990.

Lacey, M. (n.d.) Multiple Linear Regression. Retrieved November 25th, 2014 from

Lemay, V. (2014). FRST 430/533 class notes.

Lorenzen TJ, Anderson VL. (1993). Design of Experiments: a No-Name Approach. New York,

Marcel Dekker.

Natural Resources Canada (2013). The State of Canada’s Forests. Retrieved from

Natural Resources Canada (2014). Canadian Wildland Fire Information System. Retrieved from

Penner, D. (October 15th 2014). Not all fires are worth fighting. Vancouver Sun. Retrieved from

Osborne, J.W. and Waters, E. (n.d.) Four Assumptions Of Multiple Regression That Researchers Should

Always Test. Practical Assessment, Research, and Evaluation, 8(2): 1-5.

Pacific Climate Impacts Consortium (2013). Plan2adapt. Retrieved on October 26th, 2014 from

Page, W. G., Alexander, M. E., Jenkins, M. J., Page, W. G., Alexander, M. E., & Jenkins, M. J. (2013). Wildfire ’ s resistance to control in mountain pine beetle-attacked lodgepole pine forests, 89(december), 783–794.

Page, W. G., and M. Jenkins. (2007). Predicted fire behavior in selected mountain pine beetle-infested lodgepole pine. Forest Science 53(6): 662–674..

Parisien, M. A., V. Peters, Y. Wang, J. Little, E. Bosch, and B. Stocks. (2006). Spatial patterns of forest fires in Canada, 1980-1999. International Journal of Wildland Fire 15(3): 361–374.

Province of British Columbia (n.d.). What is DataBC? Retrieved on November 23rd, 2014 from

Reilly, J.M., Stone, P. H., Forest, C. E., Webster, M. D., Jacoby, H. D., and Prinn, R. G. (2001). Uncertainty and climate change assessments. MIT Joint Program on the Science and Policy of Global Change.

Sakia, R.M. (1992). The Box-Cox transformation technique: a review. The Statistician, 41: 169-178.

Simard, M., W. Romme, J. Griffin, and M. Turner. (2011). Do mountain pine beetle outbreaks change the probability of active crown fire in lodgepole pine forests? Ecological Monographs, 81(1): 3–24.

StatSoft (n.d.). How To Find Relationship Between Variables, Multiple Regression. Retrieved November 30, 2014 from

Taylor, A. H. (2000). Fire regimes and forest changes in mid and upper montane forests of the southern Cascades, Lassen Volcanic National Park, California, USA. Journal of Biogeography, 27(1), 87-104.

Vidale, P. L., Lüthi, D., Frei, C., Seneviratne, S. I., and Schär, C. (2003). Predictability and uncertainty in a regional climate model. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D18).

Wu, H.Z., C. Cheng, C.C. Ying and H.B. Ju. 2005. Predicting site productivity and pest hazard in lodgepole pine using biogeoclimatic system and geographic variables in British Columbia. Annals of Forest Science 62(1): 31-42.

Wildfire Management Branch (n.d.a). B.C. Fire Average. Retrieved on October 22nd , 2014 from

Wildfire Management Branch (n.d.b). B.C. Fire Average. Retrieved on October 26st, 2014 from

Wilkinson, M.T. and Humphreys, G.S. (2006). Slope aspect, slope length and slope inclination controls of shallow soils vegetated by sclerophyllous heath—links to long-term landscape evolution, Geomorphology, 76( 3–4): 347-362. Doi: 10.1016/j.geomorph.2005.11.011.

Leave a Reply

Your email address will not be published. Required fields are marked *