Tag Archives: Innovation

Predicting Marine Populations with Phytoplankton

View of Earth from space. Photo from Wikimedia Commons.

Did you know that the ocean is predicted to warm over 4°C  the next 100 years? There’s certainly more than meets the eye when it comes to understanding the effects of global warming, and knowing how ecosystems change in response to changes in temperature can help make our efforts more focused and accurate.

As a recent PhD graduate from the University of British Columbia, Dr. Joey Bernhardt is already making waves in the science community. Her most recent paper describes the use of phytoplankton to analyze growth rates among species under different temperature conditions. Most of the study’s work actually occurred just last September, and we were lucky enough to be able to meet Dr. Bernhardt to explore the bigger picture issues she’s addressing.

What’s so special about phytoplankton?

Green swirls of phytoplankton in the Baltic Sea. Photo from Wikimedia Commons.

To debunk a common misconception: not all of the oxygen we breathe comes from trees. In reality, nearly 50% of the world’s oxygen supply is produced by phytoplankton. What’s more, phytoplankton serve as the basis of marine food webs, so it’s no surprise that they were the main subjects used in Dr. Bernhardt’s study. These remarkable organisms can actually help us make predictions about species populations in the context of global warming.

What issues are being addressed?

2070-2100 global warming predictions map. Photo from Wikimedia Commons.

One of the most pressing issues in our global warming narrative surrounds how temperature changes affect species population. While it’s easy to measure population growth rates in the controlled conditions of a lab, Dr. Bernhardt explores whether we can apply these results to the unpredictable, fluctuating temperatures of the outdoor environment.

If we were to disregard the fact that in nature temperatures fluctuate, we will ultimately make inaccurate population predictions. To generate a more realistic sample, Dr. Bernhardt collected phytoplankton off the coast of Vancouver Island and placed them in lab incubators that mimic a natural environment using a variety of temperature settings.

To gain a better understanding of the methodology behind Dr. Bernhardt’s study, check out our video:

https://youtu.be/F5rC4PLMsds

Why should I care?

When a species find themselves in an environment outside of their normal temperature range, they will either die off or relocate to more habitable areas. This now presents an entirely new problem since it’s not always easy for the communities that rely on these populations to pack up and move as well. From an economic standpoint, there are whole industries built upon the reliance that these populations will return, year after year.

The Future of Global Economic and Climate Change Issues

These experiments allow us to see the range of temperatures at which a species can persist. We can then pair this with the knowledge of how temperatures around the globe will shift over time in order to build more sustainable communities.

We take a deeper look into the applications of this technology in our podcast:

Group 213-5: Danny Israel, Christy Lau, Christina Rayos

Immortality?

What defines immortality? If immortality is defined by “living” beyond the grave as a physical body with a personality and ability to interact with the world, then computer science is on the edge of this scary yet fascinating phenomenon.

https://www.sciencealert.com/images/articles/processed/shutterstock_225928441_web_1024.jpg

What is it:

In the past few years, researchers have developed many different types of AI technology to capture and store human data, with the potential of building Virtual Reality replicas of the deceased. This AI technology is based on the idea of “augmented reality,” where an AI programme uses the technological imprint – past social media – left behind by someone to build a digital replica of them. Lifenaut, a branch of the Terasem Movement, for example, gathers human personality data for free with the hope of creating a foundational database to one day transfer into a robot or holograph. While this technology is still in its experimental stages, at least 56,00 people have already stored mind-files online, each containing the person’s unique characteristics, including their mannerisms, beliefs, and memories. According to researchers, in about fifty years, millennials will have reached a point in their lives where they will have generated zettabytes (1 trillion gigabytes) of data, which is enough to create a digital version of themselves.

How:

The prospective application of this technology is that loved ones may use robot reincarnation as a way to grieve or commemorate someone who passed away. VR replicas will be able to speak with the same voice as the dead person, ask questions, and even perform simple tasks. They may be programmed to contain memories and personality, so family members could dynamically converse and interact with them.

https://www.youtube.com/watch?time_continue=89&v=KYshJRYCArEConcerns:

Concerns:

Of course, digital-afterlife technology is a revolutionary concept that brings major ethical and practical implications. Some believe that VR replicas of loved ones are a normal, new way to mourn the deceased, similar to current ways people use technology to remember their loved ones, such as watching videos or listening to voice recordings. The problematic part of this application is that it does not seem like a healthy way to grieve. Allowing people to clutch onto digital personas of deceased individuals out of fear and delusion could effectively inhibit people from moving on with their life. The other consequence that this AI technology threatens is the potential of robots achieving high intelligence, becoming so advanced they could replicate the human race. Some futurists thus believe that it is essential to program chips with preventative technology into robots to battle this apocalyptic risk. There are also significant social implications to consider with VR replicas. Should the right to create these replicas be based solely on wealth? The prospect of people having the ability to buy immortality, even in digital form, is certainly problematic, as it perpetuates troubling societal disparity. Ultimately, there are far too many harmful individual and societal consequences of VR human replication technology for it be a worthwhile or necessary AI innovation.

Do you believe in immortality?

No, and one life is enough for me.” – Albert Einstein

~ Angela Wei

Combating Climate Change with Robotic Jellyfish

The backbone of any diverse ecosystem is a healthy coral reef. Image from Wikimedia Commons

A quick dive beneath the ocean’s surface can reveal a completely different world. Our ocean’s coral reefs house some of nature’s most complex, diverse, and lively aquatic life. Alas, with global warming increasing our ocean’s temperatures, most of this coral is actually dying at an alarming rate.

Be that as it may, within this bustling community you might come across a robotic jellyfish or two. Have no fear, these ones don’t sting! In fact, these devices may be our solution to combating climate change.

What are robotic jellyfish?

The robotic jellyfish is a device that was developed by Erik Engeberg and his team of mechanical engineers at Florida Atlantic University. This robot mimics the gentle movements of a real jellyfish and collects data on ocean temperatures via built-in sensors. Ultimately, this allows for the study of the hidden impacts of climate change at sea.

The robotic jellyfish propelling itself gently through the ocean. Image from JENNIFER FRAME, NICK LOPEZ, OSCAR CURET AND ERIK D. ENGEBERG/IOP PUBLISHING

Can this robot save our reefs?

Yes! In fact, the Great Barrier Reef recently experienced a widespread death of coral (a process known as “bleaching”). Consequently, the death of aquatic life whom depended on coral as shelter to protect themselves from predators followed suit. With that being said, the creation of the robotic jellyfish has allowed scientists to develop better measures to protect these reefs from further damage.

Coral reefs become lacklustre and dull after dying in a process known as “bleaching”. The bleaching of coral reefs no longer provide shelter for aquatic life. Image from Wikimedia Commons

How were coral reefs studied before?

In the past, drones were deployed to collect data on marine life; however, they were very destructive. For instance, drones produced a lot of noise which can scare off marine life. On top of that, their propellers take in ocean water quite forcibly, tearing off the coral which is an essential habitat for these animals.

The soft movements of wild jellyfish were what inspired Engeberg and his team to develop quieter technology to monitor coral reefs. The robotic jellyfish has allowed us to collect data without posing as a threat to animals or potentially destroying the reef.

Underwater drones were used in the past. However, their propellers were quite noisy and posed as a threat to the coral reefs. Image from Wikimedia Commons

The Future of the Robotic Jellyfish

Though the robotic jellyfish is still a work in progress, it has given scientists a better understanding of how to tackle the ongoing fight with climate change. To give you a better visual and understanding of the robotic jellyfish, this Youtube video summarizes the robot and all its technicalities:

-Christina Rayos

Wearable Stickers: The New Life-Saving Medical Device

What if a sticker could save your life? Sometimes, the scariest part about being sick is not knowing whether you are taking all the correct measures to monitor and treat your illness, even after the doctor prescribes medication. A number of wearable devices such as wristbands have been created to monitor our physical activity and ensure that our health is on the right track. However, these devices are typically very expensive.

Recently, a team from Purdue University in Indiana published their research in ACS Advanced Materials and Interfaces on an electronic wearable sticker. These smart stickers are a simpler and more cost- efficient version of existing electronic wearable devices available for personalized medicine.

University Hall at Purdue University. Courtesy of Flickr Commons (Bill Badzo)
Source: https://flic.kr/p/suXmh8

 

Both the electronic devices and the stickers can alert users of any health risks or warning signs in real time. They contain sensors that record electrocardiograms, electromyograms and electrooculograms, which measure the electrical activity produced by the heart, the skeletal muscles, and the corneas respectively. They can also provide thermotherapeutic treatments, or heat therapy, to joints.

EPEDs demonstration video. Courtesy of YouTube. Source: https://www.youtube.com/watch?v=IuKbx3xyPIk

Purdue’s new epidermal, paper-based electronic device (EPED) can also be used as implantable sensors that monitor sleep, as they can adapt to internal organs without any serious effects. They are inexpensively paper-based and made out of cellulose. Lined with serpentine shapes, which make them more flexible and stretchable, they are coated with molecules that protect them from sweat, oil, water and bacteria as well. Each sticker costs about 5 cents to produce, and only require cheaper printers likened to those used to print books quickly and efficiently.

EPED Stickers designed by Purdue University. Courtesy of Youtube.
Source: https://www.youtube.com/watch?v=IuKbx3xyPIk

Book Printer. Courtesy of Wikimedia Commons.  Source: https://commons.wikimedia.org/wiki/File:On_demand_book_printer_2.jpg

As wearable devices become increasingly popular in this technological era, these stickers are a cheap and effective solution that makes personal health monitoring more accessible to all. Since they are so easy to implement and test, with growing research, they can be developed to accommodate a range of other healthcare needs in the very near future.

– Justine Law