Tag Archives: OLED

Looking Behind the Display: Copper as a Low-Cost Emissive Material

Display technologies have come a long way over the past 100 years. What is it that makes many of our modern smartphone and TV displays look so amazing? Behind them are the efforts and breakthroughs of both chemists and material scientists alike. One such breakthrough, the invention of OLED (Organic Light-Emitting Diode) technology in 1987, is seeing increasing popularity for its low power demands and physical flexibility.

However, the materials needed for OLED displays are costly, and environmentally unsustainable. For example, the green pixels in many smartphone displays are made from iridium. As a rare earth metal, iridium is very expensive (approximately 45000 USD per kilogram). With this in mind, the discovery of new low-cost materials could open economically favourable avenues for OLED technologies.

Chemists at the University of British Columbia are steadily researching new materials to meet the economic and environmental demands of industry. We had the opportunity to sit down with Dr. Christopher Brown, a post-doctoral researcher in UBC’s Wolf Research Group, to discuss his recent discovery of a tuneable light-emitting copper-based compound. This compound exhibits a property known as thermochromic emission: it emits different colours of light in response to changes in temperature.

The liquid colour-changing crystal in a “mood ring” is one such example of a thermochromic material (source, available under public domain).

Dr. Brown observed that some copper compounds display noticeable changes in colour in response to temperature when exposed to UV light (like that produced by the sun). Moreover, he hypothesized that the effect is the result of a change in the compound’s geometry. We have produced a video, and a podcast, to showcase Dr. Brown’s work (we recommend setting the video quality to 1080p).

Dr. Brown emphasizes that his discovery does not have immediate applications to OLED technology, as the emergence of thermochromism requires supercool temperatures (approximately -196 °C). Nevertheless, his contributions suggest that copper, as a low-cost material, may play a role in future OLED applications.

– Nelson Bulaun, Angela Wei, Sarah Choi, Eric Easthope

We are deeply grateful to Dr. Christopher Brown for sharing his work with us.

Glowing Pickles and OLEDs

Did you know that a pickle will glow if you pass electrical current through it?

“A pickle glowing due to electrical current” (source: Wikimedia Commons, available under CC BY 3.0)

This phenomenon, while it is peculiar and at first seemingly inapplicable, is a simple example of the same physical principles that underlie the beauty of our modern smartphone displays. An electrical current heats water in the pickle. The pickle rapidly dries out near the electrodes (here the electrodes are the forks at the ends of the pickle), causing sparks to leap between drier and wetter regions of the pickle. Sodium atoms throughout the pickle are then excited by these sparks to emit a characteristically yellow-orange light.

The same effect occurs in smartphone displays made from Organic Light-Emitting Diodes (OLEDs). However, instead of sodium, a film of some organic compound situated between two electrodes (of which one or more is transparent) is excited by electrical current to emit visible light. This approach to producing light differs from previous LED technologies that relied on a “backlight” (a fixed arrangement of LEDs) to produce visible light from electrically excited compounds.

These organic compounds are rarely simple molecules. Take, for example, an iridium-based chemical complex known as Ir(mppy)3, shown here.

“A diagram of Ir(mppy)3” (source: Wikimedia Commons, available as part of the public domain)

We will not discuss the structure or nomenclature of this compound, but it is worth mentioning that the compound is phosphorescent (it emits light without heat nor combustion) and will emit green light in response to electrical current. Other compounds similar to Ir(mppy)3 have been discovered to produce red and blue light. In application, these three colours (red, green, blue) may be added in different proportions to produce the many visible colours that we see (known as the RGB colour model).

It is noteworthy that the discovery of a blue LED was awarded the 2014 Nobel Prize in Physics, emphasizing the modern and increasing relevance of OLED research.

New research seeks to overcome limits on the efficiency, lifespan, and cost of OLEDs. For example, while OLEDs are often a low-power alternative to the former backlight-based LED technologies, displaying images with white backgrounds (such as most web pages) using OLEDs require as much as three times the power of common LEDs. The metals used in OLEDs (such as iridium) are also rare and often expensive, meaning that consumer technologies derived from OLEDs come at a greater cost to both their users and the environment.

With cost and efficiency in mind, the Wolf Research Group at UBC has explored the use of copper (which is abundant on Earth) and other elements in place of iridium to produce candidate compounds for OLED technologies. Breakthroughs like these push us towards new innovations to benefit consumer technologies, and materials science overall.

– Eric Easthope