Tag Archives: physics

Image

No Resistance: An Introduction to Superconductivity

Technologies like magnetometry (the measure of magnetism) and magnetic resonance imaging rely on the strength of magnetic fields. With increasing need for experimental precision and control, new physics are sought after to develop stronger electromagnets. One way is to eliminate a material’s electrical resistance. This is known as superconductivity. Herein we discuss what superconductivity is.

In physics we learn that electrons may be excited into higher energy states. We can excite electrons using energy carried by light (known as photoexcitation).

Semiconductors respond to photoexcitations. These are materials that exhibit an electrical resistance unlike that of insulators or conductors. Their electronic behaviour, the way that electrons “move” through the material, is often temperature dependent. All light carries energy. If this energy is absorbed by matter, the matter heats up. It is this heat that excites electrons, so we can use light to change the electronic behaviour of semiconductors. This makes them useful objects of study.

For simplicity, we treat these semiconductors as patterned arrangements of atoms (called a lattice). Where there are “gaps” in the arrangement, for not every lattice is densely packed, we imagine varying densities of electrons. It is reasonable to imagine these electrons as a cloud that pervades the atomic arrangement. If we excite the semiconductor with light, this electron cloud may change, thereby changing the semiconductor’s electronic behaviour.

Where does superconductivity arise? As mentioned, semiconductors are temperature dependent, so they respond to heating (in our example, by way of photoexcitation). What if we cool a semiconductor instead? As a general rule, the electrical resistance of a semiconductor increases as its temperature decreases. However, when cooled to a temperature near absolute zero (the semiconductor’s critical temperature), its electrical resistance vanishes. All magnetic field lines, like those seen with iron filings dropped around a bar magnet, are expelled from the interior of the semiconductor.

“Levitation of a magnet on a superconductor” (source: Wikimedia Commons, available under CC BY-SA 3.0)

This bizarre property of matter, while it is not universal, is the direct consequence of a lack of electron excitations. Recall that excited electrons (like those in an electronic circuit) emit energy as they relax. This energy is absorbed by matter, so energy is lost as heat. Electrons also need somewhere (i.e. a higher energy state) to be excited towards. This “somewhere” is unique to the material, so the material determines how and where electrons are excited.

“Overview of superconducting critical temperatures for a variety of superconducting materials since the first discovery in 1911” (source: Wikimedia Commons, available under CC BY-SA 4.0)

Supercooled materials lose many pathways to these higher energy states, so their electrons are never excited unwillingly, so no energy is lost as heat. Since electrical resistance in semiconductors is temperature dependent, a supercooled and thereby “heat-less” semiconductor has zero electrical resistance. It is superconductive.

– Eric Easthope

The systematic study of candidate superconductors (like bismuth selenide) is ongoing at UBC’s Stewart Blusson Quantum Matter Institute.

Source: General Chemistry: Principles, Patterns, and Applications (2012). Saylor Academy. Available here under CC BY-NC-SA 3.0.

The New and Improved Kilogram

How do we know how much anything weighs? Where does the measurement come from when you use the kitchen scale or the scale in your physics lab? Since 1879, the sole definition of the kilogram was carefully locked away in an underground vault in France, the International Prototype Kilogram (IPK). Starting May of 2019, this tightly stored piece  of platinum and iridium will no longer officially represent the mass of a kilogram. This renewed definition will be more accessible to everyone and remain accurate for the rest of time, demonstrating the importance of this change.The kilogram is one of the base units as part of the International System of Units (SI).

The International Prototype Kilogram, or Le Grand K informally, is the only physical artifact that determines the official mass of one kilogram. However, since it is stowed away under careful protection by the International Committee for Weights and Measures (ICWM). It is hardly accessible and any changes in mass due to scratches or dirt would change the official mass of the kilogram. Even copies made of Le Grand K may not always be exactly accurate.

This prompted the change by the ICWM to a much more accessible and unchanging value based on a fundamental constant, the Planck’s constant. Planck’s constant, or h, like all other fundamental constants of nature remain the same with time and throughout the universe. Planck’s constant relates the smallest energy packet possible to the frequency of that energy packet, and is defined to be 6.626176 x 10^(-34) kilogram meter squared per second. With the kilogram within this constant, the determination of the kilogram can be made much more precisely without needing to compare it with the actual IPK.

To determine the mass with the new definition, a Kibble balance can be used. The Kibble balance is able to weigh mass against an electromagnetic current, making it incredibly accurate and precise.

Shown below is a video from Veritasium working with NIST (National Institute of Standards and Technology) explaining the new changes for the kilogram and how a kibble balance is used to determine the mass:

For the common household scale, or even anything beyond advanced physics, the new definition of the kilogram will not cause any change in mass. However over time, the required precision for mass in all fields of science will benefit from this change. The importance for consistent and precise measurements in all of science and business are seen.

— Christy Lau