Tag Archives: health

Printing–a new way to save a life.

A depiction of some of the many organs of the body from Achim Raschka via Wikimedia Commons.

The need for organs for people suffering from disease is ever-growing, and high.

This need has resulted in large scale ethical debates, some doctors opting for more radical ways to harvest organs. At the same time, patients are dying because they were not given a transplant promptly. The current situation in North America is dismal at best.

However, hope does exist! A recent innovation reported by a group of researchers at Heriot-Watt University could solve the problem. How you might wonder? By what scientists are calling “organ printing“.

Organ printing is a technology combining the concept of 3-dimensional printing and stem cells. A 3-dimensional printer is a machine that is able to make 3D objects when given some sort of electronic plan for the object to be printed. Traditionally, 3D printers have used metals or plastics as the ink for making objects. But instead of metal or plastic, an organ printer uses embryonic stem cells as ink; cells that are able to divide and change their identity into any other cells such as heart, lung, kidney or even brain cells, and carry out their function.

A printer that uses cells as ink could make organs! Pictures adapted from Seahen, Jomegat and Osnimf (left to right) via Wikimedia Commons.

You might wonder why this would be considered a huge breakthrough. The discovery of stem cells heralded a large amount of attention. We initially believed that we would be able to grow organs easily; however, over time, we learned that stem cells are more complex than we realized. Stem cell growth is difficult to control. Even though we can currently make a stem cell change its identity into a cell we want it to be, we cannot effectively mesh groups of cells into highly organized layers, like how complex organs such as the heart and kidneys are laid out. Experiments reported as late as three years ago could only make balls of different cell types from stem cells using chemicals. 3D printing using stem cells allows us to organize cells and distribute them the way we want them to be, and so, we could make complex structures with different layers in a consistent way in the near future.

Below, Dr. Anthony Atala talks about organ printing techniques he is researching in his lab.

YouTube Preview Image

By CNN via Youtube.

But how near is the near future? I remain skeptical. Stem cells are complex things, and we have much to learn about them. Just because we place them in the right positions in the right type does not mean that all problems will be solved. Additionally, we have yet to research where to place cells so that they function the right way in an organ. I would think that this technology would take at least 10 years to be relevant to our everyday lives. Only time will tell.

-Shaun

 

A Gene for Skinny Jeans!

The person sitting beside you in your morning lecture is slurping down an extra-large iced cap, with whipping cream AND chocolate drizzle. Those french fries in the cafeteria at lunchtime are looking deliciously tempting, and when you get home from your long day your roommate has a fresh batch of chocolate chip cookies sitting on the counter.

Chocolate Chip Cookies! Christie @ Love From the Oven via Flickr Creative Commons.

Oh the temptations, but with “beach season” soon approaching, it makes for a hard choice between those deliciously fattening foods and a trim waistline. What if I told you that soon, you may be able to indulge in all of your favorite foods, never hit the gym, and still turn heads in your swimsuit this summer?!

Miguel Angel via Flickr Creative Commons.

Genetics researchers at the University of Colorado’s School of Medicine, led by Professor James McManaman, have recently discovered a gene that appears to be directly related to obesity. This gene, called Perilipin 2 (Plin2), produces a protein that plays a key role in regulating fat storage and metabolism. When mice lacking this gene were fed an obesity-inducing diet, they were observed to be resistant to becoming obese!

In fact, not only did these mice stay lean, they appeared to be much healthier than the mice with a functional Plin2 gene. Compared to normal mice, their fat cells were 20% smaller, they showed an absence of fatty-liver disease, they had lower triglyceride levels, and they were more insulin-sensitive. When both normal mice and mice lacking the Plin2 gene were placed on an obesity-inducing diet, the Plin2-lacking mice showed surprising restraint when eating their food (normal mice will eat until all food is gone!), and were also more active.

Obese mouse and normal mouse. Bigplankton via Wikimedia Commons.

What does this mean for us?

Obesity is quickly becoming a dominant health concern throughout North America (see famous chef Jamie Oliver discussing the obesity trend here), indirectly causing a long list of medical complications such as type 2 diabetes, hypertension, coronary heart disease, and stroke.

Obesity, an increasing trend in North America. Malingering via Flickr Creative Commons.

The interesting thing is, humans also have a Plin2 gene. If researchers can find a way to target the Plin2 gene, these findings may result in an effective treatment for obesity. This would lead to a slimmer, healthier nation, and reduce the financial strain  that obesity-related complications place on our health care systems!

However, don’t book your reservation at the neighbourhood all-you-can-eat buffet just yet. Before any human applications can be made, we must better understand what other roles the Plin2 gene may play, and how removal of this gene will influence health and behavior on a long-term scale.

– Sydney Schnell

To amnio or not to amnio, is that still a question?

Pregnant_woman_(2)

A pregnant woman from David Roseborough via Wikipedia Creative Commons

Since the mid-70’s, expectant mothers believed to be at high risk for giving birth to a child with a defect have been faced with a critical choice: to take a risky diagnostic procedure called an “amniocentesis” (amnio), or to forgo it and not know what to expect out of their pregnancy.

Imagine that you are an expectant mother who has been told that your future child has a high risk of having a genetic disorder, and would have to make the decision to have an amniocentesis or not. It is likely a tough call to make, because research shows that up to 1 in 100 of these procedures directly result in the loss of the baby, in addition to other risks to the mother and baby.

Luckily, expectant mothers of the future may not be faced with this dilemma. A new technology called “non-invasive prenatal diagnosis” has been recently innovated, which allows doctors to determine if a baby has some sort of genetic disorder without performing a risky procedure! All that is needed is some blood from the pregnant mother.

Fetus_and_placenta_-_journal.pbio.0060312.g001

A fetus in the womb from Wei Hsu and Shang-Yi Chiu via Wikipedia Creative Commons

The idea behind non-invasive prenatal diagnosis is that when a woman is pregnant, there is some of the unborn baby’s genetic information floating around in her blood. This genetic information can be collected from a sample of the mother’s blood, and tested for genetic disorders! Furthermore, the procedure is 99.5% accurate, so with the test results accompanying other tests which are used to detect genetic disorders, physicians can almost definitely ensure that they are correct when they tell a parent their baby will be normal!

Below, Ariosa Diagnostics Inc. explains how a mother’s blood can be used to test for a baby’s genetic disorders.

YouTube Preview Image

From Ariosa DX via Youtube.

The possibilities for the applications of this technology stretch far into the future. With the advent of machines which can find out a person’s genetic code in its entirety within the span of a couple hours, and have the ability to do it cheaply, non-invasive prenatal diagnosis could be used to test single genes!

Unfortunately, like many new innovations in the field of genetics and health care, this one has ethical issues. If the technology is not controlled carefully, someday, it may be possible for parents to test to see what their child might be like before its born. Should parents be able to get an abortion just because their child may not be a genius? Or 6 feet tall? The technology to do this is likely going to be expensive; what happens if some families cannot pay for it? I personally believe that this technology is great because it allows parents to make an informed choice about their future child; however, the government should control the application of this technology to traits that are not considered disorders.

-Shaun

Pest Control – How Far is Too Far?

When asked to think of the most dangerous animals on Earth, we often imagine large creatures like sharks, bears, or lions. However, you may be surprised to discover that the most dangerous creature in the world is actually… a mosquito!

Anopheles stephensi mosquito, a known carrier of Malaria. Rsabbatini via Wikimedia Creative Commons.

Mosquitoes are summertime pests; those annoying and unwelcome guests at a family barbecue, picnic in the park, or day at the beach. While the itchy bumps they cause are irritating, bites are rarely fatal here in North America. However, in tropical and sub-tropical regions, mosquitoes act as transmitters for potentially fatal diseases, such as Malaria and Dengue fever. Causing over one million deaths each year, mosquito transmitted diseases kill more humans than any other animal-related incident.

A child being treated for Malaria. Ashley Jonathan Clements via Flickr Creative Commons.

This has prompted scientists to consider proactive options for fighting these diseases – namely, to prevent people from becoming infected in the first place. As common insect-reducing methods (such as insecticide spraying) often kill other species within the ecosystem too, controlling mosquito populations through genetic modification is becoming more popular. While similar strategies have been used before – the sterile insect technique (SIT) was developed in the 1950’s, whereby genetically-engineered sterile insects are released into the environment – a new technology developed by Oxitec laboratories is at the forefront of the mosquito combat.

YouTube Preview Image

(TEDtalksDirector via YouTube)

Above, Hadyn Parry (CEO of Oxitec) discusses disease transmission by mosquitoes, and how Oxitec proposes to alleviate this issue.

Oxitec is a British biotech company that, under the leadership of Luke Alphey, has produced the RIDL method, by which mosquitoes are genetically modified to carry lethal alleles.

What does this mean?

Essentially, male mosquitoes are engineered in a laboratory and then released. The concept here is simple – the mutations inflicted have no direct impact on the mosquitoes’ fitness (that is, the genetically modified males compete for female mates equally as well as wild-type males), but the mosquitoes will die if not given tetracycline during development. Therefore, when these RIDL males mate, all offspring will receive one dominant lethal allele. Over time, without the presence of tetracycline, all mosquitoes carrying this allele will die, effectively diminishing the mosquito population. Luke Alphey explains these concepts in the video below.

YouTube Preview Image

(WorldEconomicForum via YouTube)

While the RIDL method shows promise for controlling mosquito populations, many parties contend that there are unintended side effects. For example, the removal of mosquito populations threatens to disrupt surrounding ecosystems, as many species, such as bats and spiders, rely on mosquitoes for nourishment. Furthermore, it has been suggested that mosquitoes could develop resistance to the lethal allele, resulting in a stronger subsequent generation and thereby amplifying disease transmission.

However, Oxitec scientists seem confident that the RIDL technique will provide a safe, effective way to manage mosquito populations. If true, we may be about to witness a new era of disease prevention.

– Sydney Schnell