Mohammad ElNawawy, Mohammadreza Hallajiyan, Gargi Mitra, Shahrear Iqbal, and Karthik Pattabiraman, Proceedings of the IEEE/ACM international conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (CHASE 2024). (Acceptance Rate: 28.4%) [ PDF | Talk ] (arXIV version, Code&data)
Abstract: The adoption of machine-learning-enabled systems in the healthcare domain is on the rise. While the use of ML in healthcare has several benefits, it also expands the threat surface of medical systems. We show that the use of ML in medical systems, particularly connected systems that involve interfacing the ML engine with multiple peripheral devices, has security risks that might cause life-threatening damage to a patient’s health in case of adversarial interventions. These new risks arise due to security vulnerabilities in the peripheral devices and communication channels. We present a case study where we demonstrate an attack on an ML-enabled blood glucose monitoring system by introducing adversarial data points during inference. We show that an adversary can achieve this by exploiting a known vulnerability in the Bluetooth communication channel connecting the glucose meter with the ML-enabled app. We further show that state-of-the-art risk assessment techniques are not adequate for identifying and assessing these new risks. Our study highlights the need for novel risk analysis methods for analyzing the security of AI-enabled connected health devices.
-
Recent Papers
- A Method to Facilitate Membership Inference Attacks in Deep Learning Models
- SAM: Foreseeing Inference-Time False Data Injection Attacks on ML-enabled Medical Devices
- AutoPatch: Automated Generation of Hotpatches for Real-Time Embedded Devices
- SpecGuard: Specification Aware Recovery for Robotic Autonomous Vehicles from Physical Attacks
- Global Clipper: Enhancing Safety and Reliability of Transformer-based Object Detection Models
- Co-Approximator: Enabling Performance Prediction in Colocated Applications
- Harnessing Explainability to Improve ML Ensemble Resilience
- POMABuster: Detecting Price Oracle Manipulation Attacks in Decentralized Finance
- Systematically Assessing the Security Risks of AI/ML-enabled Connected Healthcare Systems
- ImmunoPlane: Middleware for Providing Adaptivity to Distributed Internet-of-Things Applications
Pages
- About us
- Awards
- Papers
- People
- Photos
- Projects
- Autonomous Systems and IoT Security
- Building Robust ML Systems to Training Data Faults
- Decentralized Finance (DeFi) and Blockchain Oracle Security
- Error Resilient ML Applications
- Membership Inference Attacks in Machine Learning Models
- Middleware for Edge Computing Applications
- Resilience Assessment of ML Models under Hardware Faults
- Smart Contract’s Security
- Software