Tag Archives: Novel technology

CRISPR; A tool that can almost fix everything

CRISPR, sounds like a type of vehicle or a new gym supplement. In fact CRISPR is a new piece of technology, possibly the greatest finding of the century. CRISPR, short for Clustered Regularly Interspaced Short Palindromic Repeats, is a genome-editing tool that was first found in bacteria. Japanese scientist Yoshizumi Ishino at the University of Osaka was the first to discovered CRISPR in 1987.

CRISPR is used as part of the immune system defence in bacteria. It has the ability to sense when viruses inject their DNA into the cell; sending out proteins that recognize the foreign DNA, cutting it up into non-functioning pieces to prevent an infection. The sent out proteins are able to recognize virus genomes by incorporating the injected viral DNA into its own genetic material, using this as a template to find the invading DNA.

How bacteria use the CRISPR/Cas system against viral infections. Image from https://upload.wikimedia.org/wikipedia/commons/5/5f/Crispr.png

How bacteria use the CRISPR/Cas system against viral infections. Image from https://upload.wikimedia.org/wikipedia/commons/5/5f/Crispr.png

Many of you may be thinking, cool so the bacteria has a way of protecting itself from invading viruses but how does this effect humans? Until now there have not been accurate DNA cutting technology but with CRISPR we have one. As discovered by Doudna Lab, it is possible for scientists to create templates that match the gene they want to remove from genetic material, allowing them to cut out any gene they want. For a concise explanation check out Carl Zimmer’s, on behalf of  BI science, description of how CRISPR works in the video below.

This allows for endless possibilities. Genetic diseases, like sickle cell anemia, can be cured using CRISPR. Simply make a template that matches the mutated gene, remove it with the CRISPR  and add a functional gene. The individual will no longer suffer from sickle cell anemia. Scientists are even looking at the possibility to modify the human germ layer, allowing for ‘designer’ babies to be made. We are still a long way from designer babies though, as it is illegal to do genetic experiments that alter the germ layer in many countries, as well as the possibilities of errors arising during the procedure that have not been fixed.

Scientists are also exploring CRISPR’s applications on plants. Want to produce plants that can survive harsher climates and produce better products, modify the genome by removing and inserting genes of interest. For instance, the State University of New Jersey is working with grape plants to edit their genes to be resistant against fungus using CRISPR.

Unfortunately CRIPSR technology won’t be used for several years. Research is only being done on animal models and human cells right now, as the errors of CRISPR are still trying to be fixed along with arguments around it’s ethics. The templates made to match genes may accidentally match up with similar genes in the body, which would lead to mutations in human genes that could potentially be fatal. Although still under work, CRISPR has the potential to cure many diseases and provide a higher quality of life for everyone.

-Tristan Jeffery