Author Archives: Madeline filewych

6-Month Summers by 2100

Have you noticed the length of summer increase within your own lifetime? Do you wonder what the seasons will look like by the end of this century? A team of researchers completed a study, published last month, that examined how climate change is influencing the length of our seasons, and how they may look by 2100. 

Seasonal change at a Ryton pond. Source: Keith Hall

In order to understand how our seasons may change in the future, the researchers looked at historical climate data from the years of 1952-2011, specifically in the Northern Hemisphere. They defined the start of winter as the onset of temperatures in the coldest 25% of the specific time period they were looking at. Similarly, they defined summer as the onset of temperatures in the hottest 25% of the time period. Their results showed that the length of summer increased from 78 to 95 days from 1952-2011, and that spring, autumn and winter decreased from 124 to 115, 87 to 82, and 76 to 73 days, respectively. All seasons showed an increase in average temperature. 

It is thought that if these trends continue in the same manor, that summer in the Northern Hemisphere will last for 6 months by the year 2100. Furthermore, winter will not be longer than 2 months, and summer and autumn will both shrink significantly as well.

How would this impact our world?

Changing the length of seasons has numerous environmental and health risks. For example, it can greatly impact agriculture, as drastic weather can damage plant growth. An increase in summer would also mean that disease-carrying mosquitoes can increase their range, heading north. Longer summers also lead to an increase in wildfire frequency and intensity. In 2020, we saw how devastating wildfires can be, with the Australian bushfire crisis. Furthermore, seasonal changes show animals shift their migration patterns, and plants start budding earlier, this creates a distortion in plant-animal interaction, disrupting environmental communities.

How can we help?

It can seem rather daunting when we hear stories like this, and as regular citizens, it’s hard to understand what exactly is in our control. Large corporations and our governments hold the key to mitigating climate change, so what can we do? Well, every action counts – big and small. One action you can take is researching what your own local government is doing to combat the climate crisis. If you feel like they could be doing more, write to them. Make your voice heard – and continue to make small changes like biking instead of driving, and recycling regularly.

– Madeline Filewych

Methane Reduction and the Magic of Mushrooms

When you think of the mushroom species Ganoderma lucidum, more commonly referred to as Reishi, what do you think of? A delicious food? A health fad? Well it may surprise you to know that beyond everyday consumption, Reishi mushrooms have a high potential for impacting our atmospheric conditions. A recent study done by researchers at the University of Minnesota examines certain fungus’ ability to capture and filter methane, and its impact on the current climate crisis.

Reishi Mushrooms. Source: Pixabay

Why is methane a problem? 

Methane, a greenhouse gas, is one of many chemicals that contributes to the rise of global temperatures. It has many sources, both biological and man-made, the most common being agricultural practices, wetlands, and transportation of coal and natural gas. While most research is being done to reduce carbon dioxide emissions (another problem greenhouse gas), it is just as important to address methane emissions. In the first two decades of release, methane can be up to 84% more potent than carbon dioxide. The potency of the gas directly relates to how much heat is being trapped in the atmosphere. Methane is incredibly effective at absorbing heat, which is what makes the chemical so detrimental to atmospheric conditions. 

How do Reishi mushrooms help?

While there are currently other organisms that can break down methane, removing it from the atmosphere, there is one critical way that Reishi stands out:

In order for Reishi to degrade methane, the gas does not need to travel through any kind of biofilm (a layer of bacteria or other organisms), which decreases the total time needed for degradation.

The cells that make up fungal structures, called hyphae, are able to extend and grow deep within the soil and other environments. When nutrients are detected, they travel through the hyphae until the desired location with the fungus is reached. There is a specific special protein, called hydrophobins, which is found on the exterior of the hyphae, and is responsible for trapping gases (such as methane). Once trapped, the gas is transported within the fungus and is degraded as needed. 

The following video is a great introduction to general fungi (mushroom) structure and function (Source – Don’t Memorize):

The researchers who conducted the study found that Reishi mushrooms that are grown outside of the soil have a better removal rate, compared to those in the soil, where natural microbes may out-compete the mushrooms for nutrients. Shockingly, the researchers found that even dead fungi had some function at removing methane from the surrounding air.

Hyphae. Source: Wiki Commons

It may not be fair to say that if we all go out and plant some Reishi mushrooms, the climate crisis will be solved tomorrow – but since there are so many personal benefits beyond environmental impact, there are no downsides to doing so! While there is still a need for more research to be completed, it can be comforting to know that there are solutions to global warming that can come from the most unlikely places.

– Madeline Filewych

Methane Reduction and the Magic of Mushrooms

When you think of Reishi mushrooms, what do you think of? A delicious food? A health fad? Well it may surprise you to know that beyond everyday consumption, Reishi mushrooms have a high potential for impacting our atmospheric conditions. A recent study done by researchers at the University of Minnesota examines certain fungus’ ability to capture and filter methane, and its impact on the current climate crisis.

 

Reishi Mushrooms. Source: Pixabay

 

Why is methane a problem?

Methane, a greenhouse gas, is one of many chemicals that contributes to the rise of global temperatures. It has many sources, both biological and man-made, the most common being agricultural practices, wetlands, and transportation of coal and natural gas. While most research is being done to reduce carbon dioxide emissions, it is just as important to address methane emissions, as in the first two decades of release, methane can be up to 84% more potent than carbon dioxide. Methane is incredibly effective at absorbing heat, which is what makes the chemical so detrimental to atmospheric conditions.

 

How do Reishi mushrooms help?

While there are currently other organisms that can break down methane, removing it from the atmosphere, there is one critical way that Reishi stands out:

In order for Reishi to degrade methane, the gas does not need to travel through any kind of biofilm, which decreases the total time needed for degradation. 

The cells that make up fungal structures, called hyphae, are able to extend and grow deep within the soil and other environments. When nutrients are detected, they travel through the hyphae until the desired location with the fungus is reached. There is a specific special protein, called hydrophobins, which is found on the exterior of the hyphae, which is responsible for trapping gases such as methane. Once trapped, the gas is transported within the fungus and is degraded as needed.

Mushroom hyphae. Source: Wiki Commons

The researchers who conducted the study found that Reishi mushrooms that are grown outside of the soil have a better removal rate, compared to those in the soil, where natural microbes may out-compete the mushrooms for nutrients. Shockingly, the researchers found that even dead fungi had some function at removing methane from the surrounding air.

While there is still a need for more research to be completed, it can be comforting to know that there are solutions to global warming that can come from the most unlikely places.

– Madeline Filewych