Tag Archives: nanotechnology

Combating Antibiotic Resistance with “Nanoparticles”

The Centers for Disease Control and Prevention (CDC) calls antibiotic resistance “one of the biggest public health challenges of our time.” But what is antibiotic resistance? How is it affecting our lives? and How can we use nanoparticles to fight it?

Antibiotic Resistance Crisis:

Antibiotics are powerful medications that are widely used for the treatment of infections caused by bacteria. However, taking antibiotics too often or for the wrong purpose caused bacteria to evolve various antibiotic resistance mechanisms.
Some bacteria have developed resistance to nearly all the antibiotic treatments available and can cause serious fatal diseases that were once easily treatable with antibiotics.

Without the invention of new strategies to counteract drug-resistant infections, they are likely to kill more than 10 million people each year by 2050. This is more than the number of  people currently dying from cancer.

Ongoing studies are analyzing the ways nanoparticles (small particles ranging between 1 to 100 nanometres in size) can be used to defeat antibiotic-resistant bacteria. The size of nanoparticles and their flexible antibacterial properties make them a favorable solution to this problem since they can be used to not only deliver antibiotics but also to fight bacteria themselves.

The following video explains what nanoparticles are, how they are produced, and how they can enter and kill the bacterial cells:

YouTube Preview Image

Source: TCTTPC YouTube

Nanoparticles as Antibiotic Carriers:

According to this study conducted by Zhang and his colleague in late 2020, some nanoparticles can penetrate into the bacterial cells while carrying and protecting the antibiotic agents. These nanoparticles —developed using materials such as metals and chitosan (a type of fiber)— can save the antibiotic from chemicals released by bacteria that can otherwise destroy them.

 Chitosan nanoparticle possesses a positive charge making it able to attach to bacterial cells that have a negative charge on their membrane (outer layer of the cell). Source: ResearchGate

Nanoparticles as Antibiotic Drugs: 

Nanoparticles can also defeat bacteria directly using mechanisms such as the generation of reactive oxygen species (ROS). ROS are unstable molecules that can easily react with other biomolecules (DNA, protein, etc.) in a cell, disrupt them, and cause cell death.

Silver nanoparticles (SNPs), for instance, can destroy the bacterial membrane and interact with interior components of the bacterium by releasing silver ions that can generate ROS inside the cell. Indeed, severe cellular damages in 5 different types of bacteria were reported when treated with SNPs.

Effect of Nanoparticles on Bacteria

E.coli (a type of bacteria) (left) is severely damaged when treated with a  silver nanoparticle (right). Source: pubs.acs.org

Nanoparticles appear to be a promising solution to address the problem
of antibiotic resistance; however, the main factor that limits their application in treatments is that researchers often face side-effects related to nanoparticle toxicity when interacted with biological systems like human cells. For instance, the ROS generated by a high dose of SNPs can damage the human cell components.

New strategies are being investigated to direct the target of nanoparticles to bacterial cells only and reduce their toxicity in order to develop safe and efficient antibacterial nanoparticles.

– Samin Shadravan

Combating Antibiotic Resistance with “Nanoparticles”

The Centers for Disease Control and Prevention (CDC) calls antibiotic resistance “one of the biggest public health challenges of our time.” But what is antibiotic resistance? How is it affecting our lives? and How can we use nanoparticles to fight it?

Antibiotic Resistance Crisis:

Antibiotics are powerful medications that are widely used for the treatment of infections caused by bacteria by either killing them or inhibiting their reproduction. However, taking antibiotics too often or for the wrong purpose caused bacteria to evolve various antibiotic resistance mechanisms that defeat the actions of antibiotics.
Some bacteria have developed resistance to nearly all the antibiotic treatments available. Infections by these antibiotic-resistant bacteria can result in serious fatal diseases that were once easily treatable with antibiotics.

Without the invention of new strategies to counteract drug-resistant infections, they are likely to kill more than 10 million people each year by 2050. This is more than the number of  people currently dying from cancer.

Bacterial Resistance to Antibiotic Drugs, Source: phys.org

Ongoing researches are analyzing the ways nanoparticles (small particles ranging between 1 to 100 nanometres in size) can be used to defeat antibiotic-resistant bacteria. The size of nanoparticles which is about 1/100 of bacteria and their flexible antibacterial properties make them a favorable solution to this problem since they can be used to not only deliver antibiotics but also to fight bacteria themselves.

Using Nanoparticles as Antibiotic Carriers:

According to this research, some nanoparticles have the ability to penetrate into the bacterial cells while carrying the antibiotic agents. They protect the carried antibiotic physically against the bacterial resistance mechanisms, for example by saving the antibiotic from bacterial released chemicals that can otherwise destroy them.

Chitosan (a type of fiber) nanoparticle can be used to deliver antibiotics to inside the bacterial cells. This nanoparticle possesses a positive charge making it able to attach to bacterial cells that have a negative charge on their membrane (outer layer of the cell). Source: ResearchGate

Using Nanoparticles as Antibiotic Drugs: 

Nanoparticles can also defeat bacteria directly by themselves using mechanisms such as the generation of reactive oxygen species (ROS). ROS are unstable molecules that can easily react with other biomolecules (DNA, protein, etc.) in a cell, disrupt them, and cause cell death.

Recent research recorded severe cellular damage in 5 different types of bacteria when treated with silver nanoparticles. As they reported, an increase in ROS formation leads to damage to bacterial biomolecules resulting in the death of bacteria.

Effect of Nanoparticles on Bacteria

E.coli (a type of bacteria) (left) is severely damaged when treated with a special virus-like nanoparticle (right). Source: pubs.acs.org

Nanoparticles appear to be a promising solution to address the problem
of antibiotic resistance; however, the main factor that limits the use of nanoparticles in treatments is that researchers often face side-effects related to nanoparticle toxicity for living organisms. For instance, some metal nanoparticles can cause heart problems or even cancer when inhaled.

The ways through which nanoparticles can produce toxicity need to be investigated in future researches in order to develop safe and efficient antibacterial nanoparticles.

– Samin Shadravan

Use of Nanotechnology in Cancer Therapy

Would you believe someone if they told you that there is a type cancer therapy that is more effective and has less negative effects than chemotherapy, yet is less commonly used?

Cancer is characterized by the rapid division of cells anywhere in the body.  Every day, your body produces many potentially cancerous cells that are later destroyed. Moreover, every year, over 10 million people are diagnosed with cancer. With such a large amount of diagnoses, cancer remains one of leading causes of human death as it is generally incurable due to the metastasis of cancer cells.

Microtubules in breast cancer cells leading to rapid cell division.

Credit: National cancer institute. Downloaded from: Unsplash.com

An article by Ranjita Misra and her research team  describes a new yet promising technique in cancer treatment and early detection known as nanotechnology cancer therapy.  Today, treating cancer through radiation and chemotherapy is the most popular option. Chemotherapy has numerous negative effects like drug resistance and an insufficient amount of drug reaching tumour sites. This can lead to insufferable side effects as both cancerous cells and healthy cells are destroyed. 

The use of nanotechnology in cancer therapy involves the production of small particles called nanoparticles that are effective in transporting anticancer drugs to target cells while minimizing damage to healthy cells. Nanoparticles target cancer cells through active targeting and passive targeting. Examples of nanoparticles approved by the FDA include nanoparticle-liposome and albumin nanoparticles. Liposomes in particular are vital in nanotechnology cancer therapy as drugs transported through nanoparticle-liposomes have shown to have significantly longer half lives, upwards of 55 hours. This is important as the drug is able to stay in the body for a longer time meaning less drug is needed, which reduces damage to healthy cells. Another reason liposomes are favourable is because of their composition. Their hydrophobic composition allows appreciable amounts of anticancer drug  to reach the tumour site as the body cannot destroy the drug . This is important in cancer therapy as damaging healthy cells due to excess drug is the main reason why chemotherapy has numerous side effects.  The mechanisms and benefits of nanotechnology cancer therapy talked about above are explained in more detail by Joy Wolfram (2018) in the video below.

YouTube Preview Image

TEDtalk by Joy Wolfram in 2018 about nanotechnology in cancer therapy.

 

Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer - ScienceDirect

Liposome nanoparticle structure that is used for cancer therapy.

Credit: ScienceDirect. Downloaded from Unsplash.com

This breakthrough in cancer therapy shows that science is forever evolving and that in the future it is possible there will be a cure for cancer.  Although nanotechnology cancer therapy is a relatively new area of research it shows tremendous potential and over time it is expected that larger advancements in preventing and treating cancer will be seen. Lastly, it is believed by researchers that nanotechnology cancer therapy has the potential to be the main form of treating cancer in the future due to the fact that it has less side effects and is more effective than chemotherapy (Gharpure et al. 2015).

Balkaran Dhaliwal