Tag Archives: environment

The Escalator to Extinction

On those rare summer days when the temperature is climbing to nearly forty degrees celsius, you have probably dreamed of climbing into a freezer. Well, this desperation to escape the heat is not unique to us. As humanity drives the temperature up through global warming, many tropical species are in desperate need of a good fan. But with a lack of appliances in the tropical wilderness, they are starting to migrate up mountains to escape the heat. However, this one way escalator ride up the mountain may be leading to extinction. 

Source: Pixabay.com

Dr. Freeman’s Research: 

Dr. Benjamin Freeman, an evolutionary ecologist at the University of British Columbia, aims to understand how global warming is impacting where montane (mountain-dwelling) species live. His recent study highlights how climate change is causing species to shift upward, which can lead to the extinction of species living higher up on mountains. This phenomenon is known as the “escalator to extinction” which is explained by the video below: 

https://www.youtube.com/watch?v=iOoO2_DxwS0&ab_channel=MatthewLim

To make these conclusions, Dr. Freeman examined datasets from various studies that measured elevational shifts associated with global warming over the last 100 years. Based on his findings, the escalator to extinction is around the corner for tropical montane species. 

Effects of the escalator to extinction: 

This phenomenon can have various effects on montane species and our society as discussed in the following podcast.

Thank you to freesound.org for providing the sound effects used in our podcast (plasterbrain, InspectorJ)

In the podcast, Dr. Freeman mentions that less available land at higher altitudes of a mountain are threatening montane species. 

Why is this the case?

Less available land at higher altitudes often means less resources for organisms to use. Thus, as species continue to shift upslope to evade the heat, there will be increased competition within species populations and between different species. This competition for resources such as food and habitat will likely result in the strongest species surviving, and lead to extirpations (loss of species populations) of weaker species. Some examples of extirpations caused by the escalator to extinction are populations of the White-eared Solitaire and Fulvous-breasted Flatbill as found by a previous study by Dr. Freeman.

Furthermore, temperature-dependent (requiring specific temperature to survive) crop diseases such as Agrobacterium tumefaciens shifting upslope can greatly affect human populations living in mountains. For example, introducing new crop diseases can lead to lower crop yields. Thus, human communities in mountains can potentially face unexpected food shortages, and be forced to find different sources of food. 

How can we prevent this? 

If we cannot stop global warming, we must guide animals to higher elevations to save them from extinction. Many species go extinct because they are restricted from higher elevations due to human agricultural activities that divide up lands. One possible way to facilitate their upward migration is through the development of corridors that give species a path to higher elevations. In addition, we can plant trees at higher altitudes to provide new habitats for these displaced organisms.

Once grown, these newly planted trees will provide accessible habitats for species and as a result, potentially reduce extirpation events. 

Source: commons.wikimedia.org/

But really, the best thing we can do is raise awareness of this critical issue.

-Karnvir Dhillon, Declan O’Driscoll, Samantha Nalliah, Matthew Lim 

 

6-Month Summers by 2100

Have you noticed the length of summer increase within your own lifetime? Do you wonder what the seasons will look like by the end of this century? A team of researchers completed a study, published last month, that examined how climate change is influencing the length of our seasons, and how they may look by 2100. 

Seasonal change at a Ryton pond. Source: Keith Hall

In order to understand how our seasons may change in the future, the researchers looked at historical climate data from the years of 1952-2011, specifically in the Northern Hemisphere. They defined the start of winter as the onset of temperatures in the coldest 25% of the specific time period they were looking at. Similarly, they defined summer as the onset of temperatures in the hottest 25% of the time period. Their results showed that the length of summer increased from 78 to 95 days from 1952-2011, and that spring, autumn and winter decreased from 124 to 115, 87 to 82, and 76 to 73 days, respectively. All seasons showed an increase in average temperature. 

It is thought that if these trends continue in the same manor, that summer in the Northern Hemisphere will last for 6 months by the year 2100. Furthermore, winter will not be longer than 2 months, and summer and autumn will both shrink significantly as well.

How would this impact our world?

Changing the length of seasons has numerous environmental and health risks. For example, it can greatly impact agriculture, as drastic weather can damage plant growth. An increase in summer would also mean that disease-carrying mosquitoes can increase their range, heading north. Longer summers also lead to an increase in wildfire frequency and intensity. In 2020, we saw how devastating wildfires can be, with the Australian bushfire crisis. Furthermore, seasonal changes show animals shift their migration patterns, and plants start budding earlier, this creates a distortion in plant-animal interaction, disrupting environmental communities.

How can we help?

It can seem rather daunting when we hear stories like this, and as regular citizens, it’s hard to understand what exactly is in our control. Large corporations and our governments hold the key to mitigating climate change, so what can we do? Well, every action counts – big and small. One action you can take is researching what your own local government is doing to combat the climate crisis. If you feel like they could be doing more, write to them. Make your voice heard – and continue to make small changes like biking instead of driving, and recycling regularly.

– Madeline Filewych

A Promising Treatment in the Fight Against Microplastics

Over the past few years, there has been a global effort by scientists to develop a treatment that is able to limit the pollution of microplastics into marine environments. Fortunately, Marthe Kiendrebeogo and her research team may have found a solution. They discovered that they were able to effectively break down a sample of microplastics through anodic oxidation. 

Now you may ask, what are microplastics?

Microplastics are pieces of plastic less than 5 mm in length. The three main sources of microplastics are the breakdown of larger plastics, cosmetics and laundry washes. All three of these sources have contaminated marine environments all over the Earth. To put this into perspective, a recent study has suggested that there are approximately 12-125 trillion microplastics floating in the oceans today. 

A collection of mainly plastic material that washed ashore. Plastics, such as a water bottle, can be degraded and become a source of microplastics.

Credit: unsplash.com/john_cameron

The Effect of Microplastics on Life:

The buildup of microplastics in aquatic life through ingestion can lead to toxic (harmful) effects. These effects were studied by a different research team led by Dr. Kogel where they found the toxic effects included infertility, decreased growth rate, shorter lifespans, and internal damage. Furthermore, microplastics are known to travel up the food chain and eventually reach humans. There is currently a lack of information regarding the effects of microplastics in humans, but several studies are in progress.

YouTube Preview ImageFor those interested, Drs. Sarah Dudas and Peter Ross show the presence of microplastics in aquatic life in this video.

And now to the study:

With the background information out of the way, I’m going to explain how Marthe Kiendrebeogo and her team created a potential solution to tackle the rising issue of microplastics.

This research team found that the process of anodic oxidation breaks down microplastics efficiently. Anodic oxidation involves a lot of chemistry, but the main thing to know is that it creates hydroxyl radicals (OH-) without adding extra chemicals into the water. These hydroxyl radicals are very good at attacking and breaking down microplastics. The full mechanism is in the article for those interested. This study found that with their proposed mechanism, 58 ± 21% of microplastics broke down in 1 hour which reached approximately 80% in 3 hours. 

I think that the most significant result in this study is that 58 ± 21% of polystyrene was degraded in 1 hour because an hour is close to the time of a normal laundry cycle. A laundry cycle puts a lot of stress on clothing fabrics which leads to the release of microplastics. In fact, a recent study has estimated that 35% of microplastics in oceans can be contributed to laundry. Thus, this mechanism would be very effective at decreasing the amount of microplastic production if it was implemented into laundry machines.

The addition of this treatment into laundry machines can limit the number of microplastics released at the initial source.

Credit: unsplash.com/scottsweb

Based on the results of this study, the future of treatments for microplastics sounds more promising. Nevertheless, there still is a lot of work to be done. The next step for this promising treatment would be to test the effectiveness of the proposed mechanism on samples consisting of other microplastics. 

-Karnvir Dhillon