Previous: Absolute Convergence
Previous: Absolute Convergence
Previous: Absolute Convergence
The ratio test uses the following theorem.
Theorem: Absolute Convergence Implies Convergence |
---|
If the infinite series
is absolutely convergent, then it is convergent. |
By assumption,
is absolutely convergent, meaning that
is convergent. Therefore,
is also convergent. Since
then
is convergent by the comparison test (the comparison can be found in most introductory calculus books that cover infinite series).
Finally,
must also be convergent because it is the difference of two convergent series.
Simply put, if we can show that an infinite series is absolutely convergent, then we know that it is convergent. Sometimes, it's easier to show that a series is absolutely convergent than it is to show that it is convergent.
Previous: Absolute Convergence
Spam prevention powered by Akismet