Previous: Contrapositive Example with Sets
Previous: Contrapositive Example with Sets
Previous: Contrapositive Example with Sets
The given statement
If the seriesis convergent, then the limit
equals zero
is certainly true. We were able to prove it in our lesson on the Divergence Test. We can construct the contrapositive of this statement by reversing the conditions and making them false:
If the limitis not zero, then the series
is not convergent.
The contrapositive statement is the Divergence Test.
Now, we know that the contrapositive of a given statement is true if the given statement is true.
But the original statement is true, so the contrapositive is also true. That is, the Divergence Test requires no proof, because it is the contrapositive of a statement that is true.
Glossary-Contrapositive, by Mr. X |
---|
In this video, the divergence test is not mentioned, but Mr. X provides a clear example of the contrapositive and describes its fundamental properties which students may nevertheless find helpful. |
More mathematics videos on the Mr. X website. |
Previous: Contrapositive Example with Sets
Spam prevention powered by Akismet