Category Archives: Learning models

Analysis Post: A closer look of my ETEC 533 e-Folio

Keywords from every ETEC 533 e-folio post I made:

I have always been a selfishly keen learner.

Selfish, from the perspective that I love to engage in cerebral practices that…

  1. challenge my current thinking;
  2. improve my quality of life and the quality of lives of my loved ones;
  3. keep my career choice fresh and relevant; and
  4. make me less ignorant of the issues facing society and the world, in general.

I am not entirely sure about where my lifelong quest to learn stems from, although I am certain it is not due to solely one event in my life.  Perhaps it has something to do with my parents being educators?  Perhaps I had more positive experiences in school than negative? Perhaps I am a pleaser-type— always wanting to make my teachers and parents, and now husband and children, “proud of me”? Perhaps I have a fear of appearing “stupid”?  Perhaps I just love to learn!

When looking through my e-folio posts for the course, the theme that has surfaced throughout is “student motivation”. I will further sub-categorize this theme by using the most common words from my ETEC 533 e-folio posts, shown in larger font on the above word cloud: (how we) learn and (how we) use.

Student Motivation and How We Learn

My focus early in the course was on student misconceptions. Without question, one of the most influential readings of the course was Vosniadou and Brewer’s “Mental Models of the Earth: A Study of Conceptual Change in Childhood”.  This reading, along with watching “A Private Universe”, really emphasized how students bring in their presuppositions to every learning experience and that their knowledge is situated from needing to explain the world around them (Vosniadou & Brewer, 1002). Prior to this week, I knew that students harbored misconceptions, however, not nearly to the extent that they did and why they did. Understanding that we all have an innate need to explain the world around us, whether it is scientifically based or not, has made me realize that I need to provide more opportunities within my classroom to allow students’ thinking and reasoning to be visible (Linn et al, 2002).

Throughout ETEC 533, situating and anchoring students’ learning has been a key piece that research has shown to foster students’ motivating factors.  The well-intentioned, though outdated Jasper Series week got some of us really excited to anchor learning in real life contexts.  Reading such blog posts that were titled, “Chalk and Talk are Dead” and “Goodbye Rote, Hello Anchored Instruction” exemplify this excitement to an exciting extreme. Although I will not being giving up my digital chalk anytime soon, what I have extracted from the ETEC 533 experience is that teachers of different age groups have different end goals, and hence, different pedagogical approaches, surrounding their practices.

The situated learning strategies that resonated most with me were via LfU (Learning for Use), T-GEM (Technology-enhanced: Generate, Evaluate, Modify) and embodiment. As summarized using Microsoft’s SWAY program:

All of these models naturally incorporate motivational strategies, that help engage students to want to learn.

Ultimately, students need to not only be interested in what they are learning, but they also need to have the appropriate tools in order to make that learning transpire.  Taking into account Scaffolded Knowledge Integration (SKI), in both of the activities that I have produced, incorporating the PhEt simulation for the Gravitation T-GEM and real-time data acquisition apparatus for graphical analysis, every student has an opportunity to make their learning personal and novel (Linn et al, 2002).  This concept also reinforces a key takeaway for students who were in the Spicer and Statford 2001 study analyzing the effectiveness of virtual field trips (VFT).  Students felt that by participating in the VFT, instead of a traditional lecture, that their learning had been personalized, hence they had more opportunity to engage in independent thought. With curiosity piqued (Edelson, 2000), opportunities for relationships to be generated, evaluated and modified (Khan, 2007), and interactions between the student and environment provided (Winn, 2003), self-motivation can be maximized.  In a recent post, I relayed some motivational strategies for educators to invoke:

Perhaps not if you design your practice around a few, simple motivational concepts, as outlined in the paper, “Reality versus Simulation” (Srinivasan et al, 2006):

1.       Design your lessons to “optimally challenge” your students. Like a video game, lessons shouldn’t be too difficult or too easy, for our students to engage with.

2.      Be INTERESTING. There are two key ways:

  • Weave NOVELTY into your lesson. (C+C Music Factory knows this, well.) A very smart person conducted a study that investigated K-1 students’ tendency to utilize scientific language when describing animals.  These budding, young scientists used scientific language more often when describing animals such as legless lizards and hedgehogs than when describing more common animals such as rabbits.

  • Convey a sense of IMPORTANCE and/or VALUE to what is being learned. From my own experience, ever since I began prefacing the Factoring Unit in Math 10 with, “This is the most important unit of the course” language, the unit is no longer one of the weakest units. People seem to take it more seriously when I put it on a pedestal. I also show students where I use it in my Grade 11 and 12 classes, in order to reinforce that this process is not going away any time soon.

Another key reading for myself was Winn’s “Learning in Artificial Environments: Embodiment, Embeddedness and Dynamic Adaptation” (2003).  The importance of coupling students with their environment to foster learning particularly stood out. How can we as educators capitalize on the addictive nature of video games that provide users with appropriate challenge, maximum curiosity, and opportunities to fantasize? Prior to this week, I only considered the affordances of gamification in my pedagogy.  Now, I am considering ways of using the effects of video games within my lessons.

From this post: “Activities that challenge students, pique their curiosity and provide “fruitful” new tidbits of knowledge that can assist them with future problems, are optimal, should the new knowledge wish to be adapted (Winn, 2003).”

From the same post: “As the questions would directly relate to the Vernier activity, students would be able to apply their knowledge the next day, making use of all three mechanisms for adaption of knowledge:

  1. Creating genetic algorithms: the “if-then” rules we construct when interacting with our environment and adapting our knowledge due to collecting “fruitful” information

  2. Rule Discovery: rules would have been crafted during the Vernier activity but then further entrenched by applying the rules to the Peer Instruction questions

  3. Crossover:applying the algorithms and rules in new situations could lead to rules combining into new rules for more complex situations (Winn, 2003)”

Student Motivation and How we Use

Wanting to dive into addressing student misconceptions deeper, I chose this topic as my theme for my annotated bibliography,  “Shut up and Calculate” Versus “Let’s Talk” Science Within a TELE”.   The biggest takeaway from the annotated bibliography was understanding the new roles that educators can be adopting in non-chalk-and-talk learning environments. Previously, the term “Guide on the Side” made me very uncomfortable as my interpretation of what this role entailed was limited to inquiry roles. Now, understanding the merits and dangers of using student-generated analogies (Haglund & Jeppsson, 2013) and stepwise problem-solving strategy (SPSS) (Gok, 2014), will shape my new role as “guide”.

Although I will be putting student-generated analogies and SPSS to the test in the near future, one approach that I have already adopted this semester with all three of my current classes is what I have coined as “Collaborative Quizzing”. In an attempt to create more opportunities to allow students’ thinking more visible, I now allow students to have the option of completing their quiz with a partner. This idea stemmed from our week learning about the WISE platform.  Throughout the platform, inquiry lessons require students to reflect on their learning and to provide opportunities for students to engage with each other about the topic at hand.

From this post: “Personalizing lessons within WISE, conducting class discussions, pushing students to think outside of their comfort zones and acting as the MKO (More Knowledgeable Other) at times, are all important actions and roles for educators to adopt.”

Collaborative Quizzing also came about from watching academically vulnerable students, course after course, year after year, sit through quizzes with their pencils or heads down, or with doodles of sadness strewn throughout their paper. These students will spend 20 to 30 minutes in misery, likely either negatively self-talking or in complete surrender. This is not good use of class time. As a self-described underdog, one of my goals as an educator is to help those who need the most help. So with WISE in my toolbelt and an eagerness to make class time effective, Collaborative Quizzing was born! I am particularly fascinated with the students’ feedback on the process. Overall, the feedback has been positive, and to help meet more students’ needs, I am now making the process voluntary.

As far as assessment is concerned, quizzes did not count for marks in my class, however, what I now do is require all students submit their quizzes after they have corrected their own.  I provide answer keys during the class time and upload the keys onto our Google Classroom, for those students who need more time or for those students who were away. Students receive full marks for fully corrected quizzes, as opposed to how many questions they initially got right. Increased learning interactions with peers not only build on Vygotsky theory, but also LfU theory, in that students are receiving communication directly from their MKOs to aid in the construction of knowledge (Edelson, 2000). It is theoretically possible to then immediately apply the newly constructed knowledge during the quiz and throughout the practice work that the struggling student is likely behind in.

Concluding Thoughts

Perhaps the most significant shift in my pedagogical approach to teaching math and science has been in how I utilize class time. Although five months by post-secondary standards is a very long period of time, in high school, this time is very limited.  During those five months, we teach, reinforce, provide practice time, allow for reading time, show videos, quiz, test, conduct labs, have assemblies, go on field trips, and more.  Like a bedroom closet cannot continually have pieces added to it without being dysfunctional, educators cannot continually add activities to their courses without running out of time. However, at the Grade 10 to 12 level, a reasonable expectation exists that students can and will perform some classroom responsibilities outside of class time.

With the adoption of Google Classroom, I now conduct my labs on Google Docs.  Partners can collaborate outside of class time more easily, allowing for more constructive activities to take place during class time. I have also reduced number of required practice questions with the intent of reducing the amount of in-class “worktime”, freeing up class time for more collaborative reinforcement activities.  Essentially, I am eliminating or reducing individual study activities that are in-class, in exchange for collaborative, technology-enhanced in-class activities.

Photo by Gerberkun courtesy of Imgur.

In an earlier post, I included the following image:

Motivating people to want to learn is a task that is very difficult and at times, impossible, should the approach taken be ineffective.  I do not believe that my grade levels and subject areas allow for students to pick topics that they are interested in, therefore, I need to be creative in how the material is presented and reinforced. I am very eager to take my pre-existing TELEs and make them more “T-GEM”-ized, as I did with “Conquering Mount Gravitation” and more embodied and LfU-ized, as I did with “Life on the Descoast” and “Graph Matching with Vernier”.

What is unquestionably working to my advantage in terms of motivating students to learn in my classes, is that there are not too many teachers in my school that are embracing TELEs. When students come into my class, my approaches are extremely novel and their curiosity and interest receive instant kudos—whether the lessons are effective or not. As I continue to push my personal TELE envelope, I will continue to refine and question my lessons’ effectiveness. Educators are so fortunate to have extremely user-friendly tools available to them, to make this refinement transpire. Theoretically, more educators will adopt TELEs more readily, as more of the early adopters become more fluent.

Soon, “21st Century Learners” will simply be called “Learners”– as they should be!

References
Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching,38(3), 355-385.
Gök, T. (2014). An investigation of students’ performance after peer instruction with stepwise problem-solving strategies. International Journal of Science and Mathematics
Haglund, J., & Jeppsson, F. (2014). Confronting conceptual challenges in thermodynamics by use of self-generated analogies. Science & Education, 23(7), 1505-1529. doi:10.1007/s11191-013-9630-5
Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.
Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.
Spicer, J., & Stratford, J. (2001). Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17, 345-354.
Srinivasan, S., Perez, L. C., Palmer,R., Brooks,D., Wilson,K., & Fowler. D. (2006). Reality versus simulation. Journal of Science Education and Technology, 15(2), 137-141.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585. doi:10.1016/0010-0285(92)90018-W
Winn, W. (2003). Learning in artificial environments: Embodiment, embeddedness, and dynamic adaptation. Technology, Instruction, Cognition and Learning, 1(1), 87-114.

 

Leave a Comment

Filed under assessment, collaboration, Constructivism, ETEC 533, Jasper Series, Learning models, LfU, Misconceptions, Peer Instruction, Situated Learning, Vernier Probeware, Vygotsky, WISE

Keeping it real: Keeping learning relevant, situated and hands-on

A theme is unquestionably emerging throughout this week’s readings, and linking ideas to previous weeks’ reading, as well. When learning is anchored in real life contexts, students are happier and their construction of knowledge is abundant.

When Third World street vending children are capable of performing complex mathematical processes mentally yet can not perform the same process in a decontextualized problem on paper, how can one not conclude the relevance of situated learning (Carraher & Dias, 1985)?  In another study, visitors to a free local museum were interviewed immediately after their trip and two years later.  Researchers determined that those visitors whose motivation to attend was curiosity driven, learned more and valued the experience more than those visitors who were merely socially motivated to attend (Falk & Storksdieck, 2009). And when researchers surveyed university biology students regarding their experience using a virtual field trip (VFT), as opposed to a traditional lecture, students overwhelmingly reported positively, 80% of the time, although they also reported that the VFT is best to enhance actual field trips, and not replace them (Spicer & Stratford, 2001).

Each of these readings funnel towards the importance of providing anchored instruction throughout educational practices. I think back to why I enjoyed physics more than any other science and it began with taking Dr. Matthews’ first year physics class where he utilized the entire theatre for his demonstrations and he took incredible measures to draw the most incredible, realistic diagrams. He was also incredibly funny, so I spent most lectures in an amused state! Although his teaching style would still be considered “traditional”, he wove realism into his lectures, every class.

Despite being bombarded with Inquiry Learning approaches in my Professional Development, and with Vygotskian Constructivist Theory in MET, I still believe that in my subject areas, senior physics and academic math, lecturing has its place. I do not have time to allow students to discover Every. Single. Concept. Nor can I allow them to choose what learning outcomes they wish to learn about.  My students are future engineers, doctors, and other intensively trained professionals and I am not prepared to sacrifice content for ease and happiness of the learning experience. To students who are not handling the rigour of my courses, I say, it is OK. It is OK to NOT become a doctor.  It is OK to NOT become an engineer. If you can’t take the heat, get out and find a training path that does not require you use math or physics at a high level. That still leaves a HEAP of other, very gratifying professions to follow!

Where I have been “converted” is within the lectures themselves.  I would not even call what I do, “lectures”, to be honest.  Students still write notes, however, the notes are interactively created. With peers, we do numerous reinforcement activities in a non-threatening, collaborative manner. We construct our knowledge at times, but not at others.   My goal is to prepare them for university and college, while providing as many hands on or virtual experiences as possible.

On the other hand, I can see that if I were a junior high or middle school teacher, how I would have a very different perspective.

Well, maybe not for entirely math….

For math, foundational skills are critical and need to be automated at some point. This is not only important for senior high math, but for mathematical confidence and mathematical self-esteem.  When students don’t know their times tables, for example, it is like they are in my class underwater, using an oxygen tank (their calculator) to breathe. They know that if they don’t have access to their “oxygen”, they will die. Being THAT depend on a tool to survive is not conducive for a healthy learning environment.

However, in science, bring on the “fun” learning! Situate, anchor, inquire, Jasper, WISE, and network those communities every day, as far as I am concerned! What ever it takes to promote a lifelong curiosity in science should be the goal of every junior/middle science teacher out there. Moreover, the world is depending on us to make this come to fruition! We are systematically destroying our environment, becoming 40-year-old-still-living-at-home dependent on technology, and perhaps most shockingly, in astonishingly high numbers, receiving our baseline news from Facebook.

<Please prepare yourself to be “should” on. I don’t like to engage in this practice, but every once in awhile, it needs to be done.>

If we do one thing, as a collective of educators, it should be to teach our younger students how to research, and remain scientifically curious throughout their lives.

That’s it!

Easy peasy.

We’ve got this.

References
Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in schools. British journal of developmental psychology, 3(1), 21-29.
Falk, J. & Storksdieck, M. (2010). Science learning in a leisure setting. Journal of Research in Science Teaching, 47(2), 194-212.
Spicer, J., & Stratford, J. (2001). Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17, 345-354.

Leave a Comment

Filed under Constructivism, ETEC 533, Learning models, Situated Learning, Vygotsky

WISE 101: A Brief Introduction to a TELE

  • What is WISE?

    • Web-based Inquiry Science Environment
    • Created in 1996 at The University of Calfornia, and Berkeley; has been expanded on from various researchers, educators and scientists worldwide
  • What was the motivation to create WISE?

    • Developers recognized that learners share a variety of misconceptions about every scientific phenomena and that learners also “deliberately” learn about science in order to expand on their own views of the world around them.
    • Developers hoped to create a platform that supported inquiry projects that lead to cohesive, sensical and thoughtful scientific reasoning
    • Utilizing the affordances of the internet, more realistic approaches could be weaved into the projects (Linn, Clark, & Slotta, 2002)
  • In what ways does SKI promote knowledge integration through its technological and curriculum design?

    • SKI: Scaffolded Knowledge Integration
    • There are four tenets to the SKI framework:
      • 1. Learners should have opportunities to “make their thinking visible”.
      • 2. Learners should be provided with opportunities that facilitate science being accessible to them.
      • 3. Learners should be provided with collaborative opportunities.  
      • 4. The design of the learning model should promote lifelong learning.
    • There are four types of “Knowledge Integration” prompts within SKI:
      • 1. Overarching: the process of connecting views across the entire project
      • 2. Critique: prompts that require learners to assess the scientific content
      • 3. Interpretation: to reinterpret evidence in a new context
      • 4. Explanation: learners are required explain evidence in their own words. (Linn, Clark, & Slotta, 2002)
  • Describe a typical process for developing a WISE project.

    • Should an educator wish to develop their own WISE project, creating a free account would be the first step. Although I have limited experience with the design process, in the first two hours that I spent with WISE, I was easily able to copy an existing project, then alter it to my own needs. My recommendation would be to tinker with pre-existing projects before starting one from scratch.  Overall, I would predict that the platform would be very user-friendly for those with a moderate amount of technological courage and experience, or more.
    • When developing an inquiry WISE project, researchers have narrowed down a few general strategies for problem-based learning and inquiry design:
      • 1. Ensure that disciplinary thinking and strategies are explicit
      • 2. Expert guidance (scaffolding) should be embedded throughout the project
      • 3. Complex tasks should be structured/scaffolded, thus reducing the “cognitive load” on the learners. (Lee & Chen, 2009)
    • Research has determined that reflections and explanations are more effective than procedural prompts
    • Although not too many studies have been done on how much scaffolding is needed within projects, educators should be mindful of the “Situated Knowledge Paradox”— when learners lack sufficient prior knowledge during an inquiry, thus their naivety misinforms and creates resilient misconceptions. (Kim & Hannafin, 2010)
  • How does this design process compare with the Jasper Adventures?

    • Compared to the Jasper Series, WISE is by far the more adaptable platform. In WISE, educators can choose to embed a vast array of tasks within the lesson, in addition to what Jasper can offer.  Students can effortlessly navigate from task to task, watching videos, performing experiments, reflecting on their learning, collaborating with others, visiting other simulations, and more.
    • Knowing what I now know about WISE, I would have rather spent two weeks investigating it as opposed to one week on Jasper and one week on WISE.  WISE “wins” by a landslide, as far as I am concerned!
  • How could you use a WISE project in your school or another learning environment?

    • From a senior Physics perspective, I would utilize WISE in a unit such as Gravitation or Modern Physics, where I lack the ability to demonstrate or conduct labs with my limited equipment. As a proponent of “hands on” learning, in units that I can bring into the classroom, I would be more reluctant to have students on screens.
    • I could also see the benefit of conducting an Earth Science 11 or a Science and Technology 11 course purely on WISE, as the students who mostly take these courses are not moving on to science related post-secondary programs.  I think more of our “reluctant learners” who just need a Science 11 credit to graduate, would have more buy-in with a format that was focused on learning fewer outcomes, but more in-depth. In courses like these, Final Exams could be eliminated entirely, in exchange for a Final Inquiry Project of their choosing.
  • What about WISE would you customize?

    • Everything.
    • Because I can.
    • “I like my teacher, but he never teaches us anything.” “We read a novel, did a project and moved onto the next novel without discussion.  I really wanted to talk about the first novel, but that wasn’t part of the process.” These are two comments from the daughter of a friend of mine who came out of an inquiry middle school model. Although she enjoyed picking her own projects, she also wished that her teacher had actually ran the show at times.  I believe that students want to have confidence in their teachers’ knowledge. Should teachers choose to run inquiry delivery models, they need to keep their essence in their lessons. Personalizing lessons within WISE, conducting class discussions, pushing students to think outside of their comfort zones and acting as the MKO (More Knowledgeable Other) at times, are all important actions and roles for educators to adopt.
    • As far as I am concerned, it is wise to keep our wisdom in WISE!
References

Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403-417.

Lee, C. -Y., & Chen, M. -P. (2009). A computer game as a context for non-routine mathematical problem solving: the effects of type of question prompt and level of prior knowledge. Computers & Education, 52, 530–542.

Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.

Leave a Comment

Filed under educational apps & programs, ETEC 533, Learning models, WISE

My Love-Hate Relationship with the Jasper Series

At the onset, what’s not to love?  Two of the readings that I chose, concluded that students self-reported to enjoying math more, and having less anxiety (CTGV, 1992b; Shyu, 2000). Both readings reported that students’ problem solving skills improved, and I would speculate that the Shyu study would see even larger increases in problem solving skills had the students participated in more than one Jasper Series problem. 

The main issue that the folks at Jasper are attempting to address is that many students are unable to apply microcontext (“end of the chapter”) questions, to macrocontext (“real life”/situated/anchored) problems.  The literature that I read, convinced me of one thing—group work, when orchestrated well, is beneficial to most students.  In “Complex Mathematical Problem Solving by Individuals and Dyads”, the younger, Grade 5 dyads, performed much better than their older (and more mathematically talented) Grade 6 soloists (Vye, 1997). Two lesser-able heads and better than one more-abled, it seems. How great is that???

I am not convinced that diving head first into Jasper methodologies is wise, however.  The entire premise favours a “top to bottom” skills approach, where the focus is on higher level thinking, and to scaffold if and when needed.  In my experience, this is a disastrous methodology to follow to the tee when teaching mathematics.  In order for these higher level problems to be attacked, a base knowledge needs to exist. Otherwise, in the group work, one or two “hot shots” will take the lead, the students who don’t understand a stich, get pulled along, everyone advances to the next level, and sure… Everyone feels good, because the low level students had life jackets on the entire time—of course, they enjoy this approach!

Borrowing a thought from John-Steiner and Mahn’s 1996-piece, “Sociocultural Approaches to Learning and Development: A Vygtoskian Framework”, the authors emphasise the importance of when looking at Vygotskian Theory, to refrain from abstracting portions of the theory, which can consequently lead to “distorted understandings and applications” (p. 204).  To me, the Jasper folks have abstracted portions of constructivist learning strategies, conducted studies using the best math students or studies where groups can make the struggling kids float, and declared, “Hey, we’ve made math fun and relevant!”

Many of us agree that Piaget and Vygotsky had a lot of things right in their constructivist theories.  Both theorists agreed that the material world aids development due to environmental experience (Glassman, 1994). These environmental experiences are often transpiring amongst peer groups, in a social context. Can we not replicate these transformative experiences in our classrooms?

When students possess self-generated motivation to accomplish a task (due to being adequately challenged), constructivist approaches to learning can flourish (vonGlasersfeld, 1983). But here’s the thing… according to Vygotsky, the development of thought requires spontaneous (self-generative) concepts to occur in opposition of non-spontaneous concepts (Glassman, 1994).  Non-spontaneous concepts can occur through peer interactions, however, they can also occur through instruction, from adult MKOs (more knowledgeable others). Vygotsky himself was privately taught by a mathematician who followed the Socratic method. He learned an incredible amount from his parents and his tutor; his own children were brought up in a similar Socratic environment living in a single room house with 11 other people (please refer to the Vygotsky timeline: http://vygotsky2016.weebly.com/).

Ultimately, I would urge educators to digest methodologies like Jasper in small quantities.  These approaches are not the magic pill that will solve all of our problems. I believe that rote learning still has its place in mathematics. (Yup. I said it.) If it is the only approach that one adopts, I would ask that person to get with the program, however. We don’t want to kill the beauty of mathematics for our students, yet students moving onto academic levels of math, need to have the skill set, the automated skill set, in order to succeed and actually understand what the heck they are doing.

I’m still looking for that magic pill— it’s a quest worth pursuing, indeed! I suspect that if someone ever DOES find it though, that it will not consist of just one approach.

References:
Cognition and Technology Group at Vanderbilt (1992b). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27(3), 291-315.
Glassman, M. (1994). All things being equal: The two roads of Piaget and Vygotsky. Developmental Review, 14(2), 186-214. doi:10.1006/drev.1994.1008
John-Steiner, V., & Mahn, H. (1996). Sociocultural approaches to learning and development: A Vygotskian framework. Educational Psychologist, 31(3), 191.
Shyu, H. Y. C. (2000). Using video‐based anchored instruction to enhance learning: Taiwan’s experience. British Journal of Educational Technology, 31(1), 57-69.
Von Glasersfeld, E. (2008). Learning as a constructive activity. AntiMatters, 2(3), 33-49.
Available online: http://anti-matters.org/articles/73/public/73-66-1-PB.pdf
Vye, N. et al. (1997). Complex mathematical problem solving by individuals and dyads. Cognition and Instruction, 15(4), 435-450.

Leave a Comment

Filed under ETEC 533, Jasper Series, Learning models

The Behaviourist vs. The IP-Strategist vs. The Gamer

Prior to this week’s reading, I was under the impression that the gamification of learning was more about capturing student engagement and making learning “fun”, similar to that of playing video games. Now, I realize it is much more than making learning fun—in fact, “fun” may not be a component to the learning process, at all!

Being a visual learner myself, I created this in cycle in my notebook to describe the Video Game Model.

Video Game Model of Learning

The Behaviourists out there would be definitely ramping up the all parts of this cyclic model. Both positive and negative reinforcements could be peppered throughout the model.  Feedback and cueing is continual throughout gaming processes, and rewards and punishments are distributed to keep gamers interested in coming back for more.

Information Processing fans may also chime into this discussion. Eventually, with repeated play, processes will be stored in the LTM, and automaticity will allow gamers to achieve higher, more challenging levels due to a more refined ability to multi-task.

What particularly grabbed me this week was the notion of “Incremental Progress Recognition”.  Having watched David Suzuki’s Surviving 😉 the Teenage Brain, I already knew that teenagers’ pre-frontal cortex (PFC) made them more inclined to act impulsively. What I did not know until now, was that the immature PFC makes it very difficult for students to establish long term goals, as they much prefer immediate gratification.  Thinking of ways to employ strategies that allow students to individually track their progress more often, hence in smaller increments, is officially on my radar.

The Effort Goal Graphs, are an interesting technique–  I think that I will adapt that idea into a BINGO card format (and digitally formatted, but of course!)

Leave a Comment

Filed under behaviourism, ETEC 512, Information Processing, Learning models, Video Games